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ABSTRACT 
 
In this paper, the solution of fuzzy relational equations are determined in the case of k - regular 
intuitionistic fuzzy matrices. Also we introduce the concept of k - regularity for block intuitionistic 
fuzzy matrices and the consistency of intuitionistic fuzzy relational equations are discussed. 
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1. INTRODUCTION 
 
Let �� be the set of all � � � fuzzy matrices over 
the fuzzy algebra � � �0,1
 under the operations ��,⋅�  defined as � � � � �����, �
  and � ⋅ � ������, �
  for all �, � ∈ � . In short ��  denotes 
fuzzy marices of order � � �. Kim and Roush [1] 

have given a systematic development of fuzzy 
matrix theory, introducing new definitions such as 
the independence of a set of fuzzy vectors 
defined over a commutative semiring, the basis 
of a subspace of fuzzy vectors, the Schein rank 
of an � � � fuzzy matrix �, etc. Of course, these 
definitions are the generalizations of similar 
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definitions in the setting of Boolean matrix theory 
[2]. For � ∈ ���, ����  and ����  denote the row 
space and column space respectively. � ∈ ��� is 
said to be regular if there exist �  such that ��� � �, �  is called the generalized inverse of � . ��1
  denotes the set of all � -inverses of � . 
Meenakshi and Jenita have extended the notion 
of regular matrices to k - regular matrices for 
some positive integer �  [3]. Atanassov has 
introduced and developed the concept of 
intuitionistic fuzzy sets as a generalization of 
fuzzy sets [4]. Pal, Khan and Shyamal have been 
studied the concept of intuitionistic fuzzy 
matrices [5]. A study on regularity and various g - 
inverse of intuitionistic fuzzy matrices over 
intuitionistic fuzzy algebra are discussed in [6]. 
Basic properties of intuitionistic fuzzy matrices as 
a generalization of the results on fuzzy matrices 
have been derived by Khan and Anita Paul [7]. 
After Sanchez [8] introduced the fuzzy relation 
equations, several authors have further enlarged 
this theory with many papers. In [9], Cho has 
discussed the consistency of fuzzy matrix 
equations. Zhou Wei and boa Menghong 
extended the fuzzy relational equations to 
intuitionistic fuzzy relational equations [10]. A 
necessary and sufficient condition for the fuzzy 
relation equations are found in [11, 12]. An 
applicability of the numerical solutions of the 
fuzzy systems are discussed in [13]. Regularity 
of block fuzzy matrices and its properties are 
discussed in [14]. The concept of regularity for 
block intuitionistic fuzzy matrices and 
consistency of intuitionistic fuzzy relational 
equations are discussed by Meenakshi and 
Gandhimathi [15]. Further to learn about fuzzy 
sets, fuzzy matrix theory and its applications, one 
may refer [16, 17]. The solutions of fuzzy 
relational equations are determined in the case 
of k - regular fuzzy matrices and block fuzzy 
matrices are discussed by Jenita [18, 19]. A 
sufficient condition for existence of the smallest 
solution of a max-min fuzzy equations found in 
[20]. In [21], Higashi and Klir have derived the 
general schemes for solving fuzzy relation 
equations with finite sets. Fuzzy relation 
equations with triangular norms and their 
resolution are discussed in [22]. In [23], Di Nola 
and Sessa introduced some algorithms which 
have minimization properties about the fuzziness 
of solutions in the maxmin fuzzy relation 
equations. Applications of fuzzy relation 
equations are discussed in [24-27]. Applications 
of fuzzy models and its procedures have been 
discussed in [28]. Approximate solutions of fuzzy 
relation equations are found in [29,30]. Solutions 
of fuzzy relation equations with extended 

operations introduced in [31]. Recently, we have 
introduced the concept of k-regular intuitionistic 
fuzzy matrix as a generalization of regular 
intuitionistic fuzzy matrix [32]. Further to learn 
about fuzzy relation equation, one may refer 
[33,34]. In this paper, the solution of fuzzy 
relational equations are determined in the case 
of k - regular intuitionistic fuzzy and block fuzzy 
matrices.  
  
2. PRELIMINARIES 
 
Here, we are concerned with fuzzy matrices, that 
is matrices over a fuzzy algebra FM(FN) with 
support �0,1�, under maxmin(minmax) operations 
and the usual ordering of real numbers. Let �������  be the set of all intuitionistic fuzzy 
matrices of order � � �, �����  be the set of all 
fuzzy matrices of order � � �, under the maxmin 
composition and ����  be the set of all fuzzy 
matrices of order � � � , under the minmax 
composition. In short �����  denotes the 
intuitionistic fuzzy matrix of order � � �. 
 
