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Abstract 
 

This work focuses on a numerical simulation of reentry 3D-flows using high order resolution schemes. 
Euler and Navier-Stokes equations are studied, on conservative and finite volume approaches, and 
employing structured spatial discretization. The ENO (Essentially Non-Oscillatory) procedure is 
presented to a conserved variable interpolation process, using either the Newton method, to second-, 
third-, fourth- and fifth-orders of accuracy, or the Hermite method, to third- and fifth-orders of accuracy. 
Furthermore, the WENO (Weighted Essentially Non-Oscillatory) procedure is also tested, using the 
Newton interpolation process, to generate third- and fifth-orders of accuracy solutions. Results applying 
the MUSCL scheme (Monotone Upstream-centered Schemes for Conservation Laws) are also presented 
and serve as TVD (Total Variation Diminishing) benchmark purpose. In this context, the “hot gas” 
hypersonic thermochemical non-equilibrium 3D-flow around a blunt body has been simulated. The 
convergence process is accelerated to steady-state condition through a spatially variable time step 
procedure, which has proved effective gains in terms of computational acceleration. The reactive 
simulations involve Earth atmosphere chemical models of five and seven species, based on the Saxena 
and Nair and Blottner models, respectively. Results showed that the ENO procedure using Newton 5th-
order interpolation scheme presents better overall solutions. 
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1. Introduction 
 
The study of hypersonic flows has gained momentum with the advent of concepts like the National 
AeroSpace Plane (NASP) and similar transatmospheric vehicles. Under the very high velocity and 
temperature conditions experienced by hypersonic vehicles, departure from chemical and thermal 
equilibrium occurs. Properties of air change dramatically as new chemical species are produced at the 
expense of others. The simple one temperature model used to describe the energy of air becomes 
inapplicable, and it becomes necessary to consider one or more additional temperatures (corresponding to 
vibrational and electronic energies). Determination of aerothermal loads on blunt bodies in such an 
environment is of great importance. 
 
Analysis of non-equilibrium flow is rather complex because (1) the number of equations to be solved is 
much larger than the Navier-Stokes equations, and (2) there are additional terms like the species production, 
mass diffusion, and vibrational energy relaxation, etc., that appear in the governing equations. In a typical 
flight of the NASP flying at Mach 15, ionization is not expected to occur, and a 5-species air is adequate for 
the analysis (see [1]). Since the rotational characteristic temperatures for the constituent species (namely N, 
O, N2, O2 and NO) are small, the translational and rotational energy modes are assumed to be in equilibrium, 
whereas the vibrational energy mode is assumed to be in non-equilibrium. 
 
The problems of chemical non-equilibrium in the shock layers over vehicles flying at high speeds and high 
altitudes in the Earth’s atmosphere have been discussed by several investigators ([2-5]). Most of the existing 
computer codes for calculating the non-equilibrium reacting flow use the one-temperature model, which 
assumes that all of the internal energy modes of the gaseous species are in equilibrium with the translational 
mode ([4-5]). It has been pointed out that such a one-temperature description of the flow leads to a 
substantial overestimation of the rate of equilibrium because of the elevated vibrational temperature [3]. A 
three-temperature chemical-kinetic model has been proposed by [6] to describe the relaxation phenomena 
correctly in such a flight regime. However, the model is quite complex and requires many chemical rate 
parameters which are not yet known. As a compromise between the three-temperature and the conventional 
one-temperature model, a two-temperature chemical-kinetic model has been developed ([7-8]), which is 
designated herein as the TTv model. The TTv model uses one temperature T to characterize both the 
translational energy of the atoms and molecules and the rotational energy of the molecules, and another 
temperature Tv to characterize the vibrational energy of the molecules, translational energy of the electrons, 
and electronic excitation energy of atoms and molecules. The model has been applied to compute the 
thermodynamic properties behind a normal shock wave in a flow through a constant-area duct ([7-8]). 
Radiation emission from the non-equilibrium flow has been calculated using the Non-equilibrium Air 
Radiation (NEQAIR) program ([9-10]). The flow and the radiation computations have been packaged into a 
single computer program, the Shock-Tube Radiation Program (STRAP). 
 
The development of high order accurate, non-oscillatory shock capturing schemes currently is an area of 
active interest ([11]). High order accuracy is important for more complicated unsteady inviscid problems and 
for direct simulation of compressible flows. It is fairly straightforward to incorporate high order accuracy in 
non-conservative finite difference methods, however, shock capturing will not be possible. Finite volume 
methods and conservative finite difference methods, which retain this property, are unfortunately limited to 
first or second order accuracy in most cases. An important reason for this limitation in accuracy is the use of 
Total Variation Diminishing (TVD) methods to obtain non-oscillatory solutions. TVD methods are limited 
to first order accuracy in more than one dimension close to shock regions, [12], and even in one dimension 
they reduce to first order accuracy at non-sonic local extrema ([13]). 
 
Second order spatial accuracy can be achieved by introducing more upwind points or cells in the schemes. It 
has been noted that the projection stage, whereby the solution is projected in each cell face (i-1/2,j,k; 
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i+1/2,j,k) on piecewise constant states, is the cause of the first order space accuracy of the Godunov schemes 
([14]). Hence, it is sufficient to modify the first projection stage without modifying the Riemann solver, in 
order to generate higher spatial approximations. The state variables at the interfaces are thereby obtained 
from an extrapolation between neighboring cell averages. This method for the generation of second order 
upwind schemes based on variable extrapolation is often referred to in the literature as the MUSCL 
(“Monotone Upstream-centered Schemes for Conservation Laws”) approach. The use of nonlinear limiters 
in such procedure, with the intention of restricting the amplitude of the gradients appearing in the solution, 
avoiding thus the formation of new extrema, allows that first order upwind schemes be transformed in TVD 
high resolution schemes with the appropriate definition of such nonlinear limiters, assuring monotone 
preserving and total variation diminishing methods. 
 
Several recent works [15-20] developed the so called Essentially Non-Oscillatory (ENO) schemes, which do 
not have such limitation and have uniform high order of accuracy outside discontinuities. The main feature 
of ENO schemes is that they use an adaptive stencil. At each grid cell or point a searching algorithm 
determines which part of the flow surrounding that grid cell or point is the smoothest. This stencil is then 
used to construct a high order accurate, conservative interpolation to determine the variables at the cell faces. 
This interpolation process can be applied to conservative variables, characteristic variables, or the fluxes, 
either defined as cell averaged or point values. The ENO scheme tries to minimize numerical oscillations 
around discontinuities by using predominantly data from the smooth parts of the flow field. Due to the 
constant stencil switching the ENO scheme is highly non-linear and only limited theoretical results are 
available ([15-16]).  
 
Polynomial interpolation theory has a number of important uses ([21]). A special usage is in developing 
means for working with functions that are stored in tabular form. Methods like Lagrange, Newton, and 
Hermite are likely the most employed ones in this area. The Lagrange form of the interpolation polynomial 
can be used for interpolation to a function given in tabular form. A practical difficulty with Lagrange 
interpolation is that since the error term is difficult to apply, the degree of the polynomial needed for the 
desired accuracy is generally not known until the computations are determined ([22]). But there are other 
forms that are much more convenient. The Newton method uses the concept of divided differences to 
develop its polynomial approximation. It is much better for computation than the Lagrange formula. In other 
cases, it is convenient to consider polynomials p(x) that interpolate a function f(x), and in addition have the 
derivative polynomial p’(x) interpolating the derivative function f’(x). In such cases, the Hermite method is 
more advisable. Hermite interpolation determines a polynomial that agrees with the function and its 
derivative at specified points. Therefore, the ENO procedure herein employed is based on Newton and 
Hermite interpolation process. 
 
