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ABSTRACT

Current treatment for HIV infection consists of Highly Active Antiretroviral (ART) therapy.
However, lack of adherence to ART treatment has hampered the benefits of the ART treatment
strategy and viral load suppression. Most of the treatment models studied so far do not explicitly
include the relationship between adherence to ART regimens and viral load suppression. In this
study, a mathematical model with ART adherence is developed. By an application of the next
generation matrix approach, the reproduction number, R0, is determined.Stability analysis of the
model developed shows that the Disease Free Equilibrium (DFE) is locally asymptotically stable,
if R0 < 1, and an Endemic Equilibrium (EE) exists, which is unique and is locally asymptotically
stable when R0 > 1. Using Lyapunov functional approach, the endemic equilibrium is shown to
be globally asymptotically stable, and hence persistence of the disease in the population.
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Sensitivity analysis of the model shows that the disease can be kept under check if the test
and treat strategy is upscaled as well as adherence to treatment for the infected individuals is
emphasized.
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1 Introduction

Human Immunodeficiency Virus(HIV) is the virus which causes Acquired Immune Deficiency Syndrome
(AIDS). HIV infection depletes the central part of the immune system, leading to AIDS. The
natural progression from HIV to AIDS, without drug therapy intervention [1], takes approximately
4-8 years [2] from the initial infection to the terminal stage. However, this duration can be much
shorter depending on the presence of co-infections, individual age, how infection was transmitted,
and access to palliative treatment and care [3].

Despite remarkable progress on HIV treatments, elimination of HIV/AIDS is still out of reach, and
approximately two and half million people get infected every year [4]. Kenya for instance, has had
the fastest-growing number of new HIV infections in sub-Saharan Africa in the last decade [5]. A
new report by UNAIDS shows that between 2005 and 2015, the number of new HIV cases grew by
an average of 7.1% per year in Kenya, one of the highest increases in the world [6]. More than half
(53%) of the 1.6 million people living with HIV in Kenya are unaware of their HIV status [7]. This
shows that the HIV/AIDS epidemic remains one of the biggest public health threats of our time
[8].

Treatment of HIV/AIDS infection has improved dramatically in the past few decades but is still
limited by the development of drug resistance and the inability of current therapies to completely
eradicate the virus from an infected individual. Antiretroviral therapy (ART) has the potential
to prevent HIV/AIDS transmission by reducing the concentration of HIV in blood and genital
secretions [9]. Recent trials have proven that early ART improves both individual clinical outcomes,
and decreases HIV transmission [10]. Drug resistance is an important issue, especially over the
long timescales, because it effectively weakens the impact of existing first-line regimens and could
cause greater reliance on second- and third-line treatment regimens, which are currently more
expensive [11]. Monitoring patients receiving ART is an important part of HIV care: it determines
whether treatment is successful, or if a different drug regimen or improved adherence is required [12].
Patients with treatment failure are more likely to experience progressive disease and are at greater
risk of dying, while patients with non-suppressed virus are also at risk of developing resistance
and transmitting HIV infections to others. Poor ART adherence increases the risk of viral drug-
resistance, limits treatment efficacy, leading to disease progression, and reduces future therapeutic
options [13] as well as increasing the risk of transmission due to unsuppressed viral replication [14].

2 Model Description and Formulation

A non-linear mathematical model is proposed to study the dynamics of HIV/AIDS with treatment.
The population N(t) is subdivided into the Susceptibles S(t), Infectives I(t), Treatment class T (t),
and AIDS class A(t) with natural mortality rate µ in all the classes. The interaction between the
classes is assumed as follows; the susceptibles become infected via sexual contacts with infectives.
It’s also assumed that the infective individuals proceed to AIDS class at a rate ν or move to the
treatment class at a rate θ. If individuals under treatment become non-adherent to drug uptake,
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they proceed to AIDS class at a rate γ = 1 − θ. AIDS individuals are assumed to suffer disease
induced mortality at a rate d.

To develop the model, the following assumptions are made;

(i) The recruitment into the population of study (sexually mature adults) is mainly by birth,
with all recruits assumed susceptible.

