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Abstract 
 

In this work, unstructured TVD, ENO and UNO schemes are applied to solve the Euler equations in two-
dimensions. They are implemented on a finite volume context and cell centered data base. The algorithms 
of Yee, Warming and Harten 1982; Harten; Yee and Kutler; Yee Warming and Harten 1985; Yee; Yee 
and Harten; Harten and Osher; Yang; Hughson and Beran; and Yang and Hsu are implemented to solve 
such system of equations in two-dimensions. All schemes are flux difference splitting and good resolution 
is expected. This study deals with calorically perfect gas model and in so on the cold gas formulation is 
employed. Two problems are studied, namely: the transonic convergent-divergent symmetrical nozzle, 
and the supersonic ramp. A spatially variable time step is implemented to accelerate the convergence 
process. The results highlights the excellent performance of the Yang TVD scheme, yielding an excellent 
pressure distribution at the nozzle wall, whereas the Harten and Osher scheme yields accurate values to 
the angle of the oblique shock wave and the best wall pressure distributions in the ramp problem. 
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1 Introduction 
 
Conventional shock capturing schemes for the solution of nonlinear hyperbolic conservation laws are linear 
and L2-stable (stable in the L2-norm) when considered in the constant coefficient case ([1]). There are three 
major difficulties in using such schemes to compute discontinuous solutions of a nonlinear system, such as 
the compressible Euler equations: 
 

(i) Schemes that are second (or higher) order accurate may produce oscillations wherever the solution 
is not smooth; 

(ii) Nonlinear instabilities may develop in spite of the L2-stability in the constant coefficient case; 
(iii) The scheme may select a nonphysical solution. 

 
It is well known that monotone conservative difference schemes always converge and that their limit is the 
physical weak solution satisfying an entropy inequality. Thus monotone schemes are guaranteed to have no 
difficulties (ii) and (iii). However, monotone schemes are only first order accurate. Consequently, they 
produce rather crude approximations whenever the solution varies strongly in space or time. 
 
When using a second (or higher) order accurate scheme, some of these difficulties can be overcome by 
adding a hefty amount of numerical dissipation to the scheme. Unfortunately, this process brings about an 
irretrievable loss of information that exhibits itself in degraded accuracy and smeared discontinuities. Thus, 
a typical complaint about conventional schemes which are developed under the guidelines of linear theory is 
that they are not robust and/or not accurate enough. 
 
To overcome the difficulties, a new class of schemes was considered that is more appropriate for the 
computation of weak solutions (i.e., solutions with shocks and contact discontinuities) of nonlinear 
hyperbolic conservation laws. These schemes are required (a) to be total variation diminishing in the 
nonlinear scalar case and the constant coefficient system case ([2-3]) and (b) to be consistent with the 
conservation law and an entropy inequality ([4-5]). The first property guarantees that the scheme does not 
generate spurious oscillations. Schemes with this property are referred in the literature as total variation 
diminishing (TVD) schemes (or total variation non-increasing, TVNI, [3]). The latter property guarantees 
that the weak solutions are physical ones. Schemes in this class are guaranteed to avoid difficulties (i)-(iii) 
mentioned above. Some schemes in this context are mentioned below: 
 
Yee [6] developed a flux difference splitting scheme, which utilizes the concept of TVD (“Total Variation 
Diminishing”). It utilizes the concept of a modified inviscid flux vector to calculate the numerical fluxes. It 
utilizes artificial compressibility terms to take into account compressibility effects. The second order of 
accuracy is obtained with an appropriate definition of the modified numerical flux. The scheme satisfies a 
proper entropy inequality to ensure that the limit solution will have only physically relevant discontinuities. 
The scheme presented is second-order accurate in space and time. The time integration is accomplished by a 
Runge-Kutta method. 
 
Harten [3] defined a class of new explicit second-order accurate finite difference schemes, for the 
computation of weak solutions of hyperbolic conservation laws. The highly non-linear schemes were 
obtained by applying a non-oscillatory first-order accurate scheme to an appropriately modified flux 
function. The so-derived second-order accurate schemes achieve high resolution while preserving the 
robustness of the original non-oscillatory first-order accurate scheme. These schemes are called TVD (“Total 
Variation Diminishing”) ones and yield physically relevant solutions by the use of an entropy condition. Our 
implementation of the [3] scheme is accomplished on a finite volume context. The scheme presented is 
second-order accurate in space. The time integration is accomplished by a Runge-Kutta method, second-
order accurate in time. 
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Yee and Kutler [7] emphasized that a one-parameter family of explicit and implicit second order accurate, 
entropy satisfying, total variation diminishing (TVD) schemes had been developed by [3]. These schemes 
had the property of not generating spurious oscillations for one-dimensional non-linear scalar hyperbolic 
conservation laws and constant coefficient hyperbolic systems. Application of these methods to one- and 
two-dimensional fluid flows containing shocks (in Cartesian coordinates) yielded highly accurate non-
oscillatory numerical solutions. The goal of the work of [7] was to extend these methods to the 
multidimensional Euler equations in generalized coordinate systems. The scheme is second order accurate in 
space and time. The time integration is accomplished by a Runge-Kutta method, second-order accurate. 
 
Yee et al. [8] applied a new implicit unconditionally stable high resolution TVD scheme to steady state 
calculations. It was a member of a one-parameter family of explicit and implicit second order accurate 
schemes developed by [3] for the computation of weak solutions of one-dimensional hyperbolic 
conservation laws. The scheme was guaranteed not to generate spurious oscillations for a nonlinear scalar 
equation and a constant coefficient system. Numerical experiments have shown that the scheme not only had 
a fairly rapid convergence rate, but also generated a highly resolved approximation to the steady state 
solution. A detailed implementation of the implicit scheme for the one- and two-dimensional compressible 
inviscid equations of gas dynamics was presented. Some numerical experiments of one- and two-
dimensional fluid flows containing shocks demonstrated the efficiency and accuracy of the new scheme. 
 