If � � ��"#� ∈ ������� , then � � $%�"#& , �"#'() , 
where �"#&  and �"#'  are the membership values 
and non membership values of �"#  in � 
respectively with respect to the fuzzy sets * and +, maintaining the condition 0 ≤ �"#& � �"#' ≤ 1. 
 
We shall follow the matrix operations on 
intuitionistic fuzzy matrices as defined in [20]. 
For �, - ∈ �������, then 
 � � - � $%max1�"#& , �"#&2, min1�"#', �"#'2() �- � 56max7 min1�"7& , �7#&2, min7 max1�"7' , �7#'289 

 
Let us define the order relation on ������� as, 
 � ≤ - ⇔ �"#& ≤ �"#&  and �"#' ≥ �"#',  for all �  and <. 
 
In this work, we shall represent � ∈ �������  as 
cartesian product of fuzzy matrices. 
 
For � � ��"#� ∈ �������.  Let � � ��"# � �$%�"#& , �"#'() ∈ �������. 
 
We define �& � ��"#&� ∈ �����  as the membership 
part of �  and �' � ��"#'� ∈ ����  as the non-
membership part of A. Thus � is written as the 
cartesian product of �&  and �' , � �< �& , �' > 
with �& ∈ ����� , �' ∈ ���� .  For 
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� ∈ �������, ���������� be the space generated 
by the rows (columns) of �. 
 
Definition 2.1. [6] 
 
For �, - ∈ ������� , if � �< �&, �' >  and - �< -& , -' >,  
 
then � � - �< �& � -& , �' � -' >. 
 
Definition 2.2. [6] 
 
For � ∈ ������?, - ∈ ����?��  if � �< �& , �' > 
and - �< -& , -' >, then 
 ���   �- �< �&-& , �'-' > , where �&-&  is the 

maxmin product in �����  and �'-'  is the 
minmax product in ���� . ���� �A �< �&A , �'A >. 

 
Definition 2.3. [32] 
 
A matrix � ∈ ����� ,  is said be right k-regular if 
there exists a matrix � ∈ �����  such that �7�� � �7 ,  for some positive integer � . �  is 
called a right k-g-inverse of �. 
 
Let �B�17
 � ��/�7�� � �7
. 
 
Definition 2.4. [32] 
 
A matrix � ∈ ����� ,  is said be left k-regular if 
there exists a matrix D ∈ �����  such that �D�7 � �7 ,  for some positive integer � . D  is 
called a left k-g-inverse of �. 
 
Let �ℓ�17
 � �D/�D�7 � �7
. Let ��17
 be the set 
of k-g-inverses of �. 
 
Lemma 2.5. [6] 
 
For �, - ∈ �������, ��-� ⊆ ���� ⇔ - � ��  for 
some � ∈ �����, ��-� ⊆ ���� ⇔ - � �D  for 
some D ∈ �����. 
 
Lemma 2.6. [17] 
 
If � ∈ ������� is of the form � �< �& , �' >, then 
 ���  ���� �< ���&�, ���'� > and ���� ���� �< ���&�, ���'� >. 
 
Theorem 2.7. [32] 
 
Let � � %�& , �'( ∈ �����.  Then �  is right(left) k-
regular IFM ⇔ �& , �' ∈ ��  are right(left) k-
regular. 

Theorem 2.8. [6] 
 
Let � ∈ �������  be of the form � � %�& , �'( . 
Then A is regular ⇔ �& is regular in �����  under 
max-min composition and �'  is regular in ����  
under min-max composition. �& � ��"#&� ∈ �����  
as the membership part of �  and �' � ��"#'� ∈����  as the non-membership part of A.  
  
3. FUZZY RELATIONAL EQUATIONS OF 

K - REGULAR INTUITIONISTIC FUZZY 
MATRICES 

  
In this section, the solution of fuzzy relational 
equations are determined in the case of k - 
regular intuitionistic fuzzy matrices. 
 
Lemma 3.1. 
 
For �, - ∈ �����, and a positive integer k, then 
 

(i) If �  is right k - regular and ��-� ⊆ ���7� 
then - � -�� for each right k - g inverse � of �. 
(ii) If � is left k - regular and ��-� ⊆ ���7� then - � �D- for each left k - g inverse D of �. 