(ii) An individual who is asymptotically infected is placed under ART treatment.

(iii) The full blown AIDS individuals, whose symptoms are easily recognizable, are no longer a
threat in the spread of the epidemic. Its assume that individuals at this stage are not sexually
active.

Taking into account the above considerations, the following schematic flow diagram is developed.

        S(t)
       
         I(t)   

        
        A(t)		

         
         T(t)

Λ

µ

λ

µ

d

γ

µ

θ

ν

µ

δ

Fig. 1. A schematic diagram of the disease dynamics.

The model is thus governed by the following system of equations

Ṡ(t) = Λ− µS(t)− βcI(t)S(t)

N(t)
,

İ(t) =
βcI(t)S(t)

N(t)
− (ν + θ + µ)I(t),

Ṫ (t) = δA(t) + θI(t)− (γ + µ)T (t),

Ȧ(t) = γT (t) + νI(t)− (d+ µ+ δ)A(t), (2.1)

where

N(t) = S(t) + I(t) + T (t) +A(t).
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Table 1. A summary of the variables and Parameters used in the model

Parameter or Description
Variable

S(t) Number of the individuals that are not infected

I(t) Number of individuals who are already infected with HIV

T (t) Number of individuals who are infected ART treatment

A(t) Number of individuals who are full blown with AIDS

Λ Recruitment rate of susceptibles

µ The AIDS-non related mortality rates per capita (natural deaths).

ν The rate at which HIV infected individuals progress to AIDS.

c The rate at which one changes/acquires new sexual partners.

β The probability of getting infected from a randomly chosen partner.

θ Rate of recruitment to treatment of infected individuals.

λ = βcI(t)
N(t)

Force of infection.

δ Rate at which AIDS patients get treatment.

γ Rate at which individuals on treatment proceed to fully blown

d Disease induced death rate

The summary of the parameters and variables used in the description of the model is as shown in
Table 2 below.

For biological feasibility, Equation (2.1) is analyzed in a suitable region Γ defined as

Γ =

{
(S(t), I(t), T (t), A(t)) ∈ R4

+ : S(t) + I(t) + T (t) +A(t) ≤ Λ

µ

}
(2.2)

Since the model describes human population, the solutions of Equation (2.1), with initial conditions
in region Γ will remain positive and bounded for all t ≥ 0. Hence the model developed is
mathematically and epidemiologically well posed in the region Γ.

3 Local Stability Analysis of the Disease Free Equilibrium

In this section we study the local stability of the Disease Free Equilibrium (DFE)E0 for the
model(2.1). DFE (E0) is obtained when infection is absent in the population. Model (2.1) has
a disease free equilibrium (DFE) given by

E0 = (S0, I0, T0, A0) =

(
Λ

µ
, 0, 0, 0

)
(3.1)

Theorem 3.1. If R0 = βC
ν+θ+µ

< 1, then E0 = (Λ
µ
, 0, 0, 0) is the equilibrium in Γ and is locally

asymptotically stable.

Proof. The Jacobi matrix of model (2.1) at DFE I(t) = T (t) = A(t) = 0 and N = S = Λ
µ

is given
by

J(E0) =


−µ −βc 0 0
0 βc− (µ+ ν + θ) 0 0
0 θ −(γ + µ) δ
0 ν γ −(d+ µ+ δ)

 (3.2)
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To investigate the stability of the DFE, we compute the eigenvalues of Equation (3.2)

|J(E0)| =


−µ− λ −βc 0 0

0 (µ+ ν + θ)(R0 − 1)− λ 0 0
0 θ −(γ + µ)− λ δ
0 ν γ −(d+ µ+ δ)− λ

 = 0 (3.3)

Applying Hurwitz Criterion [15], the trace of J(E0) is negative if R0 < 1 while its determinant is

det
[
J(E0)

]
= (−µ)(µ+ ν + θ)(R0 − 1)

[
γd+ γµ+ µδ + µ2 + µδ

]
(3.4)

The determinant is positive if R0 < 1. Hence, the eigenvalues of Equation (3.3) have negative real
parts whenever R0 < 1 and hence guarantees local asymptotic stability [16].