The WENO (Weighted Essentially Non-Oscillatory) scheme of [23] is another way to overcome the 
drawbacks of ENO schemes while keeping the robustness and high order accuracy of these schemes. The 
idea is the following: instead of approximating the numerical flux using only one of the candidate stencils, 
one uses a convex combination of all the candidate stencils. Each of the candidate stencils is assigned a 
weight which determines the contribution of this stencil to the final approximation of the numerical flux. The 
weights can be defined in such a way that in smooth regions it approaches certain optimal values to achieve 
a higher order of accuracy [an kth-order ENO scheme leads to a (2k-1)th-order WENO scheme in the optical 
case], while in regions near discontinuities, the stencils which contain the discontinuities are assigned a 
nearly zero weight. Thus essentially non-oscillatory property is achieved by emulating ENO schemes around 
discontinuities and a higher order of accuracy is obtained by emulating upstream central schemes with the 
optimal weights away from the discontinuities ([24]). WENO schemes completely remove the logical 
statements, that appear in the ENO stencil choosing step. Another advantage of WENO schemes is that its 
flux is smoother than that of ENO schemes. This smoothness enables us to prove convergence of WENO 
schemes for smooth solutions using Strang’s technique. 
 
In this work, the Euler and Navier-Stokes equations, on conservative and finite volume contexts, employing 
structured spatial discretization, are studied. The ENO procedure is presented to a conserved variable 
interpolation process, using either the Newton method, to second-, third-, fourth- and fifth-orders of 
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accuracy, or the Hermite method, to third- and fifth-orders of accuracy. Moreover, the WENO procedure is 
presented, using the Newton interpolation process, to generate third- and fifth-orders of accuracy solutions. 
Results employing the MUSCL scheme are also obtained to provide a TVD benchmark solution. The 
numerical algorithms of [25-26] are used to perform the reentry flow numerical experiments, which give us 
an original contribution to the CFD community. The “hot gas” hypersonic 3D-flow around a blunt body is 
numerically simulated. The convergence process is accelerated to steady-state condition through a spatially 
variable time step procedure, which has proved effective gains in terms of computational acceleration (see 
[27-28]). The reactive simulations involve Earth atmosphere chemical models of five and seven species, 
based on the [29] and [30] models, respectively. Results have indicated that the ENO procedure using 
Newton 5th-order interpolation scheme presents better solutions in both qualitative and quantitative  
features. 
 
The subsequent sections in this paper discuss (i) the 3D-Navier-Stokes mathematical formulation; (ii) 
MUSCL scheme; (iii) ENO scheme; (iv) Newton interpolation; (v) Hermite interpolation; (vi) WENO 
scheme; (vii) numerical algorithms; (viii) physical problem, meshes, and initial condition; (ix) results for 
inviscid as viscous cases; and finally (x) conclusions. 
 
The paper suggests the comparison between MUSCL, ENO and WENO procedures to enhance high order 
resolution. The paper is original and innovative in the sense that these three procedures are used for the first 
time to compare re-entry flows in thermochemical non-equilibrium conditions using two upwind algorithms. 
Both algorithms are flux vector splitting ones, and their implementation in the current literature considers 
them only for a perfect gas condition and rarely for “hot gas” flow. The use of both schemes altogether 
applied to re-entry flows is also a significant contribution to the CFD literature. Moreover, the Hermite and 
the Newton interpolation methods were implemented together and compared. The treatment of MUSCL, 
ENO and WENO procedures in finite volumes and in three-dimensions is also a significant contribution of 
originality. In spite of the use of well know upwind schemes for perfect gas flows in the literature, its use in 
high order comparisons, reactive flows, and in three-dimensions is also an innovative contribution to the 
CFD community. 
 

2. 3-D Navier-Stokes Equations  
 
The reactive thermal and chemical non-equilibrium 3-D Navier-Stokes equations, and the Euler equations 
(obtained in the limit of high Reynolds number) were implemented on a finite volume approach. In this case, 
these equations in integral and conservative forms can be expressed by: 
 

  




V V

CV

S

dVSdSnFQdV
t


, with      kGGjFFiEEF veveve


 ,     (1) 

 

where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete 

flux vector, n


 is the unity vector normal to the flux face, S is the flux area, SCV is the chemical and 
vibrational source term, Ee, Fe and Ge are the convective flux vectors or the Euler flux vectors in the x, y and 
z directions, respectively, Ev, Fv and Gv are the viscous flux vectors in the x, y and z directions, respectively. 

The i


, j


 and k


 unity vectors define the Cartesian coordinate system. The present formulation is developed 

for the seven species chemical model, with the five species model being obtained by eliminating the 
equations for NO+ and e-. Hence, twelve (12) conservation equations are solved: one of general mass 
conservation, three of linear momentum conservation, one of total energy, six of species mass conservation 
and one of the vibrational internal energy of the molecules. Therefore, one of the species is absent of the 
iterative process. The CFD (“Computational Fluid Dynamics”) literature recommends that the species of 
biggest mass fraction of the gaseous mixture should be omitted, aiming to result in a minor numerical 
accumulation error, corresponding to the biggest mixture constituent (in the case, the air). To the present 
study, in which is chosen a chemical model to the air composed of seven (7) chemical species (N, O, N2, O2, 
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NO, NO+ and e-) and eighteen (18) chemical reactions, being fifteen (15) dissociation reactions, two (2) of 
recombination, and one (1) of ionization, this species can be the N2 or the O2. It was chosen the N2 for this 
work. The vectors Q, Ee, Fe, Ge, Ev, Fv, Gv and SCV can be defined as follows ([31]): 
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in which:  is the mixture density; u, v and w are Cartesian components of the velocity vector in the x, y and 
z directions, respectively; p is the fluid static pressure; e is the fluid total energy; 1, 2, 4, 5, 6,                       

and 7 are densities of the N, O, O2, NO, NO+, and e- respectively; H is the mixture total enthalpy; eV is the 
sum of the vibrational energy of the molecules; the ’s are the components of the viscous stress tensor; qf,x, 
qf,y and qf,z are the frozen components of the Fourier-heat-flux vector in the x, y and z directions, 
respectively; 
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qv,x, qv,y and qv,z are the components of the Fourier-heat-flux vector calculated with the vibrational thermal 
conductivity and vibrational temperature; svsx, svsy and svsz represent the species diffusion flux, defined 
by the Fick law; x, y and z are the terms of mixture diffusion; v,x, v,y and v,z are the terms of molecular 

diffusion calculated at the vibrational temperature; s  is the chemical source term of each species equation, 

defined by the law of mass action; 
*
ve  is the molecular-vibrational-internal energy calculated with the 

translational/rotational temperature; and s is the translational-vibrational characteristic relaxation time of 
each molecule. 
 
The viscous stresses, in N/m2, are determined, according to a Newtonian fluid model, by: 
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in which  is the fluid molecular viscosity. 
 