 
Proof: 
 
(i) Since ��-� ⊆ ���7� , by Lemma (2.5), there 
exists D such that - � D�7. 
 
By Definition (2.3), �7�� � �7. 
 
Hence - � D�7 � D�7�� � �D�7��� � -��. 
 
Thus (i) holds. 
 
(ii) This can be proved in the same manner. 
 
Theorem 3.2. 
 
For �, -, F ∈ �����  and D ∈ �11ℓ72, G ∈ -�1
. If the 
intuitionistic fuzzy matrix equation �7�- � F  is 
solvable then �DFG- � F. 
 
Proof: 
 
Let � be any solution of �7�- � F. F � �7�-     � �D�7�-G-     � �D��7�-�G-     � �DFG-. 
 
Hence the proof. 
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Theorem 3.3. 
 
For �, -, F ∈ �����  and D ∈ ��1
, G ∈ -�1B7
. If the 
intuitionistic fuzzy matrix equation ��-7 � F  is 
solvable then �DFG- � F. 
 
Proof: 
 
Let � be any solution of ��-7 � F. 
 F � ��-7     � �D��-7G-     � �D���-7�G-     � �DFG-. 
 
Hence the proof. 
 
Theorem 3.4. 
 
For �, -, F ∈ ����� and D ∈ �11ℓ72  and G ∈ -�1B7
 . 
If the intuitionistic fuzzy matrix equation �7�-7 �F is solvable then �DFG- � F. 
 
Proof: 
 
Let � be any solution of �7�-7 � F. 
 F � �7�-7     � �D�7�-7G-     � �D��7�-7�G-     � �DFG-. 
 
Hence the proof. 
 
Remark 3.5. 
 
For � � 1, the Theorem (3.2) to (3.4) reduces to 
the following Theorem: 
 
Theorem 3.6. 
 

Let � � %�& , �'( ∈ ������� , - � %-& , -'( ∈ ����?�H 
be regular IFMs and F � %F& , F'( ∈ ������H . 
Thus the intuitionistic fuzzy matrix equation ��- � F  is solvable iff ��IF-I- � F  for �I ∈ ��1
 and -I ∈ -�1
. 
 
Remark 3.7. 
 
Theorem (3.6) is a generalization of the following 
theorem. 
 
Theorem 3.8. [17] 
 
Let �, - ∈ ����� be a regular IFMs and F ∈ �����. 
Then the intuitionistic fuzzy matrix equation ��- � F  is solvable iff �DFG- � F  for D ∈ ��1
 
and G ∈ -�1
. 

4. FUZZY RELATIONAL EQUATIONS OF 
K - REGULAR BLOCK INTUITIONISTIC 
FUZZY MATRICES  

 
In [15], Gandhimathi and Meenakshi have 
introduced, the Schur complements in block 
intuitionistic fuzzy matrix as an extension of fuzzy 
matrices found in [14]. 
 
In this section, we are concerned with a block 
intuitionistic fuzzy matrix of the form 
 

J � K � -� F L                                                  (4.1) 

 
with the diagonal block � and F are k - regular 
IFM with respect to this partitioning a Schur 
complement of �  in M is a matrix of the form J/� � F − ��-, where � is some k - g inverse 
of � . Similarly J/F � � − -D�  is a Schur 
complement of F  in J , where D  is some k -          
g inverse of F . In Theorem [4.1] , it is shown              
that under certain conditions ��-  is invariant                
for all choices of k - g inverse �  of �.  By            J/�  is an intuitionistic fuzzy matrix, we                 
mean that ��-  is invariant and F ≥ ��- . 
Therefore 
 J/� is an intuitionistic fuzzy matrix ⇔ ��- is 

invariant and F � F � ��-                        �4.2�  
 
Similarly, 
 J/F � � − -D� is an intuitionistic fuzzy matrix ⇔ -D� is invariant and � � � � -D�             �4.3�                                                                                                                                  
Let J be of the form �4.1� can be expressed as 

J � %J& , J'(,  where J& � Q�& -&�& F&R  and 

J' � K�' -'�' F'L  are block IFM. � � %�& , �'(, - �
%-& , -'(, � � %�& , �'(  and F � %F& , F'( . Since � 
and F  are k - regular, by Theorem [2.7], �&, �' , F& and F' are all k-regular IFMs. 
 
Theorem 4.1. 
 