Yee [9] reformulated a one-parameter family of second-order explicit and implicit total variation 
diminishing (TVD) schemes so that a simpler and wider group of limiters was included. The resulting 
scheme can be viewed as a symmetrical algorithm with a variety of numerical dissipation terms that were 
designed for weak solutions of hyperbolic problems. This was a generalization of the works of Roe and 
Davis to a wider class of symmetric schemes other than Lax-Wendroff. The main properties of this class of 
schemes were that they could be implicit, and, when steady-state calculations were sought, the numerical 
solution was independent of the time step. Numerical experiments with two-dimensional unsteady and 
steady-state airfoil calculations have shown that the proposed symmetric TVD schemes were quite robust 
and accurate. In the present study, only the results with the Minmod limiter, Eq. (44), are presented. 
 
Yee and Harten [10] considered that Harten’s method of constructing high resolution TVD schemes involves 
starting with a first-order TVD scheme and applying it to a modified flux. The modified flux is chosen so 
that the scheme is second-order at regions of smoothness and first-order at points of extrema. This technique 
is sometimes referred to as the modified flux approach. [10] extended a TVD scheme (via the modified flux 
approach) to generalized coordinate systems and discussed the various solution strategies for the implicit 
TVD schemes for more efficient two-dimensional steady-state applications. The TVD scheme was initially 
an implicit TVD one developed to solve a two-dimensional gas-dynamic problem in Cartesian coordinate. 
 
Hughson and Beran [11] presented an explicit, second order accurate, total variation diminishing (TVD) 
scheme applied to the Euler equations in axisymmetric form to study hypersonic blunt-body flows. The 
modified flux function approach of [3], with modification by [12], for two-dimensional flows is extended to 
treat axisymmetric flows. The scheme was presented on a finite difference context, but in our 
implementation, the scheme is written on a finite volume context. Roe’s averaging for a perfect gas was used 
to assess the eigenvalues and eigenvectors at cell interfaces, because it has the computational advantage of 
resolving stationary discontinuities. An entropy condition is implemented to assure relevant physical 
solutions. Linear and non-linear limiters (g’s functions) assure second order accuracy as well control the 
amount of numerical dissipation added to the flow equations. 
 
Recently, a new class of uniformly high order accurate essentially nonoscillatory (ENO) schemes have been 
developed by [13-16]. They presented a hierarchy of uniformly high order accurate schemes that generalize 
[17]’s scheme, its second order accurate MUSCL extension ([18-19]), and the total variation diminishing 
(TVD) scheme ([3]) to arbitrary order of accuracy. In contrast to the earlier second order TVD schemes 
which drop to first order accuracy at local extrema and maintain second order accuracy in smooth regions, 
the new ENO schemes are uniformly high order accurate throughout, even at critical points. The ENO 
schemes use a reconstruction algorithm that is derived from a new interpolation technique that when applied 
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to piecewise smooth data gives high order accuracy whenever the function is smooth but avoids a Gibbs 
phenomenon at discontinuities. An adaptive stencil of grid points is used; therefore, the resulting schemes 
are highly nonlinear even in the scalar case. Some schemes constructed in this way were: 
 
Harten and Osher [13] presented a hierarchy of uniformly high order accurate schemes that generalize [17] 
scheme, and its second order accurate extension of monotonic upstream schemes for conservation laws 
(MUSCL) ([18-19]) and total variation diminishing (TVD) schemes ([3] and [20]) to arbitrary order of 
accuracy. 
 
Yang [21] has presented two time level explicit and implicit finite difference shock capturing schemes based 
on the characteristic flux difference splitting method and the modified flux approach with the essentially 
nonoscillatory (ENO) property that [13] have been developed for the two-dimensional Euler equations. The 
methods were conservative, uniformly second order accurate in time and space, even at local extrema. 
General coordinate systems were used to treat complex geometries. Standard alternating direction implicit 
approximate factorization was used for constructing implicit schemes. Numerical results have been obtained 
for unsteady shock wave reflection around general two-dimensional blunt body and for steady transonic 
flows over a circular arc bump in a channel. Properties of ENO schemes as applied to two-dimensional flows 
with multiple embedded discontinuities were discussed. Comparisons of the performance between the 
presented ENO schemes and author’s previous total variation diminishing schemes were also included. The 
[21] scheme could be ENO or TVD ones depending of the choice of a free parameter. 
 
Yang [22] developed high-resolution explicit finite difference nonoscillatory shock-capturing schemes based 
on Harten’s essentially nonoscillatory interpolation using reconstruction via primitive function approach 
with N = 3 for simulating unsteady compressible flow. The extension to nonlinear system is done using 
Roe’s method, which permits the use of different scalar schemes for different characteristic fields. For 
multidimensional problems, a Runge-Kutta scheme was adopted. Numerical simulations of unsteady shock 
diffraction by an elliptic cylinder and shock wave propagating through a convergent-divergent nozzle were 
studied in their original paper. 
 