The frozen components of the Fourier-heat-flux vector, which consider only thermal conduction, are defined 
by: 
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    and   

z

T
kq fz,f




 ,                                                               (6) 

 
where kf is the mixture frozen thermal conductivity. The vibrational components of the Fourier-heat-flux 
vector are calculated as follows: 
 

  
x

T
kq v

vx,v



 , 

y

T
kq v

vy,v



    and   

z

T
kq v

vz,v



 ,                                                                 (7) 
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in which kv is the vibrational thermal conductivity and Tv is the vibrational temperature, what characterizes 
this model as of two temperatures: translational/rotational and vibrational. 
 
The terms of species diffusion, defined by the Fick law, to a condition of thermal non-equilibrium, are 
determined by ([31]): 
 

   
x

Y
Dv

s,MF

ssxs



 , 

y

Y
Dv

s,MF

ssys



 , 

z

Y
Dv

s,MF

sszs



                                   (8) 

 
with “s” referent to a given species, YMF,s being the molar fraction of the species, defined as: 
 

      









ns

1k
kk

ss
s,MF

M

M
Y                                                                                                                        (9) 

 
and Ds is the species-effective-diffusion coefficient. 
 
The diffusion terms x, y and z which appear in the energy equation are defined by ([29]): 
 

   



ns

1s
ssxsx hv , 




ns

1s
ssysy hv , 




ns

1s
sszsz hv ,                                                      (10) 

 
being hs the specific enthalpy (sensible) of the chemical species “s”. Details of the calculation of the specific 
enthalpy, see [32]. The molecular diffusion terms calculated at the vibrational temperature, v,x, v,y and v,z, 
which appear in the vibrational-internal-energy equation are defined by ([31]): 

 





mols

s,vsxsx,v hv , 



mols

s,vsysy,v hv , 



mols

s,vszsz,v hv ,                                              (11) 

 
with hv,s being the specific enthalpy (sensible) of the chemical species “s” calculated at the vibrational 
temperature Tv. The sum of Eq. (11), as also those present in Eq. (4), considers only the molecules of the 
system, namely: N2, O2, NO, and NO+. 
 
The thermodynamic model, the transport model and the chemical models, as also the geometrical description 
of the spatial domain, are presented in [33-34]. 

 

3. MUSCL Procedure 
 
A detailed description of the present implementation of the MUSCL procedure, as well the incorporation of 
TVD properties to the schemes, can be found in [14]. The expressions to calculate the fluxes following a 
MUSCL procedure and the nonlinear flux limiter definitions employed in the present work, which 
incorporates TVD properties, are defined as follows. 
 
The conserved variables at the interface (i+1/2,j,k) can be considered as resulting from a combination of 
backward and forward extrapolations. To a linear one-sided extrapolation at the interface between the 
averaged values at the two upstream cells (i,j,k) and (i-1,j,k), one has: 
 

   k,j,1ik.j,ik,j,i
L

k,j,2/1i QQ
2

QQ  


 , cell (i,j,k);                                                                   (12) 
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 k,j,1ik,j,2ik,j,1i
R

k,j,2/1i QQ
2

QQ  


 , cell (i-1,j,k),                                                         (13) 

 
leading to a second order fully one-sided scheme. If the first order scheme is defined by the numerical flux 
 

 k,j,1ik,j,ik,j,2/1i Q,QFF                                                                                                           (14) 

 
the second order space accurate numerical flux is obtained from 
 

 R
k,j,2/1i

L
k,j,2/1i

)2(
k,j,2/1i Q,QFF   .                                                                                               (15) 

 
Higher order flux vector splitting methods, such as those studied in this work, are obtained from: 
 

   R
k,j,2/1i

L
k,j,2/1i

)2(
k,j,2/1i QFQFF 





  .                                                                                  (16) 

 
All second order upwind schemes necessarily involve at least five mesh points or cells. 
 
To reach high order solutions without oscillations around discontinuities, nonlinear limiters are employed, 
replacing the term  in Eqs. (12) and (13) by these limiters evaluated at the left and at the right states of the 
flux interface. To define such limiters, it is necessary to calculate the ratio of consecutive variations of the 
conserved variables. These ratios are defined as follows: 
 

   k,j,1ik,j,ik,j,ik,j,1ik,j,2/1i QQQQr 

  ,    k,j,ik,j,1ik,j1ik,j,2ik,j,2/1i QQQQr  


 , (17) 

 
where the nonlinear limiters at the left and at the right states of the flux interface are defined by 

 
 k,j,2/1i

L r  and  
 k,j,2/1i

R r1 . In this work, five options of nonlinear limiters were 

considered to the numerical experiments. These limiters are defined as follows: 
 

l

ll

l
VL
l

r1

rr
)r(




 , [35] limiter;                                                                                                   (18) 

 

2
l

2
ll

l
VA
l

r1

rr
)r(




 , Van Albada limiter;                                                                                      (19) 

 

    llll
MIN
l signal,rMIN,0MAXsignalr  , minmod limiter;                                        (20) 

 

      2,rMIN,1,r2MIN,0MAXr lll
SB
l  , “Super Bee” limiter, due to [36];                   (21) 

 

        ,rMIN,1,rMIN,0MAXr lll
L

l , -limiter,                                                      (22) 

 
with “l” varying from 1 to 12 (three-dimensional space), signall being equal to 1.0 if rl  0.0 and -1.0 
otherwise, rl is the ratio of consecutive variations of the lth conserved variable, and  is a parameter assuming 
values between 1.0 and 2.0, being 1.5 the value assumed in this work. Only the minmod solutions are 
presented in this work. With the implementation of the numerical flux vectors following this MUSCL 
procedure, second order spatial accuracy and TVD properties are incorporated in the algorithms. 
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4. ENO Procedure 
 
ENO schemes overcome the limitations of TVD schemes by relaxing the requirement of total variation non-
increasing ([11]). They are conservative, essentially non-oscillatory and give uniform accuracy in smooth 
regions, without the degradation of accuracy at non-sonic local extrema as observed with TVD methods. 
There are several possible approaches when constructing ENO schemes. [17] use the ENO scheme to 
construct a higher order solution to the cell-average of the conservation equation using a sliding average. 
The ENO scheme of [17], therefore, gives an r-th order accurate approximation to the cell averages. 
According to [17], the ENO schemes can be expressed as: 
 

)Q(cRe)(EAQ)(E hh  ,                                                                                          (23) 

 
where: 
 

Q)(E h   is the new ENO scheme applied to the cell average solution; 

hA  is the cell averaging operator; 

)(E   is the exact evolution operator (the solver); 

)Q(cRe  is the reconstruction operator; 

Q  is the average solution. 

 
The most important ingredient of their ENO method is the reconstruction of the point values Q(x,y,z) from 

the cell averaged values k,j,iQ . These point values are necessary to compute the flux at the cell faces. This is 

done with a reconstruction method that is conservative, essentially non-oscillatory and gives at all points in a 
neighborhood around (xi,yi,zi) an r-th order approximation to Q, when Q is smooth. This formulation is 
employed in the present work. 
 
The implementation of the [25-26] schemes in the ENO method of [17], which uses a reconstruction from 
the cell averaged variables, is straightforward. The first step in the ENO reconstruction is the determination 
of the cell averaged variables. In the present work, it was adopted that the averaged operator is the identity 
operator; hence, the averaged variables are exactly the conserved variable at the cell point. A higher order 
polynomial representation of Q in each cell is now constructing. In this work, it can be by Newton 
interpolation or Hermite interpolation. The values at the left and right side of the cell, as in the MUSCL case, 
are now used in the [25-26] solvers. 
 