Let � ∈ �����  be a k-regular intuitionistic fuzzy 
matrix, � ∈ �����  and - ∈ �����  if ���� ⊆ ���7� 
and ��-� ⊆ ���7�  Then ��-  is invariant for all 
choice of k-g inverses of �. 
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Proof: 
 
Case ���: � is right k-regular. 
 
By Lemma [2.5], ���� ⊆ ���7� ⇒ � � D�7  for 
some D ∈ ����� and ��-� ⊆ ���7� ⊆ ���� ⇒ - � �T  for some T ∈ �����. 
 
Since � ∈ �����  is a right k-regular intuitionistic 
fuzzy matrix by Lemma [3.1], 
 ���� ⊆ ���7� ⇒ � � �G� for each G ∈ ��1B7
. 
 
Hence for any � ∈ ��1B7
, 
  ��- � �D�7����T� � D�7��T � D��7���T� D�7T � �T � �G�T � �G��T�� �G- 
 
Thus ��- � �G- for all �, G ∈ ��1B7
. 
 
Case ����: � is left k-regular. 
 
By Lemma [2.5], ���� ⊆ ���7� ⊆ ���� ⇒ � � D� 
for some D ∈ ����� and ��-� ⊆ ���7� ⇒ - � �7T for some T ∈ �����. 
 
Since � ∈ �����  is a left k - regular intuitionistic 
fuzzy matrix, by Lemma [3.1], 
 ��-� ⊆ ���7� ⇒ - � �G- for each G ∈ �11ℓ72. 
 
Hence for any � ∈ �11ℓ72, 
 ��- � �D�����7T� � D����7�T � D�7T � D-� D��G-� � �D���G-� � �G-. 
 
Thus ��- � �G- for all �, G ∈ �11ℓ72. 
 
Case �����: � is both right and left k-regular. 
 
By Lemma [2.5], ���� ⊆ ���7� ⇒ � � D�7  for 
some D ∈ �����. 
 
Since � ∈ �����  is a left k-regular intuitionistic 
fuzzy matrix, by Lemma [3.1], 
 ��-� ⊆ ���7� ⇒ - � �G- for each G ∈ �11ℓ72. 
 
Since � ∈ �����  is a right k-regular intuitionistic 
fuzzy matrix, for any � ∈ ��1B7
, 
 ��- � �D�7����G-� � D��7���G- � D�7G- ��G-. 

Thus ��- � �G- for all � ∈ ��1B7
 and G ∈ �11ℓ72. 
 
Thus ��-  is invariant for all choices of k - g 
inverses of �. 
 
Theorem 4.2. 
 

Let J � K � -� F L  with �  and F  are right k - 

regular intuitionistic fuzzy matrices, J/�  and J/F  are exists. ���� ⊆ ���7�  and ��-� ⊆��F7� . If �J � �  is solvable then V� � W  and XF � Y  are solvable, where � � 5 W Y 9 , W ≥ YFI� and Y ≥ W�I-. 
 
Proof: 
 

Since �J � �  is solvable, let � � 5 Z [ 9  is a 

solution. 
 

Then, 5 Z [ 9 K � -� F L � 5 W Y 9 ⇒
5Z� � [� Z- � [F9 � 5 W Y 9 

 
Hence we get the equations, 
 Z� � [� � W and Z- � [F � Y.                (4.4) 
                                                                
By Lemma [3.1], � is right k-regular intuitionistic 
fuzzy matrices, ���� ⊆ ���7� ⇒ � � ��I�  for 
each right k - g - inverse �I of � and F is right k-
regular intuitionistic fuzzy matrix, ��-� ⊆��F7� ⇒ - � -FIF for each right k-g inverse FI 
of F. 
 
Substituting � and - in Equation (4.4), we get the 
equations, 
 �Z � [��I�� � W and �Z-FI � [�F � Y. 
 
Thus V� � W  and XF � Y  are solvable. Since � 
and F  are right k-regular intuitionistic fuzzy 
matrices, the solutions will be of the form V � W�I and X � YFI. 
Hence W�I � Z � [��I and YFI � Z-FI � [. 
 W�I- � Z- � [��I- and YFI� � Z-FI� �[�                                                            (4.5) 
 
Since J/�  and J/F  exist then � � -FI� � � 
and F � ��I- � F. 
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Substituting for � and F  in (4.4) using (4.5) we 
get  
 W � Z� � [� � Z� � Z-FI� � [� � Z� � YFI� Y � Z- � [F � Z- � [F � [��I- � [F � W�I-. 

 
By intuitionistic fuzzy addition it follows that W ≥ YFI� and Y ≥ W�I-. 
 