In this work, the Euler equations in two-dimensions are solved by the use of TVD, ENO and UNO schemes, 
second and third order accurate. The following ten flux difference splitting algorithms are employed: [6, 3, 
7-11], on a TVD approach and [13,21], on an ENO approach, and finally [22], on a UNO approach. A finite 
volume formulation is employed on conservative and unstructured contexts. The time discretization employs 
a Runge-Kutta method of five steps. All ten algorithms are applied to the solution of two problems: the 
transonic convergent-divergent nozzle, and the supersonic ramp. All schemes are accelerated to the steady 
state solution using a spatially variable time step procedure, which has proved excellent characteristics of 
convergence [23-24]. The results have demonstrated that the best result of the wall pressure distribution in 
the nozzle case is due to [21] and the best wall pressure distribution and shock angle in the ramp case is due 
to [13] in both TVD and ENO variants. 
 
The motivation of the paper is to construct unstructured solutions to perfect gas formulation aiming their 
application in “hot gas” flows. The present work is a first step in extending unstructured strategy to chemical 
and thermochemical non-equilibrium flows using ENO or spectral methods. The implementation of the 
unstructured strategy to two-dimensional thermochemical non-equilibrium formulation using spectral 
methods is almost ready. The results in the present paper are very encouraging and the use of such 
discretization in spectral methods is ready to be used. 
 
The results of the present paper are meaningful in the sense that with unstructured discretization more 
complex problems can be addressed and the intention of the present authors is to study complex unstructured 
three-dimensional problems, like wings, fuselage, etc. In two-dimensions, we can explore the advantage of 
using triangular cells that conforms to the geometry under study better than rectangular cells, mainly no very 
close to the geometry, where rectangular cells are the best, but close to the bulk flow. The results in this 
paper are an indicative that unstructured discretization is better for complex configurations than the 
structured discretization. In relation to structured solutions, the use of Quimera or multi-block meshes are 
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needed for solve complex configurations. In the unstructured solutions, these procedures are not necessary. 
So, in relation to structured solutions, the unstructured discretization is far superior. 
 

2 Euler Equations 
 
The fluid movement is described by the Euler equations, which express the conservation of mass, of linear 
momentum and of energy to an inviscid medium, heat non-conductor and compressible, in the absence of 
external forces. In integral and conservative forms, these equations can be given by: 
 

     0dSnFnEQdVt
S yexeV

  ,                                                                                  (1) 

 
with Q written to a Cartesian system, V is the cell volume, nx and ny are the components of the normal unity 
vector to the flux face, S is the flux area, and Ee and Fe are the convective flux vector components. The Q, Ee 
and Fe vectors are represented by: 
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Q

2e

2

e ,                                                        (2) 

 
being  the fluid density; u and v the Cartesian components of the velocity vector in the x and y directions, 
respectively; e the total energy; and p the static pressure of the fluid medium. 
 
In the studied problems, the Euler equations were nondimensionalized in relation to the freestream density, 
, and in relation to the freestream speed of sound, a. Hence, the density is nondimensionalized in relation 
to ; the u and v velocity components are nondimensionalized in relation to a; and the pressure and the 
total energy are nondimensionalized in relation to the product (a)2. The matrix system of the Euler 

equations is closed with the state equation  )vu(5.0e)1(p 22  , assuming the ideal gas 

hypothesis. The total enthalpy is determined by    peH . 

 
Equation (1) describes a relation in which the time rate of variation of the Q state vector, inside a V volume, 
is balanced by the net convective flux which crosses the S boundary surface. The calculation domain is 
divided in a great number of triangular cells and the Eq. (1) is applied to each cell. 
 

3 Yee, Warming and Harten (1982) TVD Algorithm 
 
The [6] algorithm, second order accurate in space, is specified by the determination of the numerical flux 
vector at “l” interface. 
 
Following a finite volume formalism, which is equivalent to a generalized coordinate system, the right and 
left cell volumes, as well the interface volume, necessary to a coordinate change, are defined by: 
 

neR VV  ,  iL VV     and    LRl VV5.0V  ,                                                                    (3) 

 
where “R” and “L” represent right and left states, respectively, and “ne” represent a neighbor volume to the 
“i” volume. In this work, it was adopted that “L” is associated to properties of a given “i” volume and “R” is 



 
 
 

Maciel and Andrade; JAMCS, 25(1): 1-31, 2017; Article no.JAMCS.36902 
 
 
 

6 
 
 

associated to properties of the “ne” neighbor volume. The cell volume on an unstructured context is defined 
by: 
 

   1n2n1n3n2n3n3n2n3n1n2n1ni yxxyyxyxxyyx5.0V  ,               (4) 

 
with n1, n2 and n3 being the nodes of a given triangular cell. The description of the computational cell and 
its nodes, flux interfaces and neighbors are shown in Fig. 1. 
 

 
 

Fig. 1. Unstructured cell with its defined nodes and flux interfaces. 
 
The area components at the “l” interface are defined by: 
 

ll
x

l
x SnS     and   

ll
y

l
y SnS  ,                                                           (5) 

 

where 
l
xn , 

l
yn  and Sl are defined as: 

 

  5.02
l

2
ll

l
x yxyn  ,   5.02

l
2
ll

l
y yxxn    and    5.02

l
2
l

l yxS  .        (6) 

 
Expressions to xl and yl are given in Tab. 1. The metric terms to this generalized coordinate system are 
defined as: 
 

Table 1. Values of xl and yl. 
 