Given a small initial infective population each infected individual in the entire period of infectivity
will produce less than one infected individual on average if R0 < 1, hence the disease will not invade
the population.

4 Global Stability Analysis of the Disease Free Equilibrium

In this section we analyze the global asymptotic stability of the disease free equilibrium. Using the
theorem by Castillo Chavez et. al [17]. The system (2.1) is rewritten in the form

dX(t)

dt
= F (X(t), Z(t))

dZ(t)

dt
= G(X(t), Z(t)), G(X(t), 0) = 0 (4.1)

where X(t) = S(t) and Z(t) = (I(t), T (t), A(t)), with X(t) ∈ R+ denoting the total number of
uninfected compartments and Z(t) ∈ R3

+ denoting the infected compartments. The disease free
equilibrium is then denoted by

U0 = (X∗, 0) where X∗ =
Λ

µ

The conditions H1 and H2 below must be met to guarantee Global Asymptotic Stability
H1:

dX(t)
dt

= F (X(t), 0), X∗ is Globally Asymptotic Stable.

H2: G(X(t), Z(t)) = AZ(t)− Ĝ(X(t), Z(t)), Ĝ(X(t), Z(t)) ≥ 0
for ((X(t), Z(t)) ∈ Γ where A = DZG(U0, 0) is a metzler matrix (the off diagonal elements of A are
non-negative) and Γ is the region where the model makes biological sense.

Theorem 4.1. The fixed point U0 = (X∗, 0) is Globally Asymptotic Stable equilibrium of Equation
(2.1) provided R0 < 1 and the assumptions H1 and H2 are satisfied.

Proof. We have

dX(t)

dt
= F (X(t), Z(t)) = Λ− µS(t)− βcI(t)S(t)

N(t)

F (X(t), 0) = Λ− µS(t)

dZ(t)

dt
= G(X(t), Z(t)) =

 βcI(t)S(t)
N(t)

− (ν + θ + µ)I(t)

δA(t) + θI(t)− (γ + µ)T (t)
γT (t) + νI(t)− (d+ µ+ δ)A(t)


and G(X(t), 0) = 0
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Therefore

dX(t)

dt
= F (X(t), 0) = Λ− µS(t)

A = DZG(X0, 0) =

βc− (ν + θ + µ) 0 0
θ −(γ + µ) δ
ν γ −(d+ µ+ δ)



and Ĝ(X(t), Z(t)) =

Ĝ1(X(t), Z(t))

Ĝ2(X(t), Z(t))

Ĝ3(X(t), Z(t))

 =

βc
(
1− 1

N

)
I(t)

0
0


It follows that Ĝ1(X(t), Z(t)) ≥ 0, Ĝ2)(X(t), Z(t)) = Ĝ3(X(t), Z(t)) = 0 thus Ĝ(X(t), Z(t)) ≥ 0.
Conditions H1 and H2 are satisfied and thus U0 is Globally Asymptotically Stable for R0 < 1.

Epidemiologically, any perturbation of the model by the introduction of infectives shows that the
model solutions will converge to the DFE whenever R0 < 1. Global asymptotic stability shows
that regardless of any starting solution, the solutions of the model will converge to DFE whenever
R0 < 1.

5 Local Stability Analysis of the Endemic Equilibrium

At the endemic equilibrium, there is persistence of infection, thus at least one of the infected classes
is greater than zero. The positive endemic equilibrium of model (2.1) is denoted by

E∗ = (S∗, I∗, T ∗, A∗) (5.1)

Using R0 = βc
ν+θ+µ

and the limiting value of N = Λ
µ
, the endemic states are

S∗ =
Λ

µβc

(
ν + θ + µ

)
,

I∗ =
Λ

βc

(
R0 − 1

)
,

T ∗ =
δ

γ + µ

{(
γθ + ν(γ + µ)

(γ + µ)(d+ µ+ δ)− γδ

)
Λ

βc

(
R0 − 1

)}
+

θ

γ + µ

Λ

βc

(
R0 − 1

)
,

A∗ =

(
γθ + ν(γ + µ)

(γ + µ)(d+ µ+ δ)− γδ

)
Λ

βc

(
R0 − 1

)
. (5.2)

Additionally, a positive endemic state equilibrium exists provided R0 > 1.