5. Newton Interpolation 
 
A higher order polynomial representation of Q in each cell can be constructed by determining the divided 
differences used in the Newton interpolation method using the following recursive algorithm: Considering 
the  direction, the divided differences are calculated as follows: 
 

k,j,ik,j,ik,j,i0 Q)(Q][H  ; k,j,1ik,j,1ik,j,1i1 Q)(Q][H   ;                                                    (24) 

 

   k,j,ik,j,1ik,j,i0k,j,1i1k,j,1ik,j,i00 )(H)(H],[H   ;                                                          (25) 

 

      k,j,ik,j,2ik,j,1ik,j,i00k,j,2ik,j,1i01k,j,2ik,j,1ik,j,i000 ,H,H],,[H   ;        (26) 
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If the divided difference ],,[H k,j,2ik,j,1ik,j,i000    is larger than ],,[H k,j,3ik,j,2ik,j,1i001   , the choice 

should be ],,[HH k,j,3ik,j,2ik,j,1i001000   ; on the contrary, ],,[H k,j,2ik,j,1ik,j,i000    is 

accepted. This process is repeated until the required order of the interpolation is obtained and applied to each 
component of Q independently. Note that the calculated stencil is computed dynamically at each point and is 
non-linear in nature. With the choice of the minimum divided difference at a point, the best molecule is 
determined to provide high accuracy. 
 
After the determination of the coefficients of the Newton polynomial, the reconstruction process is finished: 
 

...))()((H))((H)(H)(Q),Q(cRe k,j,2ik,j,1ik,j,i000k,j,1ik,j,i00k,j,i0k,j,i  
 (27) 

 
This process gives a representation of the solution in each cell and can be used to determine the values of Q 
at the cell faces. Observe that the reconstruction process results in a polynomial of order m-th to the vector 
of conserved variables as function of the generalized coordinate . The same reasoning is applied to the  
and  directions. 
 

6. Hermite Interpolation 
 
If f  C [a,b] and 0, ..., n  [a,b] are distincts, the unique polynomial of least degree agreeing with f and f’ 
at 0, ..., n is the Hermite polynomial of degree at most 2n+1 given by 
 

 
 


n

0j

n

0j
j,njj,nj )(Ĥ)('f)(H)(f),Q(cRe ,                                                              (28) 

 
where 
 

   )(L)(L21)(H 2
j,nj

'
j,njj,n                                                                                    (29) 

and 
 

  )(L)(Ĥ 2
j,njj,n  .                                                                                                          (30) 

 
In this context, Ln,j() denotes the jth Lagrange coefficient polynomial of degree n. Moreover, if  f  C2n+2 
[a,b], then 
 

   
 

)(f
!2n2

...
)(H)(f )2n2(

2

n

2

0
1n2 




 

                                                               (31) 

 
for some  with a <  < b. In addition, since the first derivatives of the Hermite polynomial agree with those 

of f, it has the same “shape” as the function at  )(f, ii   in the sense that the tangent lines to the 

polynomial and to the function agree. 
 
The first derivative of the function f, which is our vector of conserved variables Q, is determined by the first 
divided difference of Q in relation to ,  or , depending of the spatial direction under study. For j varying 
from 0 to n, the first derivative in the second sum of Eq. (28) is adopted as the minimum value of the first 
derivatives in this interval. 
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7. WENO Procedure 
 
The present WENO formulation is based on the work of [24]. The WENO procedure consists to approximate 
the Q contribution from each cell by the negative and positive contributions from adjacent cells. These 
negative and positive contributions are determined considering weight coefficients to balance the influence 
of each cell. Considering only one spatial subscript to easy understanding, one has: 
 






 
1k

0r

)r(

r QQ and 




 
1k

0r

)r(
rQQ ,                                                                                (32) 

 
where: 
 







 
1k

0j
jrirj

)r(
QcQ    and   






 
1k

0j
jrirj

)r(
QcQ ,                                                                 (33) 

 

with crj and rjc  being constants, and Q  being the polynomial reconstruction function of the ENO scheme, 

obtained by Newton interpolation procedure. 
 
It is important to emphasize that for a third-order WENO scheme, a second order polynomial reconstruction 
function should be used, and for a fifth-order WENO scheme, a third order polynomial function should be 

prescribed. Another point is that the 
Q  and 

Q  functions, from the surrounding cells around the (i,j,k) 

cell, contribute to the Q function from the following form: 
 

“Q receives 
Q  from the i+1 cell to the i+1/2 interface and receives 

Q  from the i-1 cell to the i-1/2 

interface.” 
 
To a third-order WENO procedure, one has in Table 1 the following values to crj and its associated vector of 

conserved variables to the determination of 
Q . Remembering that, in this case, k = 2 which implies a 

third-order WENO procedure. 
 
The weighting coefficients r, which are 2k-1 accurate, are described by Eq. (34): 
 











1k

0s
s

r
r , and 

 2

r

r
r

d


 ,                                                                                            (34) 

 
where: 
 
 = 10-6, with r varying from 0 to 1; 
d0 = 2/3, and d1 = 1/3; 
 

 2i1i0 QQ   ,  21ii1 QQ  .                                                                                      (35) 

 
The parameter , presented in Eq. (34), is used to avoid zero value to the denominator. Ther terms are the 
so-called “smooth indicators” of the stencil Sr. 
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To Q+ determination, one needs the values of rjc  and Q , defined in Table 2. Note that j1rrj cc  . The 

weighting coefficient r  is determined by Eq. (36): 
 

  











1k

0s

s

r
r , and 

 2

r

r
r

d


 ;                                                                                           (36) 

 

where  and r are defined as aforementioned and r1kr dd  . Hence, one has: 3/1dd 10  , and 

3/2dd 01  . Fig. 1 shows a schematic of the Q  and Q  contributions to cell (i,j,k). 

 

To k = 3, which implies a fifth-order WENO procedure, r varies from 0 to 2. The values of crj and Q  are 

seen in Table 3. 
 
The values of dr, in Eq. (34) are: d0 = 3/10, d1 = 3/5, and d2 = 1/10. The expressions to the smooth indicators 
are: 
 

   22i1ii

2

2i1ii0 QQ4Q3
4

1
QQ2Q

12

13
  ;                                               (37) 

 

   21i1i

2

1ii1i1 QQ
4

1
QQ2Q

12

13
  ;                                                                (38) 

 

   2i1i2i

2

i1i2i2 Q3Q4Q
4

1
QQ2Q

12

13
  .                                                (39) 

 

To 
Q , one has the values of rjc  and Q , defined in Table 4. The values of rd  are given by: 

10/1dd 20  , 5/3dd 11  , and 10/3dd 02  . With the application of Eq. (36), the r  

coefficients are calculated and the Q  and Q  functions are defined, Eqs. (32-33). 