Interface xl yl 
l = 1 

1n2n xx   1n2n yy   

l = 2 
2n3n xx   2n3n yy   

l = 3 
3n1n xx   3n1n yy   

 

l
l
xx VSh  , l

l
yy VSh     and    l

l
n VSh  .                                                                      (7) 

 
The properties calculated at the flux interface are obtained by arithmetical average or by Roe average. In the 
present work, the Roe average was used: 
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LRl  , 

LR

LLRR

l

uu
u




 , 

LR

LLRR

l

vv
v




   and  

LR

LLRR

l

HH
H




 ;                                                                                                                         (8) 

                                               

    2
l

2
lll vu5.0H1a  ,                                                                                      (9) 

 
where al is the speed of sound at the flux interface. The eigenvalues of the Euler equations, in the normal 
direction to the flux face, to the convective flux are given by: 
 

ylxlnormal hvhuq  , nlnormal1 haq  , normal32 q    and   nlnormal4 haq  .      (10) 

 
The jumps of the conserved variables, necessary to the construction of the [6] dissipation function, are given 
by: 
 

    LRl eeVe  ,  LRlV  ,       LRl uuVu    and        LRl vvVv  ;  (11) 

 
The  vectors to the “l” interface are calculated by the following expressions: 
 

 bbaa5.01  , aa2  , cc3     and   bbaa5.04  ,                                       (12) 

 
with: 
 

        vvuuvu5.0e
a
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2
l

2
l2
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 ;                                        (13) 
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 ;                                         (14) 

                                            

     uhvhuhvhcc '
yl

'
xl

'
ý

'
x  ;                                                       (15) 

 

nx
'
x hhh     and    ny

'
y hhh  .                                                                                                        (16) 

 
The [6] dissipation function uses the right-eigenvector matrix of the normal to the flux face Jacobian matrix 
in generalized coordinates: 
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Two options to the m entropy function, responsible to guarantee that only relevant physical solutions are to 
be considered, are implemented aiming an entropy satisfying algorithm: 
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mmm Zt     and   25.0Z2
mm  ;                                                        (18) 

 
Or: 
 

 













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fm
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fmm

m Zif,Z5.0

Zif,Z
,                                          (19) 

 
where “m” varies from 1 to 4 (two-dimensional space) and f assuming values between 0.1 and 0.5, being 
0.2 the recommended value by [6]. In the present studies, Eq. (18) was used to perform the numerical 
experiments. 
 

The g~  function at the “l” interface is defined by: 

 

  m
i

2
mm

m
i Z5.0g~  .                                                           (20) 

 
The g numerical flux function, which is a limited function to avoid the formation of new extremes in the 
solution and is responsible to the second order accuracy of the scheme, is given by: 
 

  m
m

1i
m
im

m
i signalg~,g~MIN;0.0MAXsignalg   ,                                         (21) 

 

where signalm is equal to 1.0 if 
m
ig~  0.0 and -1.0 otherwise. 

 
The  term, responsible to the artificial compressibility, as referred in the CFD community, which enhances 
the resolution of the scheme at discontinuities, is defined as follows: 
 

 















0.0if,0.0

0.0if,
m

1i
m
i

m
1i

m
i

m
1i

m
i

m
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m
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i ;                          (22) 

 
The  vector at the “l” interface, which introduces the artificial compression term in the algorithm, is defined 
by the following expression: 
 

),(MAX0.1 m
1i

m
imm  ,                                                       (23) 

 
where m assumes the following values: 1 = 0.25 (non-linear field), 2 = 3 = 1.0 (linear field) and 4 = 
0.25 (non-linear field). 
 

The numerical characteristic speed, m , at the “l” interface, which is responsible to transport the numerical 

information associated to the g numerical flux function, is defined by: 
                                                   

 







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0.0if,0.0

0.0if,gg
m

mmm
i

m
1i

m .                             (24) 

The entropy function is redefined considering m  and m : mmmmZ  , and m  is recalculated 

according to Eq. (18) or to Eq. (19). Finally, the [6] dissipation function, to second order accuracy in space, 
is constructed by the following matrix-vector product: 
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      
li

1ii
ll82YWH t

gg
RD












  .                            (25) 

 
The convective numerical flux vector to the “l” interface is described by: 
 

  )m(
YWHly

)m(
lx

)m(
l

)m(
l D5.0VhFhEVF  ,                             (26) 

 
with: 
 

 )m(
L

)m(
R

)m(
l EE5.0E      and     )m(

L
)m(

R
)m(

l FF5.0F  .              (27) 

 
The time integration is performed by an explicit method, second order accurate, Runge-Kutta type of five 
stages and can be represented of generalized form by: 
 

 
)k(

i
)1n(

i

)1k(
iiik

)0(
i

)k(
i

)n(
i

)0(
i

QQ

,QCVtQQ

QQ










                                                                                     (28) 

 
with k = 1, 2; 1 = 1/2, and 2 = 1. The contribution of the convective numerical flux vectors is determined 
by the Ci vector: 
 

)m(
3

)m(
2

)m(
1

)m(
i VFVFVFC  .                                                                                               (29) 

 

4 Harten (1983) TVD Algorithm 
 
The [3] algorithm, second order accurate in space, follows the Eqs. (3) to (17). The next step is the definition 
of the entropy condition, which is defined by Eq. (18), m, and Eq. (19). 
 

The g~  function at the “l” interface is defined according to Eq. (20) and the g numerical flux function is 

given by Eq. (21). The numerical characteristic speed m  at the “l” interface is defined according to Eq. 

(24). 
 

The entropy function is redefined considering m : mmmZ  , and m  is recalculated according to 

Eq. (19). Finally, the [3] dissipation function, to second order spatial accuracy, is constructed by the 
following matrix-vector product: 
 

      
li1iillHarten tggRD   .                                                                                  (30) 

 
Equations (26), (27) and (29) are used to conclude the numerical flux vector of the [3] scheme and the time 
integration is performed by the Runge-Kutta method defined by Eq. (28). 
 