Theorem 5.1. If R0 > 1, then E∗ = (S∗, I∗, T ∗, A∗), the endemic equilibrium, is locally asymptotically
stable.

Proof. The Jacobi matrix of Equation (2.1) at endemic equilibrium E∗, is

J =


−R0µ −(ν + θ + µ) 0 0

−µ(R0 − 1) 0 0 0
0 θ −(γ + µ) δ
0 ν γ −(d+ µ+ δ)

 (5.3)
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Interchanging row two to be row one in (5.3) and maintaining the rest, Equation (5.3) becomes

J =


−µ(R0 − 1) 0 0 0

−R0µ −(ν + θ + µ) 0 0
0 θ −(γ + µ) δ
0 ν γ −(d+ µ+ δ)

 (5.4)

For local asymptotic stability of Equation (5.4) at E∗, the eigenvalues of matrix (5.4) are obtained,
that is

P (λ) = −

∣∣∣∣∣∣∣∣∣
µ(R0 − 1)− λ 0 0 0

−R0µ −(ν + θ + µ)− λ 0 0
0 θ −(γ + µ)− λ δ
0 ν γ −(d+ µ+ δ)− λ

∣∣∣∣∣∣∣∣∣ = 0 (5.5)

P (λ) =
[
− µ(R0 − 1)− λ

](
− (ν + θ + µ)− λ

) ∣∣∣∣∣−(γ + µ)− λ δ
γ −(d+ µ+ δ)− λ

∣∣∣∣∣ = 0

(5.6)

The eigenvalues of Equation (5.6) are;

λ = −µ(R0 − 1) and λ = −(ν + θ + µ)

which are negative whenever R0 − 1 > 0. Using the Routh Hurwitz criterion, the eigenvalues
obtained by the matrix ∣∣∣∣−(γ + µ)− λ δ

γ −(d+ µ+ δ)− λ

∣∣∣∣ = 0

are negative since the trace=(γ + 2µ + d + δ) < 0 and determinant=γ(d + µ) + µ(d + µ + δ) > 0.
Hence, the endemic equilibrium E∗ is locally asymptotically stable whenever R0 > 1.

Hence if R0 > 1, model (2.1) at Endemic state is locally asymptotically stable. Therefore if R0 > 1
and given a small infective population, each infected individual in the entire period of infectivity
will produce more than one infected individual on average, which shows that the disease will persist
in the population.

6 Global Stability Analysis of the Endemic Equilibrium

In this section, we investigate the global stability of the endemic equilibrium E∗ under the condition
R0 > 1. We apply a Lyapunov function [18] that takes advantage of the properties of the function

h(x) = x− 1− ln(x), (6.1)

which is positive in (0,∞) except at x = 1 where it vanishes.

Theorem 6.1. The endemic equilibrium E∗ of the model (2.1) is globally asymptotically stable in
Γ whenever R0 > 1.

Proof. Consider the following Lyapunov function;

V = S − S∗ ln(S) + I − I∗ ln(I) + T − T ∗ ln(T ) +A−A∗ ln(A) (6.2)
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Differentiating V with respect to time gives

V̇ =

(
1− S∗

S

)
Ṡ +

(
1− I∗

I

)
İ +

(
1− T ∗

T

)
Ṫ +

(
1− A∗

A

)
Ȧ (6.3)

Replacing Ṡ, İ, Ṫ , Ȧ from Equation (2.1) in (6.3), we obtain

V̇ =

(
1− S∗

S

)[
Λ− µS − βcIS

N

]
+

(
1− I∗

I

)[βcIS
N

− (ν + θ + µ)I
]