 

8. Numerical Algorithms 
 
Considering the simulation of a three-dimensional and structured case, the numerical algorithms follow the 
formulation described in [33]. The system is solved in three parts separately, according to [37]. Hence, the 
discrete-dynamic-convective flux is given by: 
 

k,j,2/1i

z

y

x

LR

k,j,2/1i

RL

k,j,2/1ik,j,2/1ik,j,2/1i

0
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 ,   (40) 

 
the discrete-chemical-convective flux is defined by: 
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and the discrete-vibrational-convective flux is determined by: 
 

         









  LvRvk,j,2/1iRvLvk,j,2/1ik,j,2/1ik,j,2/1i aeae
2

1
aeaeM

2

1
SR .  (42) 

 
The same definitions presented in [33] are valid to this algorithm. The time integration is performed 
employing the Euler backward method, first-order accurate in time, to the three types of convective flux. To 
the dynamic part, this method can be represented in general form by: 
 

   )n(
k,j,ik,j,ik,j,i

)n(
k,j,i

)1n(
k,j,i QRVtQQ 

,                                                                             (43) 

 
to the chemical part, it can be represented in general form by: 
 

    )n(
k,j,iCk,j,i

)n(
k,j,ik,j,i

)n(
k,j,i

)1n(
k,j,i QSVQRtQQ 

,                                                           (44) 

 
where the chemical source term SC is calculated with the rate controlling temperature (Defined in [33]). 
Finally, to the vibrational part, 
 

    )n(
k,j,ivk,j,i

)n(
k,j,ik,j,i

)n(
k,j,i

)1n(
k,j,i QSVQRtQQ 

,                                                           (45) 

 
in which: 
 




 
mols

s,vs,C
mols

s,VTv eSqS .                                                                                                  (46) 

 
The definition of the dissipation term  determines the particular formulation of the convective fluxes. The 
choice below corresponds to the [25] scheme, according to [38]: 
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2
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VL
k,j,2/1ik,j,2/1i                        (47) 

 
and the choice below corresponds to the [26] scheme, according to [38]: 
 

k,j,2/1i
LS

k,j,2/1ik,j,2/1i M   .                                                                                              (48) 
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This scheme is first-order accurate in space and in time. The high-order spatial accuracy is obtained by the 
MUSCL procedure, by the ENO procedure or by the WENO procedure. These procedures are described in 
the previous sections. 
 
The viscous formulation has been provided in [39], which adopts the Green theorem to calculate primitive 
variable gradients. The viscous vectors are obtained by arithmetical average between cell (i,j,k) and its 
neighbors. As was done with the convective terms, there is a need to separate the viscous flux in three parts: 
dynamical viscous flux, chemical viscous flux and vibrational viscous flux. The dynamical part corresponds 
to the first five equations of the Navier-Stokes ones, the chemical part corresponds to the following six 
equations, and the vibrational part corresponds to the last equation. 
 

9. Physical Problem, Meshes, and Initial Condition 
 
The flow around a blunt body problem is studied in the present work. The analyzed geometry is a blunt body 
with 1.0m of nose ratio and parallel rectilinear walls. The far field is located at 20.0 times the nose ratio in 
relation to the configuration nose. 
 
It is important to emphasize that the present work is directed to the academic public and because it an 
educational problem was chosen to study, not regarding the complexity features of industrial applications. 
However, the theory can also be applied to the industrial sector. 
 
Fig. 2 shows the inviscid mesh used to the blunt body problem when Euler equations are been solved. This 
mesh is composed of 22,932 rectangular cells and 26,500 nodes. The equivalent finite differences mesh has 
53x50x10 points. A “O” mesh has been taken as the base to construct such mesh. No smoothing is used in 
this mesh generation process, which has been constructed in Cartesian coordinates. On the other hand, the 
viscous mesh is shown in Fig. 3, which is composed of the same number of cells and nodes, employing, 
however, an exponential stretching of 5.0% in the  direction. The initial condition is shown in Table 5. The 
Reynolds number is estimated by [40]. 

 

10. Results 
 
Tests were performed in a Core i7 processor of 1.9 GHz and 6.0Gbytes of RAM microcomputer in a 
Windows 8.1 environment. Three (3) orders of reduction of the maximum residual in the field were 
considered to obtain a converged solution. The residual was defined as the value of the discretized 
conservation equation. The entrance or attack angle and the longitudinal angle were adopted equal to zero. 
 

10.1 Inviscid Case 
 
Five Species Results. Figs. 4 and 5 presents the pressure contours obtained by the [25-26] algorithms, 
respectively, as using the MUSCL procedure to obtain high resolution in the inviscid case. Both solutions 
present good symmetry features. The pressure field generated by the [25] algorithm is more severe than that 
obtained by the [26] algorithm. The most critical stagnation pressure between solutions is achieved by the 
[26] algorithm. 
 
Figs. 6 to 16 exhibit the pressure contours obtained by the [25-26] algorithms as using the ENO procedure in 
its Newton and Hermite interpolations to obtain high resolution in the inviscid case. Good symmetry aspects 
are observed in all solutions. The shock wave is well captured by both schemes. The most severe pressure 
field is obtained by the [25] algorithm as using the ENO procedure with the Newton interpolation. In this 
case, the biggest stagnation pressure is obtained by the 4th-order variant of the ENO procedure, although the 
best estimative for the theoretical value is due to the 5th-order variant. 
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It is interesting to note that the Newton interpolation solutions are always better than the Hermite 
interpolation solutions, as emphasized in [41]. 
 
Figs. 17 and 18 present the pressure contours obtained by the [25-26] numerical algorithms as using the 
WENO procedure to obtain high resolution in the inviscid case. The WENO procedure in its 5th-order 
variant did not present converged results. The shock wave is better captured by the [25] algorithm, although 
good symmetry aspects are observed in both solutions. The most severe pressure field in this case is obtained 
by the [25] algorithm. The biggest stagnation pressure is also due to the [25] algorithm, although inferior 
enough in relation to the theoretical value of this parameter. 
 
In a global analysis for this inviscid case, the most severe pressure field is due to the [25] algorithm as using 
the ENO procedure and Newton interpolation in its 4th-order variant, although the most correct value of the 
stagnation pressure, as will be seen, is due to its 5th-order variant. 
 
Seven Species Results. Figs. 19 and 20 presents the pressure contours obtained by the [25-26] algorithms, 
respectively, as using the MUSCL procedure to obtain high resolution in the inviscid case. Both solutions 
present good symmetry features. The pressure field generated by the [26] algorithm is more severe than that 
obtained by the [25] algorithm. The most critical stagnation pressure between solutions is achieved by the 
[26] algorithm. 
 
Figs. 21 to 30 exhibit the pressure contours obtained by the [25-26] algorithms as using the ENO procedure 
in its Newton and Hermite interpolations to obtain high resolution in the inviscid case. Good symmetry 
aspects are observed in all solutions. The shock wave is well captured by both schemes. The most severe 
pressure field is obtained by the [25] algorithm as using the ENO procedure with the Newton interpolation. 
In this case, the biggest stagnation pressure is obtained by the 4th-order variant of the ENO procedure, 
although the best estimative for the theoretical value is again due to the 5th-order variant. 
 
It is again interesting to note that the Newton interpolation solutions are always better than the Hermite 
interpolation solutions, as previously discussed in [41]. 
 
Figs. 31 and 32 present the pressure contours obtained by the [25-26] numerical algorithms as using the 
WENO procedure to obtain high resolution in the inviscid case. The WENO procedure in its 5th-order 
variant did not present converged results. The shock wave is better captured by the [25] algorithm, although 
good symmetry aspects are observed in both solutions. The most severe pressure field in this case is obtained 
by the [25] algorithm. The biggest stagnation pressure of the WENO solutions is also due to the [25] 
algorithm, although inferior enough in relation to the theoretical value of this parameter. 
 
In an overall analysis for this inviscid case, the most severe pressure field is due to the [25] algorithm as 
using the ENO procedure and Newton interpolation in its 4th-order variant, although the most correct value 
of the stagnation pressure is again due to its 5th-order variant. 
 