5 Yee and Kutler (1985) TVD Algorithm 
 
The [7] algorithm, second order accurate in space, follows Eqs. (3) to (17). The next step consists in 
determining the  function. This function is defined in terms of the differences of the gradients of the 
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characteristic variables to take into account discontinuities effects and is responsible to artificial 
compression: 
 

 

 
























0.0if,0.0

0.0if,

m
1i

m
i

m
1i

m
im

1i
m
i

m
1i

m
i

m
i .                                                             (31) 

 
The  function at the “l” interface is defined as follows: 
 

  m
1i

m
imm ,MAX181  ,                                                         (32) 

 
The g numerical flux function is determined by: 
 

  m
m

1i
m
im

m
i signal,MIN;0.0MAXsignalg   ,                                                      (33) 

 

where signalm assumes value 1.0 if 
m
i   0.0 and -1.0 otherwise. The numerical characteristic speed m  at 

the “l” interface is calculated by the following expression: 
 

 







 

0.0if,0.0

0.0if,gg
m

mmm
i

m
1im

m .                                                                       (34) 

 
The l  entropy function at the “l” interface is defined by: 
 

  25.0
2

mmm  ,                                                                                                  (35) 

 
with m defined according to Eq. (18). Finally, the [7] dissipation function, to second order spatial accuracy, 
is constructed by the following matrix-vector product: 
 

       
li1iillKutler/Yee tggRD   .                                                                     (36) 

 
Equations (26), (27) and (29) are used to conclude the numerical flux vector of [7] scheme and the time 
integration is performed by the Runge-Kutta method defined by Eq. (28). 
 

6 Yee, Warming and Harten (1985) TVD Algorithm 
 
The [8] algorithm, second order accurate in space, follows Eqs. (3) to (17). The next step is to calculate the 
numerical flux function, g. The g numerical flux function, which is a limited function to avoid the formation 
of new extrema in the solution and is responsible to the second order accuracy of the scheme, is given by: 
 

 ,;0.0MAXsignalg m
i

m
im

m
i  m

1i
m

1imsignal   ,                                               (37) 
 

where signalm is equal to 1.0 if 
m
i   0.0 and -1.0 otherwise;    llll Q5.0  ; and Q is given by: 

 

   








fmf
2
f

2
m

fmm

mm
Zif,Z5.0

Zif,Z
ZQ ,                                                               (38) 
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where “m” varies from 1 to 4 (two-dimensional space) and f assumes values between 0.1 and 0.5, being 0.2 
the value recommended by [8]. The  term, responsible to the artificial compression, which enhances the 
resolution of the scheme at discontinuities like shock waves and contact discontinuities, is defined as: 
 

 















.0.0if,0.0

;0.0if,
m

1i
m
i

m
1i

m
i

m
1i

m
i

m
1i

m
im

i                                       (39) 

 
The  parameter at the l interface, which introduces the artificial compression term, is given by: 
 

m
iii 0.1  ,                                                                                                                 (40) 

 
in which l assumes the following values: 1 = 0.25 (non-linear field), 2 = 3 = 1.0 (linear field) and 4 = 

0.25 (non-linear field). The g~  function is defined by: 

 
m
ii

m
i gg~  .                                                                                                                 (41) 

 

The numerical characteristic speed, l , at the l interface, which is responsible to transport the numerical 

information associated to the g numerical flux function, or indirectly through g~ , is defined by: 

 

 







 

.0.0if,0.0

;0.0if,g~g~

m

mmm
i

m
1i

m                                                                     (42) 

 
Finally, the [8] dissipation function, to second order of spatial accuracy, is constructed by the following 
matrix-vector product: 
 

        
l1iill85YWH QggRD   .                                                                           (43) 

 
The convective numerical flux vector to the “l” interface is described by Eqs. (26), (27) and (29) and the 
time integration is performed by Eq. (28). 
 

7 Yee (1987) TVD Symmetrical Algorithm 
 
The [9] symmetrical algorithm, second order accurate in space, follows Eqs. (3) to (17). The next step is to 
calculate the entropy function. It is determined by Eq. (19) using the eigenvalues, Eq. (10), of the Euler 
equations as variables. After that, the Q function is determined. In the present work, five options were 
implemented. They are: 
 

(44);1)r,1mod(min)r,1mod(min)r,r(Q  

   

                                      
(45));,,1mod(min),(   rrrrQ  

                                               

(46))];(5.0,2,2,2mod[min),(   rrrrrrQ  

                      

(47);1)}2,min(),1,2min(,0max{)}2,min(),1,2min(,0max{),(   rrrrrrQ  
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(48).1
11

),( 




















r

rr

r

rr
rrQ  

 
Normally the “minmod” function of two arguments is defined as 
  

                                           

(49))]};(.,min[,0max{).(),mod(min xsignyxxsignyx 
 

 
and the argument r is defined as: 
 

                                                           

(50)11
m
i

m
i

m
i

m
i randr







    

 
Finally, the dissipation operator at the interface “l” is defined as: 
 

                                                              

        (51)1 lllllYee QRD    

and the numerical flux vector is given by: 
 

  )m(
Yeely

)m(
lx

)m(
l

)m(
l D5.0VhFhEVF  ,                                         (52) 

 
The time integration is performed by Eq. (28). 
 

8 Yee and Harten (1987) TVD Algorithm 
 
The [10] symmetrical algorithm, second order accurate in space, follows Eqs. (3) to (17). The next step is the 
determination of the g numerical speed of propagation of information: 
 

)53().(:)},,min(,0max[ 1
m
i

m
il

m
i signSwhereSSg   

 
 
The entropy function is defined by Eq. (19) and the numerical speed of information propagation is 
determined by: 
 

                                          

 
)54(.