+

(
1− T ∗

T

)[
δA+ θI − (γ + µ)T

]
+

(
1− A∗

A

)[
γT + νI − (d+ µ+ δ)A

]
(6.4)

At the boundary N ≤ Λ
µ
, thus we let N = Λ

µ
and Equation (6.4) can be written as

V̇ =

(
1− S∗

S

)[
Λ− µS − βµcIS

Λ

]
+

(
1− I∗

I

)[βµcIS
Λ

− (ν + θ + µ)I
]

+

(
1− T ∗

T

)[
δA+ θI − (γ + µ)T

]
+

(
1− A∗

A

)[
γT + νI − (d+ µ+ δ)A

]
(6.5)

At steady state the following equations results from model (2.1),

Λ = µS∗ +
βµcI∗S∗

Λ
, γT ∗ + νI∗ = (d+ µ+ δ)A∗,

µβcS∗

Λ
= (ν + θ + µ), δA∗ + θI∗ = (γ + µ)T ∗ (6.6)

Substituting(6.6) in Equation (6.5) and upon simplification, Equation (6.5) becomes

V̇ =

(
1− S∗

S

)[
µS∗ +

βµcI∗S∗

Λ
− µS − βµcIS

Λ

]
+

(
1− I∗

I

)[βµcIS
Λ

− (ν + θ + µ)I
]

+

(
1− T ∗

T

)[
δA+ θI − (γ + µ)T

]
+

(
1− A∗

A

)[
γT + νI − (d+ µ+ δ)A

]
=

(
1− S∗

S

)
βµcI∗S∗

Λ
+ µS∗

(
2− S

S∗ − S∗

S

)
− βµcIS

Λ
+

βµcIS∗

Λ

+

(
1− I∗

I

)[βµcIS
Λ

− (ν + θ + µ)I
]
+

(
1− T ∗

T

)[
δA+ θI − (γ + µ)T

]
+

(
1− A∗

A

)[
γT + νI − (d+ µ+ δ)A

]
=

(
βµcI∗S∗

Λ
+ µS∗

)(
2− S

S∗ − S∗

S

)
+ γT ∗

(
1− A

A∗
T

T ∗

)
+ νI∗

(
1− A∗

A

I

I∗

)
+ δA∗

(
1− T ∗

T

A

A∗

)
+ θI∗

(
1− T ∗

T

I

I∗

)
(6.7)

At S = S∗, I = I∗, T = T ∗, A = A∗ and from the property that the geometric mean is less than
or equal to the arithmetic mean, the inequality V̇ ≤ 0 holds iff (S, I, T,A) takes the equilibrium
values (S∗, I∗, T ∗, A∗). Therefore, by Lassalles’s invariance principle [19], the endemic equilibrium
E∗ is Globally Asymptotically stable.

Global asymptotic stability shows that regardless of any starting solution, the solutions of the model
will converge to E∗ whenever R0 > 1. Epidemiologically, any perturbation of the model by the
introduction of infectives shows that the model solutions will converge to the E∗ whenever R0 > 1.

8



Frankline et al.; ARJOM, 10(2): 1-13, 2018; Article no.ARJOM.42830

7 Sensitivity Analysis

In this section, sensitivity analysis of R0 with respect to the model parameters is carried out in order
to determine the drivers for transmission and prevalence of the disease. This helps in identifying the
parameters to be targeted in designing intervention strategies [20]. To perform sensitivity analysis,
the normalized forward sensitivity index also known as elasticity[21] is used. The normalized forward
sensitivity index of the reproduction number R0 with respect to a parameter value P is given by

ΓR0
P =

∂R0

∂P
× P

R0
(7.1)

For R0 = βC
ν+θ+µ

, we have

ΓR0
β =

∂R0

∂β
× β

R0
= 1

ΓR0
c =

∂R0

∂c
× c

R0
= 1

ΓR0
ν =

∂R0

∂ν
× ν

R0
= − ν

ν + θ + µ

ΓR0
θ =

∂R0

∂θ
× θ

R0
= − θ

ν + θ + µ

ΓR0
µ =

∂R0

∂µ
× µ

R0
= − µ

ν + θ + µ

Using the baseline parameter values, we evaluate the sensitivity indices and summarize it in Table
7