10.2 Viscous Case 
 
Five Species Results. Fig. 33 shows the pressure contours obtained by the [25] scheme as using the MUSCL 
procedure to obtain high resolution in the viscous case. The [26] algorithm did not present converged results. 
Good symmetry characteristics are observed in this solution. The stagnation pressure is reasonable predicted. 
 
Figs. 34 to 36 exhibit the pressure contours obtained by the [25-26] algorithms as using the ENO procedure 
with Newton interpolation to obtain high resolution in this viscous case. Only the Newton interpolation to 
3rd- and 4th-orders of accuracy has presented converged results. The WENO procedure did not present 
converged results too. The most severe pressure field is due to the [26] algorithm as using the ENO 
procedure in its 4th-order variant. The most correct stagnation pressure value is due to the [25] algorithm 
using Newton interpolation to 4th-order. 
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A comprehensive analysis for this viscous case showed that the most severe pressure field is captured by the 
[26] algorithm as using the ENO procedure and Newton interpolation in its 4th-order variant, although the 
best prediction of the stagnation pressure in this case is due to the [25] algorithm using the same procedure 
and interpolation method. 
 
Seven Species Results. Fig. 37 shows the pressure contours obtained by the [25] algorithm as using the 
MUSCL procedure to obtain high resolution in the viscous case. The [26] algorithm did not present 
converged results. Good symmetry characteristics are observed in this solution. The stagnation pressure is 
reasonable predicted. 
 
Figs. 38 to 40 exhibit the pressure contours obtained by the [25-26] algorithms as using the ENO procedure 
with Newton interpolation to obtain high resolution in this viscous case. Only the Newton interpolation to 
3rd- and 4th-orders of accuracy has presented converged results. The WENO procedure did not present 
converged results too. The most severe pressure field is due to the [26] algorithm as using the ENO 
procedure in its 4th-order variant. The most correct stagnation pressure value is due to the [25] algorithm 
using Newton interpolation to 4th-order. 
 
The viscous case overall characteristics showed that the most severe pressure field is captured by the [26] 
algorithm as using the ENO procedure and Newton interpolation in its 4th-order variant, although the best 
prediction of the stagnation pressure in this case is due to the [25] algorithm using the same procedure and 
interpolation method. 
 
Considering inviscid and viscous results, the most severe pressure field is due to the [26] algorithm in the 
viscous case. However, the best estimative of the stagnation pressure is due to [25] algorithm in the inviscid 
case, as expected. It is important to observe that the identification of the most severe pressure field is vital in 
terms of aerodynamic design of aerospace vehicles, which aims to highlight the most strength flight 
condition. 
 

10.3 Quantitative Results 
 
In terms of quantitative results, the present work compares the reactive results against the perfect gas 
solutions. The stagnation pressure at the blunt body nose was evaluated assuming the perfect gas 
formulation. Such parameter calculated at this way is not the best comparison, but in the absence of practical 
reactive results, this constitutes the best available result. 
 
To calculate the stagnation pressure ahead of the blunt body, [42] presents in its B Appendix values of the 
normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function of the 
normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, to a 
freestream Mach number of 9.0 (close to 8.78), the ratio pr0/pr∞ assumes the value 104.8. The value of pr∞ is 
determined by the following expression: 
 

2

initial

a

pr
pr






 .                                                                                                                             (49) 

 
In the present study, prinitial = 687N/m2, ∞ = 0.004kg/m3 and a∞ = 317.024m/s. Considering these values, one 
concludes that pr∞ = 1.709 (dimensionless). Using the ratio obtained from [42], the stagnation pressure ahead 
of the configuration nose is estimated as 179.10 unities. Tables 6 to 9 compare the values obtained from the 
simulations with this theoretical parameter and present the numerical percentage errors. The [25] results are 
shown in Table 6, whereas the [26] in Table 7 for the five species chemical model, and Table 8 presents the 
[25] results and Table 9 the [26] results for the seven species chemical model. 
 
The best result was obtained with the ENO procedure in its 5th-order variant using Newton interpolation, in 
an inviscid case, as expected, with an error of 0.62% for the [25] algorithm using the seven species chemical 
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model. The second best estimative was obtained with the ENO procedure in its 2nd-order variant using 
Newton interpolation, also in an inviscid case, with an error of 0.84% for the [25] algorithm too as using 
both chemical models. It is important to note that considering the ENO procedure using the Newton 
interpolation, errors less than 3.00% were found with the [25] numerical algorithm in the inviscid case and 
less than 4.00% for the viscous case. Moreover, the Hermite interpolation solutions have presented errors 
inferior to 12.00% for the [25] algorithm. The best result with the [26] numerical algorithm was the ENO 
procedure using the 4th-order Newton interpolation, in a viscous case, with an error of 6.20% as using the 
seven species chemical model. The WENO procedure had a bad performance, yielding errors as large as 
27.94% for the [25] algorithm using the five species model, and of 42.16% for the [26] algorithm using the 
seven species model. 
 

10.4 Computational Performance 
 
Tables 10 and 11 present the computational data of the [25] and the [26] algorithms for the blunt body 
problem as using the five species chemical model. It shows the CFL number and the number of iterations to 
convergence for all studied cases in the present work. As can be seen, all the cases used the same CFL 
number 0.010 and the best performance is due to the [25] algorithm as using the MUSCL procedure, 
converging in circa of 16,927 iterations. The best ENO performance was due to the 3rd-order Hermite 
variant, for the inviscid case, converging in 17,637 iterations. This result was obtained with the [25] 
algorithm. In relation to the [26] algorithm, the best performance was to the 5th-order Hermite variant, for 
the inviscid case, converging in 27,548 iterations. 
 
Tables 12 and 13 present the computational data of the [25] and the [26] algorithms for the blunt body 
problem as using the seven species chemical model. It shows the CFL number and the number of iterations 
to convergence for all studied cases in the present work. As can be seen, all the cases used the same CFL 
number 0.010 and the best performance is due to the [25] algorithm as using the MUSCL procedure, 
converging in circa of 16,774 iterations. The best ENO performance was due to the 3rd-order Hermite 
variant, for the inviscid case, converging in 17,511 iterations. This result was obtained with the [25] 
algorithm. In relation to the [26] algorithm, the best performance was to the 5th-order Hermite variant, for 
the inviscid case, converging in 27,177 iterations. 
 
As can be observed, the best procedure to obtain high order resolution is the ENO procedure employing the 
Newton interpolation process. The Hermite interpolation process present good computational performance; 
however, its numerical results are worse than the Newton ones. Such conclusion was obtained in [41] and 
confirmed in this work. The MUSCL approach is a good option if only 2nd-order precision is required. The 
WENO procedure has presented unsatisfactory results. 
 