,0.0

0.0,
)(

2

1 1



 
 

otherwise

ifgg mmm
i

m
i

l
m
i


  

 
 
The numerical characteristic speed, φ, is expressed by: 
 

     )55(
2

1
1

mm
iliilm gg   
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Finally, the [10] dissipation function, to second order of spatial accuracy, is constructed by the following 
matrix-vector product: 
 

      )56(/ lmllHartenYee RD 
 

 
and Eqs. (26), (27), (29) and (28) are used to determine the dissipation operator and accomplish the time 
integration of the [9] scheme. 
 

9 Hughson and Beran (1991) TVD Algorithm 
 
The [11] algorithm, second order accurate in space, follows the Eqs. (3) to (17). The next step consists in 
determining the g numerical flux function. To non-linear fields (m = 1 and 4), it is possible to write: 
 

 

 
























0.0if,0.0

0.0if,g
m

1i
m
i

m
1i

m
im

1i
m
i

m
1i

m
i

m
1i

m
i

m
i .                                         (57) 

 
To linear fileds (m = 2 and 3), it is possible to write: 
 

  m
m
i

m
1im

m
i signal,MIN;0.0MAXsignalg   ,                                        (58) 

 

where signalm assumes the value 1.0 if 
m

1i   0.0 and -1.0 otherwise. After that, the Eqs. (18) and (19) are 

employed and the m  term is defined at the “l” interface as: 

 

 2
mmm Z5.0  .                                                                      (59) 

 

The m  numerical characteristic speed at the “l” interface is defined by: 

 

 







 

0.0if,0.0

0.0if,gg
m

mmm
i

m
1im

m .                                         (60) 

 

The entropy function is redefined considering m : mmmZ   and m  is recalculated according to 

Eq. (19). Finally, the [11] dissipation function, to second order accurate in space, is constructed by the 
following matrix-vector product: 
 

      
li

1ii
llBeran/Hughson t

ggRD









  .                                        (61) 

 
After that, Eqs. (26), (27) and (29) are used to conclude the numerical flux vector of the [11] scheme and Eq. 
(28) is employed to perform the time integration. 
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10 Harten and Osher (1987) TVD/ENO Algorithm 
 
The [13] algorithm, second order accurate in space, employs Eqs. (3-17). The next step consists in 
constructing the TVD/ENO numerical flux vector. Initially, it is necessary to define the  parameter at the 
“l” interface to calculate the numerical velocity of information propagation, which contributes to the second 
order spatial accuracy of the scheme: 
 

    2
i ztz5.0z  ;                                                                                                           (62) 

 
with (z) defined according to Eq. (19) and z defined as the eigenvalues at the interface, Eq. (10). The non-
linear limited flux function, based on the idea of a modified flux function of [3], is constructed by: 
 

   m
1i

m
1i

m
1i

m
i

m
i

m
i

m
i ,m,,mm   ,                                               (63) 

 

where the m and m  limiters are defined as: 
 

 
     



 


otherwise,0

szsignalysignalif,z,yMINs
z,ym ;                                                 (64) 

                                                         

 









zyif,z

zyif,y
z,ym ;                                                                                                          (65) 

 
and the forward and backward operators are defined according to: 
 

   i1i      and       1ii   .                                                                                  (66) 

 
The numerical velocity of information propagation is calculated by: 
 

   


 

 

.otherwise,0

;0if, mmm
i

m
1im

i
m
i                                                                       (67) 

 

The dissipation function to the TVD and ENO versions of the [13] scheme is defined as: 
 

       m
i

m
i

m
i

m
1i

m
i

m
iHO

m
i   ,                                                                        (68) 

 

with: “l” assuming values from 1 to 4 (two-dimensional space),  assuming the value 0.2 recommended by 
[13],  is the entropy function to guarantee that only relevant physical solutions are admissible, and  
assumes the value 0.0 to obtain the TVD scheme of [3], second order accurate, and 0.5 to obtain the 
essentially non-oscillatory scheme, uniform second order accuracy in the field, of [13]. 
         

Finally, the dissipation operator of [13], to second order of spatial accuracy, in its TVD and ENO versions, is 
constructed by the following matrix-vector product: 
 

     
lHOllOsher/Harten RD  .                                                                                                       (69) 

 
The complete numerical flux vector to the “l” interface is described by Eqs. (26), (27), and (29) whereas the 
tine integration is performed by the Runge-Kutta method of Eq. (28). 
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11 Yang (1990) TVD/ENO Algorithm 
 
11.1 Explicit upwind algorithm 
 
A typical conservative numerical scheme, using a finite volume and unstructured formulations, for solving 
Eq. (1) can be expressed in terms of numerical fluxes as follows: 
 

 N
3

N
2

N
1ii

n
i

1n
i VFVFVFVtQQ 

,                                                                             (70) 

 

where 
N

1VF , 
N

2VF  and N
3VF  are the numerical fluxes. For a first order upwind scheme, 

N
1F  is given by: 

 
n

iint1
n

1
N

1 FÂFVF  
,                                                                                                               (71) 

 

with:    ineint  , 
n

1F  and 
n

iF  defined by: 
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phuU

U

VF







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





















 ;                                        (72) 

 

and 
1Â  defined as follows: 

 

 
1

1
1111 RˆRÂ   ,    11

ˆdiagˆ    and     normal
11 sign15.0ˆ  ,                                (73) 

 

where: 1R  is defined by Eq. (17) and 
1

1R 
 is defined in [23];  diag  represents a diagonal matrix, as for 

instance: 
 




























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










4

3

2

1

ˆ

ˆ

ˆ

ˆ

ˆ ;                                                                                                          (74) 

 
normal
1  are defined by Eq. (10) to the normal direction of flux at the l = 1 interface; and  normal

1sign   is 

equal to 1.0 if 
normal
1   0.0 and -1.0 otherwise. For explicit methods in the two-dimensional space, the 

Runge-Kutta method of Eq. (28) is employed with the definition of interface fluxes as described by Eq. (29). 
 