This is illustrated in the following example. 

 
Example 4.3. 
 

Let J �
\]
]]
]̂ _0.3,0` _0,1` ⋮ _0.2,0.4` _0.1,0.4`_0.5,0` _0.2,0` ⋮ _0.2,0.3` _0.2,0.3`⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯_0.2,0.2` _0.1,0.2` ⋮ _0.2,0.3` _0.1,0`_0,0.2` _0,0.2` ⋮ _0.4,0` _0.2,0` de

ee
ef
, 

 

where � � K_0.3,0` _0,1`_0.5,0` _0.2,0`L, - � K_0.2,0.4` _0.1,0.4`_0.2,0.3` _0.2,0.3`L, 
� � K_0.2,0.2` _0.1,0.2`_0,0.2` _0,0.2` L and F � g_0.2,0.3` _0.1,0`_0.4,0` _0.2,0`h. 
� � %�&, �'(, - � %-& , -'(, � � %�& , �'( and F � %F& , F'(. 
 
To prove that � is not regular.  
 

� � K_0.3,0` _0,1`_0.5,0` _0.2,0`L ∈ ����i, where �& � K0.3 00.5 0.2L ∈ �i� and �' � K 0 10 0 L ∈ �i . Since each row of 

�& cannot be expressed as linear combination of the other row, by Definition 2.5 of �1�, the rows are 
linearly independent. By Definition 2.6 of �9� they form a standard basis for the row space of �& . For 

both permutation matrices kl � K 1 00 1 L  and ki � K 0 11 0 L , �&kl�& � K0.3 00.3 0.2L ≠ �&  and �&ki�& �
K0.3 0.20.5 0.2L ≠ �& . Hence �&  is not regular by step 3 in Algorithm 1 of �9�. Namely, �&  is regular iff 

�&k�& � �&  for some permutation matrix k. Since �'  is idempotent, �'  itself is a g-inverse of �' , 
therefore �' is regular under min max composition. Hence by Theorem 2.8, � is not regular. 
 

For this �, �i � K_0.3,0` _0,1`_0.3,0` _0.2,0`L. For � � K_1,0` _0,1`_0,0` _0.2,0`L , �i�� � �i � ���i holds. 

 

Hence � is 2-regular. 
 

Similarly, we can prove that, D is not regular. For this F, Fi � g_0.2,0.3` _0.1,0`_0.2,0` _0.2,0`h. 
 

For D � K_0.2,0.3` _0.1,0`_0,0` _0.2,0`L , FiDF � Fi � FDFi holds. 

 
Hence F is 2-regular. 
 

If �. J � � is solvable, 
 

let � � g Z [ h, where Z � g_0.2,0.4` _0.1,0.3`h and [ � g_0.2,0.4` _0.2,0.5`h. 
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Thus Z� � [� � W and Z- � [F � Y. 
 
Since � � ��I� and - � -FIF, we get the equations, �Z � [��I�� � � and �Z-FI � [�F � Y. 
 

Now, Z � [��I � g_0.2,0.4` _0.1,0.3`h and  

�Z � [��I�� � g_0.2,0.3` _0.1,0.3`h. 
�Z � [��I�� � W � g_0.2,0.3` _0.1,0.3`h. 
 

Hence V � Z � [��I � g_0.2,0.3` _0.1,0.3`h is a solution of V. � � W. 
 

Now,         Z-FI � [ � g_0.2,0.3` _0.2,0.3`h and  

             �Z-FI � [�F � g_0.2,0.3` _0.2,0.3`h 
�Z-FI � [�F � Y � g_0.2,0.3` _0.2,0.3`h. 
 

Hence X � Z-FI � [ � g_0.2,0.3` _0.2,0.3`h is a solution of X. F � Y. 

 

Also W � g_0.2,0.3` _0.1,0.3`h, 
 

YFI� � g_0.2,0.3` _0.2,0.3`h K_0.2,0.3` _0.1,0`_0,0` _0.2,0`L K_0.2,0.2` _0.1,0.2`_0,0.2` _0,0.2` L 
YFI� � g_0.2,0.3` _0.1,0.3`h,  and Y � g_0.2,0.3` _0.2,0.3`h  
                    W�I- � g_0.2,0.3` _0.1,0.3`h K_1,0` _0,1`_0,0` _0.2,0`L K_0.2,0.4` _0.1,0.4`_0.2,0.3` _0.2,0.3`L 
W�I- � g_0.2,0.3` _0.1,0.3`h. 
 