 

 
  

Fig. 1. Contributions of Q  and Q  to cell (i,j,k) Fig. 2. Inviscid mesh 
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INVISCID CASE – FIVE SPECIES 

 
  

Fig. 3. Viscous mesh 
 

Fig. 4. Pressure contours (MUSCL-2nd-VL) 
 

  

  
  

Fig. 5 Pressure contours (MUSCL-2nd-LS) 
 

Fig. 6. Pressure contours (ENO-NEWTON-
2nd-VL) 

 

  
 

Fig. 7. Pressure contours (ENO-NEWTON-2nd-LS) 
 

Fig. 8. Pressure contours (ENO-NEWTON-
3rd-LS)
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Fig. 9. Pressure contours (ENO-NEWTON-4th-VL) 
 

 

Fig. 10. Pressure contours (ENO-NEWTON-
4th-LS) 

 

  
  

Fig. 11. Pressure contours (ENO-NEWTON-5th-
VL) 

 

Fig. 12. Pressure contours (ENO-NEWTON-
5th-LS) 

 
  

  
  

Fig. 13. Pressure contours (ENO-HERMITE-3rd-
VL) 

 

Fig. 14. Pressure contours (ENO-HERMITE-
3rd-LS) 

 



 
 
 

Maciel and Andrade; JAMCS, 25(1): 1-32, 2017; Article no.JAMCS.36897 
 
 
 

20 
 
 

  
  

Fig. 15. Pressure contours (ENO-HERMITE-5th-
VL) 

 

Fig. 16. Pressure contours (ENO-HERMITE-
5th-LS) 

 

  
  
Fig. 17. Pressure contours (WENO-NEWTON-3rd-

VL) 
 

Fig. 18. Pressure contours (WENO-
NEWTON-3rd-LS) 

 
INVISCID CASE – SEVEN SPECIES 

 

 

 
  

Fig. 19. Pressure contours (MUSCL-2nd-VL) 
 

Fig. 20. Pressure contours (MUSCL-2nd-LS) 
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Fig. 21. Pressure contours (ENO-NEWTON-2nd-
VL) 

 

Fig. 22. Pressure contours (ENO-NEWTON-
2nd-LS) 

 

  
  

Fig. 23. Pressure contours (ENO-NEWTON-4th-
VL) 

 

Fig. 24. Pressure contours (ENO-NEWTON-
4th-LS) 

 

  
  

Fig. 25. Pressure contours (ENO-NEWTON-5th-
VL) 

Fig. 26. Pressure contours (ENO-NEWTON-
5th-LS) 



 
 
 

Maciel and Andrade; JAMCS, 25(1): 1-32, 2017; Article no.JAMCS.36897 
 
 
 

22 
 
 

  
  

Fig. 27. Pressure contours (ENO-HERMITE-3rd-
VL) 

 

Fig. 28. Pressure contours (ENO-HERMITE-
3rd-LS) 

 

  
  

Fig. 29. Pressure contours (ENO-HERMITE-5th-
VL)  

Fig. 30. Pressure contours (ENO-HERMITE-
5th-LS) 

 

  
  
Fig. 31. Pressure contours (WENO-NEWTON-3rd-

VL) 
 
 

Fig. 32. Pressure contours (WENO-
NEWTON-3rd-LS) 
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VISCOUS CASE – FIVE SPECIES 

 

 

 
  

Fig. 33. Pressure contours (MUSCL-2nd-VL) 
 

Fig. 34. Pressure contours (ENO-NEWTON-
3rd-VL) 

  

  
  

Fig. 35. Pressure contours (ENO-NEWTON-4th-
VL) 

 

Fig. 36. Pressure contours (ENO-NEWTON-
4th-LS) 

 

VISCOUS CASE – SEVEN SPECIES 

 

 

 
  

Fig. 37. Pressure contours (MUSCL-2nd-VL) 
 

Fig. 38. Pressure contours (ENO-NEWTON-
3rd-VL) 
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Fig. 39. Pressure contours (ENO-NEWTON-4th-

VL) 
Fig. 40. Pressure contours (ENO-NEWTON-4th-

LS) 
 

Table 1. Values of r, crj and Q (3rd Order) 

 
r cr0 Q  cr1 Q  

0 ½ 
iQ  1/2 

1iQ   

1 -1/2 
1iQ   3/2 

iQ  

 

Table 2. Values of r, rjc  and Q (3rd Order) 

 

r 
0rc  Q  1rc  Q  

0 3/2 
iQ  -1/2 

1iQ   

1 ½ 
1iQ   1/2 

iQ  

 

Table 3. Values of r, crj and Q (5th Order) 

 
r cr0 Q  cr1 Q  cr2 Q  

0 1/3 
iQ  5/6 

1iQ   -1/6 
2iQ   

1 -1/6 
1iQ   5/6 

iQ  1/3 
1iQ   

2 1/3 
2iQ   -7/6 

1iQ   11/6 
iQ  

 

Table 4. Values of r, rjc  and Q (5th Order) 

 

r 
0rc  Q  1rc  Q  2rc  Q  

0 11/6 
iQ  -7/6 

1iQ   1/3 
2iQ   

1 1/3 
1iQ   5/6 

iQ  -1/6 
1iQ   

2 -1/6 
2iQ   5/6 

1iQ   1/3 
iQ  
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Table 5. Initial conditions to the problem of the blunt body 
 

Property Value 

M 8.78 

 (attack) 0.0° 

 (longitudinal) 0.0° 

 0.00326 kg/m3 

p 687 Pa 

U 4,776 m/s 

T 694 K 
Altitude 40,000 m 
cN 10-9 
cO 0.07955 
cO2 0.13400 
cNO 

cNO+ 

ce- 

0.05090 
0.0 
0.0 

L 2.0 m 
Re 2.389x106 

 

Table 6. Values of stagnation pressure and errors ([25] data) 
 

Case Procedure pr0 Error (%) 
 MUSCL – 2nd 126.33 29.46 
 Newton – 2nd 180.61 0.84 
 Newton – 3rd - - 
Inviscid Newton – 4th 183.63 2.53 
TCNE(1) Newton – 5th 180.26 0.65 
 Hermite – 3rd  164.25 8.29 
 Hermite – 5th 158.13 11.71 
 WENO – 3rd 129.06 27.94 
 WENO – 5th  - - 
 MUSCL – 2nd  159.07 11.18 
 Newton – 2nd - - 
 Newton – 3rd 173.49 3.13 
Viscous Newton – 4th 187.80 4.86 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 

(1): Thermochemical Non-Equilibrium. 
 

Table 7. Values of stagnation pressure and errors ([26] data) 
 

Case Procedure pr0 Error (%) 
 MUSCL – 2nd 135.24 24.49 
 Newton – 2nd 151.18 15.59 
 Newton – 3rd 143.31 19.98 
Inviscid Newton – 4th 146.95 17.95 
TCNE Newton – 5th 146.14 18.40 
 Hermite – 3rd  136.87 23.58 
 Hermite – 5th 139.26 22.24 
 WENO – 3rd 107.00 40.26 
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Case Procedure pr0 Error (%) 
 WENO – 5th  - - 
 MUSCL – 2nd  - - 
 Newton – 2nd - - 
 Newton – 3rd - - 
Viscous Newton – 4th 194.84 8.79 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 

 

Table 8. Values of stagnation pressure and errors ([25] data) 
 

Case Procedure pr0 Error (%) 
 MUSCL – 2nd 126.29 29.49 
 Newton – 2nd 180.61 0.84 
 Newton – 3rd - - 
Inviscid Newton – 4th 183.45 2.37 
TCNE Newton – 5th 180.21 0.62 
 Hermite – 3rd  164.14 8.35 
 Hermite – 5th 158.04 11.76 
 WENO – 3rd 129.07 27.93 
 WENO – 5th  - - 
 MUSCL – 2nd  159.08 11.18 
 Newton – 2nd - - 
 Newton – 3rd 173.21 3.29 
Viscous Newton – 4th 186.24 3.99 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 

 

Table 9. Values of stagnation pressure and errors ([26] data) 
 