11.2 Uniformly Second Order Essentially Nonoscillatory Schemes 
 
[3] proposed to construct second order accurate TVD schemes by applying a first order approximate 
Riemann solver to a modified flux. Following [3], [21] proposed to define a modified numerical flux 
function with the definition of the modified flux: 
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nnMN FFFVF  ,                                                                                                               (75) 
 
where VFM is the modified flux which has essentially nonoscillatory property yet to be defined. In the 
following, a numerical method of uniformly second order accuracy in time and space which combines both 
characteristic and conversion features of Eq. (1) is discussed. For the present ENO scheme, the numerical 
flux VFN is described by: 
 

M
iint1

M
i

M
iint1

M
1i

N
l FÂFFÂFVF  

 .                                                                    (76) 

 

The components of the additional vector F  are given by: 
 

    1i1i1i1i1iii f
~

,f
~

mf
~

,f
~

,f
~

mf
~

mf   ,                                              (77) 

 

where 1ii )()(   ,  i1i )()(   , and if
~

 are components of the following column vector: 

 

     2FAtIAsignF
~

iintlili  .                                                                                        (78) 

 

The  Asign  and A  in Eq. (78) are given by: 

 

     1
normal

normal
inormal RsigndiagRAsign    and    1

normal
normal
inormal RdiagRA  ,          (79) 

 

where Rnormal and 1
normalR   are the matrices defined by Eq. (17) and [23], respectively. In Equation (77), m is 

the minmod function: 
 

 b,amins)b,a(m  ,   if sign(a) = sign(b) = s;                                                                  (80) 

 

0.0)b,a(m  , otherwise.                                                                                                            (81) 

 
and the m  function is defined by: 
 

am  ,    if ba  ;                                                                                                                       (82) 

                                                                     

bm  ,    if ba  .                                                                                                                      (83) 

 
For  = 0.0, one has a second order TVD scheme. For  = 0.5, one has a uniformly second order 
nonoscillatory scheme. The numerical scheme is thus formed by Eq. (70) using the definition (76) to the 
numerical flux function and the explicit time integration is performed by the Runge-Kutta method described 
by Eq. (28). 
 
The first author introduced some modifications in the [21] scheme. Equation (76) is redefined: 
 

M
,iintl

M
i

M
iintl

M
1i

N
l QAFQAFVF  

 ,                                                                          (84) 
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with: 
n

1i
n
l

n
1i

M
1i FAFF      and     n

i

T

iint
M
i FevuVQ  . The positive splitting matrix 


lA  is defined as 

 

  
  1

normallnormall RdiagRA   ,                                                                                                     (85) 

 

with  normal
l

normal
ll 5.0  , and the Jacobian matrix at the normal flux direction is described by 

 

  1
normal

normal
lnormal

n
l RdiagRA  .                                                                                               (86) 

 

The vector iF
~

 is also redefined as: 

 

   2QAtIAsignF
~

iintlili  ,                                                                                        (87) 

 

where  T

iinti evuVQ   is the vector of conserved variables in the cell “i”. 

 
Observe that the resulting schemes are equivalent to the originals of [21], with the unique difference that the 
difference of fluxes in Eq. (76) is changed by the difference of conserved variable values, Eq. (84). With this 
new definition, the solutions present better behavior, free of oscillations, undershoots and overshoots. The 
other expressions maintain the same structure. 
 

12 Yang and Hsu (1992) UNO Algorithm 
 
The [22] UNO scheme is equivalent to an ENO scheme of third order of accuracy. The components of 

3UNO
i  are defined as:  

 

    
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
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3UNO
i ;     

(88)
 

 

where the  ˆand,,  functions are given by: 

 

 ;z)z(
2

1 2  322
zz3z2

6

1
 ;   and    zz

6

1
ˆ

32  .              (89) 

 

The  ˆand,,  are parameters defined by: 

 

)90(];,[ 1
m
i

m
im    

                                                         

  ;if,m m
i

m
1i

m
1i

m
1i                                                                              (91) 

 

  m
i

m
1i

m
i

m
i if,mˆ   .                                                                             (92) 
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and finally, the  ˆand,,  numerical speed of propagation of information are given by: 

 

 
;

otherwise0.0

0.0if
)(

mmm
i

m
1im

i



 

                                                                       (93) 
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otherwise0.0

0.0if
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mmm
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m
1im

i



 

                                                                       (94) 

                                                       

 
;

otherwise0.0

0.0ifˆˆ
)(ˆˆ

mmm
i

m
1im

i



 

                                                                       (95) 

 
Finally, the dissipation operator of [22], to third order of spatial accuracy, in its UNO version, is constructed 
by the following matrix-vector product: 
 

     l
3UNO

llHsu/Yang RD  .                                                                                                      (96) 

 
The complete numerical flux vector to the “l” interface is described by Eqs. (26), (27), and (29) whereas the 
tine integration is performed by the Runge-Kutta method of Eq. (28). 
 

13 Spatially Variable Time Step 
 
The basic idea of this procedure consists in keeping constant the CFL number in all calculation domain, 
allowing, hence, the use of appropriated time steps to each specific mesh region during the convergence 
process. According to the definition of the CFL number, it is possible to write: 
 

  iii csCFLt  ,                                                                                                                    (97) 

 
where CFL is the “Courant-Friedrichs-Lewy” number to provide numerical stability to the scheme; 

  i
22

i avuc   is the maximum characteristic speed of propagation of information in the 

calculation domain; and  is  is a characteristic length of transport of information. On a finite volume 

context,  is  is chosen as the minor value found between the minor centroid distance, involving the i cell 

and a neighbor, and the minor cell side length. 
 