We know that � ≤ - ⇔ �"#& ≤ �"#& and �"#' ≥ �"#' , for all � and <. 
 
From the above definition, YFI� ≤ W and W�I- ≤ Y. 
 
Theorem 4.4. 
 

Let J � K � -� F L  with �  and F  are right k - regular IFMs. If V�7 � W  and XF7 � Y  are solvable, 

W ≥ YFI�7  and Y ≥ W�I-7  then �J7 � �  is solvable where J7 � K�7 -7�7 F7L , � � 5 V X 9  and 

� � 5 W Y 9. 
 
Proof: 
 

Since V�7 � W and XF7 � Y are solvable, let V � W�I and X � YFI are the solutions ⇒ W�I�7 � W and YFIF7 � Y. 
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From the given conditions, W ≥ YFI�7  and Y ≥ W�I-7  we get, W � W � YFI�7  and Y � Y �W�I-7 . 
 
Now,  
 

5W�I YFI9 K�7 -7�7 F7L
� 5W�I�7 � YFI�7 ��I-7 � YFIF79                                                             �5W � YFI�7 ��I-7 � Y9 � 5 W Y 9 � �  

 
Thus �J7 � � is solvable. 
Hence the theorem. 
 
Remark 4.5. 
 
For � � 1, the Theorem [4.2] and [4.4] reduces to 
the following: 
 
Theorem 4.6. [15] 
 

Let J � K � -� F L with � and F are regular IFMs, 

J/�  and J/F  exists, ���� ⊆ ����  and ��-� ⊆��F�.  Then �J � �  is solvable if and only if V. � � W  and X. F � Y  are solvable W ≥ YFI�  and Y ≥ W�I-. 
 
Theorem 4.7. 
 

Let J � K � -� F L with �  and F  are left k-regular 

IFMs, J/� and J/F are exist. ��-� ⊆ ���7� and ���� ⊆ ��F7�. If J� � Y is solvable then �V � � 
and FX � W  are solvable, where 

Y � n �W o , W ≥ ��I� and � ≥ -FIW. 
 
Proof: 
 
This can be proved along the same lines as that 
of Theorem (4.2) and hence omitted. 
 
Theorem 4.8. 
 

Let J � K � -� F L with �  and F  are left k-regular 

IFMs. If �7V � �  and F7X � W  are solvable, W ≥ �7�I�  and � ≥ -7FIW  then J7� � Y  is 

solvable where J7 � K�7 -7�7 F7L , � � n VX o. 
and Y � n �W o. 
 
Proof: 
 
Since �7V � �  and F7X � W  are solvable, let V � �I� and X � FIW are the solution ⇒ �7�I� ��; F7FIW � W. 
 
From the given conditions, W ≥ �7�I�  and � ≥ -7FIW  we get, W � W � �7�I�  and � � � �-7FIW. 
Now, 

K�7 -7�7 F7L n�I�FIW o � n�7�I� � -7FIW�7�I� � F7FIW o 

        � n� � -7FIW�7�I� � W o � n �W o �  Y 

Thus J7� � Y is solvable. 
 
Hence the Theorem. 
 
Remark 4.9. 
 
For � � 1, the Theorem [4.7] and [4.8] reduces to 
the following. 
 
Theorem 4.10. 
 

Let J � K � -� F L with � and F are regular IFMs, 

J/�  and J/F  exists. ���� ⊆ ��F�  and ��-� ⊆����.  Then J� � Y  is solvable iff �V � �  and FX � W are solvable, W ≥ ��I� and � ≥ -FIW. 
 
Remark 4.11. 
 
In particular, for - � 0 , Theorem [4.2] and 
Theorem [4.7] reduces to the following. 
 
Corollary 4.12. 
 
For the intuitionistic fuzzy matrix  
 

J � K � 0� F L  with �  and F  are k-regular such 

that 
 ������� ⊆ ���7�.  If �J � �  is solvable then V� � W and XF � Y are solvable.  
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�������� ⊆ ��F7�.  If J� � Y  is solvable then �V � � and FX � W are solvable. 
 
5. CONCLUSION 
 
In this paper, the solution of fuzzy relational 
equations are determined in the case of k – 
regular intuitionistic fuzzy matrices. Also we 
introduce the concept of k - regularity for block 
intuitionistic fuzzy matrices and in this case, the 
consistency of intuitionistic fuzzy relational 
equations are discussed.    
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