Case Procedure pr0 Error (%) 
 MUSCL – 2nd 135.24 24.49 
 Newton – 2nd 151.18 15.59 
 Newton – 3rd - - 
Inviscid Newton – 4th 146.09 18.43 
TCNE Newton – 5th 145.07 19.00 
 Hermite – 3rd  136.85 23.59 
 Hermite – 5th 139.13 22.32 
 WENO – 3rd 103.60 42.16 
 WENO – 5th  - - 
 MUSCL – 2nd  - - 
 Newton – 2nd - - 
 Newton – 3rd - - 
Viscous Newton – 4th 190.20 6.20 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 
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Table 10. Computational data of the [25] scheme (5 Species) 
 

Case Procedure CFL Iterations 
 MUSCL – 2nd 0.010 16,927 
 Newton – 2nd 0.010 37,224 
 Newton – 3rd - - 
Inviscid Newton – 4th 0.010 27,768 
TCNE Newton – 5th 0.010 19,841 
 Hermite – 3rd  0.010 17,637 
 Hermite – 5th 0.010 17,919 
 WENO – 3rd  0.010 18,048 
 WENO – 5th  - - 
 MUSCL – 2nd  0.010 39,645 
 Newton – 2nd - - 
 Newton – 3rd 0.010 27,769 
Viscous Newton – 4th 0.010 28,030 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 

 
Table 11. Computational data of the [26] scheme (5 Species) 

 
Case Procedure CFL Iterations 
 MUSCL – 2nd 0.010 20,533 
 Newton – 2nd 0.010 37,709 
 Newton – 3rd 0.010 33,700 
Inviscid Newton – 4th 0.010 39,792 
TCNE Newton – 5th 0.010 44,477 
 Hermite – 3rd  0.010 30,144 
 Hermite – 5th 0.010 27,548 
 WENO – 3rd  0.010 47,159 
 WENO – 5th  - - 
 MUSCL – 2nd  - - 
 Newton – 2nd - - 
 Newton – 3rd - - 
Viscous Newton – 4th 0.010 32,477 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 

 
Table 12. Computational data of the [25] scheme (7 Species) 

 
Case Procedure CFL Iterations 
 MUSCL – 2nd 0.010 16,774 
 Newton – 2nd 0.010 35,565 
 Newton – 3rd - - 
Inviscid Newton – 4th 0.010 27,450 
TCNE Newton – 5th 0.010 19,713 
 Hermite – 3rd  0.010 17,511 
 Hermite – 5th 0.010 17,784 
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Case Procedure CFL Iterations 
 WENO – 3rd  0.010 17,830 
 WENO – 5th  - - 
 MUSCL – 2nd  0.010 39,513 
 Newton – 2nd - - 
 Newton – 3rd 0.010 27,482 
Viscous Newton – 4th 0.010 28,177 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 

 
Table 13. Computational data of the [26] scheme (7 Species) 

 
Case Procedure CFL Iterations 
 MUSCL – 2nd 0.010 20,287 
 Newton – 2nd 0.010 37,263 
 Newton – 3rd - - 
Inviscid Newton – 4th 0.010 39,278 
TCNE Newton – 5th 0.010 43,906 
 Hermite – 3rd  0.010 29,745 
 Hermite – 5th 0.010 27,177 
 WENO – 3rd  0.010 46,629 
 WENO – 5th  - - 
 MUSCL – 2nd  - - 
 Newton – 2nd - - 
 Newton – 3rd - - 
Viscous Newton – 4th 0.010 29,250 
TCNE Newton – 5th - - 
 Hermite – 3rd - - 
 Hermite – 5th - - 
 WENO – 3rd  - - 
 WENO – 5th  - - 

 

11. Conclusions 
 
The present work studied the reentry 3D-flows problem using high order resolution schemes, employing 
both Euler and Navier-Stokes equations under conservative and finite volume approaches. The ENO 
procedure was presented to a conserved variable interpolation process, using either the Newton method, to 
second-, third-, fourth- and fifth-orders of accuracy, or the Hermite method, to third- and fifth-orders of 
accuracy, and the WENO procedure is presented, using the Newton interpolation process, to generate third- 
and fifth-orders of accuracy solutions. The MUSCL scheme were also tested to serve as TVD benchmark 
solution. The “hot gas” hypersonic 3D-flow around a blunt body was carried out. The convergence process 
was accelerated to steady state condition through a spatially variable time step procedure, which has 
provided effective gains in terms of computational acceleration. The reactive simulations involved Earth 
atmosphere chemical models of five and seven species, based on the [29] and [30] models, respectively. 
 
The results have indicated that the ENO procedure using Newton 5th-order interpolation process presents 
better solutions in both qualitative and quantitative features. The best ENO convergence was due to the [25] 
algorithm using Hermite interpolation in its 3rd-order of accuracy for both chemical models. The best global 
convergence was also due to the [25] algorithm using MUSCL procedure for both chemical models. It is 
important to note that considering the ENO procedure using the Newton interpolation, errors less than 3.00% 
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were found with the [25] numerical algorithm in the inviscid case and less than 4.00% for the viscous case. 
Moreover, using Hermite interpolation, errors inferior to 12.00% were found with the [25] numerical 
algorithm in the inviscid case. 
 
This work can be considered an useful contribution to the CFD community in terms of considering the 
application of high order resolution methods to obtain thermochemical non-equilibrium 3D-flow solution. 
MUSCL, ENO and WENO procedures were implemented and tested in the solution of the “hot gas” blunt 
body problem. Suitable results were obtained with the ENO procedure in its 5th-order of accuracy, which is 
recommended for the present authors as the best technique to simulate reactive flow problems. Moreover, 
the code was validated with analysis of errors for the two algorithms under study, as suggested by Tables 6, 
7, 8, 9. The authors intend that these comparisons are satisfactory to validate the code. 
 
Other studies in the current literature did not perform comparisons involving MUSCL, ENO and WENO 
high order procedures altogether, which characterizes this work as original and innovative. It is possible to 
cite two examples: The work of [43] developed a numerical algorithm for solving the equations describing 
chemically reacting supersonic flows. The algorithm employed a two-stage Runge-Kutta method for 
integrating the equations in time and a Chebyshev spectral method for integrating the equations in space. 
The accuracy and efficiency of the technique was addressed by comparison with an existing implicit finite-
difference procedure for modelling chemical reacting flows. This work was in two-dimensions; and the work 
of [44] developed a code capable to accurately modelling free-stream acoustic disturbances with non-
equilibrium effects and to present preliminaries findings on the non-equilibrium effects on receptivity. They 
used a two-dimensional high-order shock-fitting finite-difference solver. As can be seen, although numerous 
works exist in the CFD literature about chemically reacting flows and high order resolution, the main 
features of the present work, which enhances high resolution through the use of three different procedures, 
on a context of thermochemical non-equilibrium, and using two different upwind numerical algorithms in 
finite volumes and three-dimensions, are representative of the originality and innovation of the present 
article. 
 
The impact of this article is to give to other authors the necessary tools to perform high order numerical 
simulations of fluid flow under re-entry conditions. Countries like Turkey are developing their own 
aerospace program, and articles like this, presenting high order resolution of re-entry flow experiments, are 
vital and important to their development. For future works, the intention is to extend this research to perform 
high order resolution using spectral methods for flows under reactive + turbulent + magnetic field 
conditions, resulting in more realistic simulations and state of art research. 
 
Finally, the developed code is an in-house version and was written in FORTRAN90 by the first author. The 
authors did not use commercial computer code for this study. 
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