Table 2. Sensitivity indices of the reproduction number for model parameters

Parameter Value Sensitivity

c 3 per year +1

β [0.011-0.95] +1

θ 0.00333 per year -0.1059

ν 0.01562 per year -0.3975

µ 0.0125 per year -0.4967

The parameters are ordered from the most sensitive to the least. For C and β the higher the average
number of sexual contacts and transmission probability, the higher the increase of transmission.
The sensitivity indices of R0 with respect to the rate at which HIV infected individuals progress
to AIDS (ν) is -0.3975 implying that decreasing (or increasing) ν by 10% increases (or decreases)
R0 by 3.975%. Increasing (or decreasing) the natural mortality (µ) by 10% decreases (or increases)
the R0 by 49.67%. Similarly, increasing (or decreasing) the rate of recruitment to treatment of
infected individuals (θ) by 10% decreases (or increases) the R0 by 10.59%. This shows that to
reduce HIV/AIDS prevalence cases, strategies should be geared towards raising awareness on the
need of the reduction of the number of sexual partners c to reduce the transmission probability β,
and increase of adherence θ to drug uptake.

8 Numerical Simulation

In this section, MATLAB software is used to illustrate the numerical simulations describing the
theoretical results for Equation (2.1).

9



Frankline et al.; ARJOM, 10(2): 1-13, 2018; Article no.ARJOM.42830

Table 3. Parameter Estimates for the Model

Description Parameters Values Source

Recruitment rate Λ 2258 per year Estimate

Probability of getting the disease β [0.011-0.95] [13],[11]

The number of sexual partners per year c 3 [3]

Mortality rate µ 0.01562 per year [5]

Recruitment to treatment θ 0.333 per year [3]

Rate of treatment of Aids patients δ 0.01562 per year [5]

Drug resistance γ 0.004 per year [3]

Disease induced death rate d 0.0013 per year [16]

Rate of progression to AIDS ν 0.125 per year [9]

Lack of adherence to antiretroviral therapy is one of the main causes for drug resistance worldwide
and one of the main concerns when providing ARTs to developing countries. Poor adherence
attenuates optimum clinical benefits and therefore reduces the overall effectiveness of health systems.
Simulation of the model with lack of adherence is as shown in Figure 8.
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Fig. 2. Case of lack of adherence to ART treatment

Low levels of adherence results in reduction of clinical advantages of treatment and making the
virus more difficult to eliminate from host populations.
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Fig. 3. Influence of adherence on the cumulative AIDS cases

From Figure 8, arise in levels of non-adherence (γ = 1− θ) to drug uptake results in increase of the
number of individuals at AIDS stage. From research findings done by Muhammad [3], increase of
the AIDS individuals is as a result of the development of new strains of virus that are difficult to
eradicate. This confirms that low adherence levels results in high number of AIDS cases (Figure 8).

9 Discussion and Conclusion

Studies by Herbeck et al. [4], showed that patients on long term ART with undetectable levels
of HIV still harbor replication virus. For this reason, with current medications, ART is a lifelong
program. Because of the prolonged use of ART, lapses in the uptake may occur leading to non-
adherence. Variables such as income, education and marital status have all been shown to affect
adherence to ART, to differing degrees [3]. Analysis shows that disease free equilibrium E0 is
locally and globally asymptotically stable when R0 < 1 while the endemic equilibrium is locally
asymptotically stable when R0 > 1. By construction of Lyapunov function and by use of Lassalle’s
invariance principle, the endemic equilibrium is shown to be globally asymptotically stable. From
the simulations, maximal benefit of ART treatment is attained through the advocacy of test and
treat strategy and follow-up to ensure adherence. This concurs with studies done by Okosun et al.
[10], where they considered that good medication adherence is one of essential factors in attainment
of optimal HIV care. Based on the results obtained, it is plausible that some of the parameters
(such as the treatment and transmission rates) may vary with time. This additions will present an
interesting problem that can be further examined.
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