14 Physical Problems 
 
The first problem to be studied is the transonic convergent-divergent nozzle. The geometry of the 
convergent-divergent nozzle at the xy plane is described in Fig. 2. The total length of the nozzle is 0.38ft 
(0.116m) and the throat height is equal to 0.090ft (0.027m). The throat is located at 0.19ft (0.058m) from the 
entrance boundary. The throat curvature ratio is equal to 0.090ft. The nozzle convergence angle is 22.33 
and the nozzle divergence angle is 1.21. An exponential stretching of 10% in both normal and tangent lines 
was used. An algebraic mesh of 61 points in the tangent direction and 71 points in the normal direction was 
generated, which corresponds in finite volumes to 8,400 triangular cells and 4,331 nodes. Fig. 3 exhibits the 
mesh employed in the simulations. 
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Fig. 2. Nozzle configuration at the xy plane. 

 
Fig. 3. Nozzle mesh in two-dimensions. 

 

 
 

Fig. 4. Ramp configuration at the xy plane. 

 
 
 
 
Fig. 5. Ramp mesh in two-dimensions. 

        
The second problem is the ramp problem. The ramp configuration at the xy plane is described in Fig. 4. The 
compression corner has 20 of inclination. The mesh used in the simulations has 11,880 triangular cells and 
6,100 nodes to a structured discretization of the calculation domain. This mesh is equivalent, in finite 
differences, of being composed of 61 points in the tangent direction and 100 points in the normal direction. 
Fig. 5 shows such mesh. The initial and boundary conditions are described in [25].  
 

15 Results 
 
15.1 Nozzle problem 
 
Figs. 6 and 7 exhibit the pressure and Mach number contours generated by the [6] scheme. Both pressure 
and Mach number contours are of good quality. The weak shock wave at the nozzle throat is well captured 
by the [6] scheme. 
 
Figs. 8 and 9 show the pressure and Mach number contours generated by the [3] scheme. The pressure and 
Mach number contours are of good quality. The shock wave at the nozzle throat is accurately captured by the 
[3] scheme. 
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Figs. 10 and 11 present the pressure and Mach number contours obtained by the [7] scheme. The pressure 
contours are of good quality, but the Mach number contours are worse than the respective ones obtained by 
the other schemes. The weak shock wave is well captured by this scheme. 
 
Figs. 12 and 13 exhibit the pressure and Mach number contours obtained by the [8] scheme. The pressure 
and Mach number contours are of good quality. The weak shock wave at the throat is well captured by the 
[8] scheme.  
 
Figs. 14 and 15 show the pressure and Mach number generated by the [9] scheme as using the Eq. (44) to the 
function Q. Both pressure and Mach number are of good quality and the weak shock wave at the throat is 
well captured. 
 
Figs. 16 and 17 present the pressure and Mach number contours calculated with the [10] scheme. The 
pressure and Mach number contours are of good quality, comparable to [9]. The weak shock wave at the 
throat is also captured. 
 
Figs. 18 and 19 exhibit the pressure and Mach number contours obtained by the [11] scheme. The pressure 
and Mach number contours are of good quality, the best until now. The weak shock wave at the nozzle throat 
is well captured by this scheme. 
 

 
Fig. 6. Pressure contours ([6]).  

Fig. 7. Mach number contours ([6]). 

 
Fig. 8. Pressure contours ([3]). 

 
Fig. 9. Mach number contours ([3]). 
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Fig. 10. Pressure contours ([7]). 

 
 

Fig. 11. Mach number contours ([7]). 

 
 

Fig. 12. Pressure contours ([8]). 

 
 

Fig. 13. Mach number contours ([8]) 
 
Figs. 20 and 21 present the pressure and Mach number contours generated by the [13] TVD scheme. The 
pressure and Mach number contours are of good quality, very similar with the solutions of the [9] scheme. 
Figs. 22 and 23 show the pressure and Mach number generated by the [13] ENO scheme. The solutions are 
of good quality, similar to the [9] scheme solution. 
 

 
 

Fig. 14. Pressure contours ([9]). 

 
 

Fig. 15. Mach number contours ([9]). 



 
 
 

Maciel and Andrade; JAMCS, 25(1): 1-31, 2017; Article no.JAMCS.36902 
 
 
 

22 
 
 

 
Fig. 16. Pressure contours ([10]). 

 
Fig. 17. Mach number contours ([10]). 

 
Fig. 18. Pressure contours ([11]). 

 
Fig. 19. Mach number contours ([11]). 

 

Figs. 24 and 25 present the pressure and Mach number contours obtained by the [21] scheme in its TVD 
version. The ENO version of this algorithm did not present converged solutions. The pressure contours are 
of good quality, but the Mach number contours are badly described. The weak shock at the nozzle throat is 
well captured by the pressure contours. 
 

 
Fig. 20. Pressure contours ([13]-TVD). 

 
Fig. 21. Mach number contours ([13]-TVD). 
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Fig. 22. Pressure contours ([13]-ENO).  

Fig. 23. Mach number contours ([13]-ENO). 
 

 
 

Fig. 24. Pressure contours ([21]-TVD). 
 

 
 

Fig. 25. Mach number contours ([21]-TVD). 
 

 
Fig. 26. Pressure contours ([22]). 

 
Fig. 27. Mach number contours ([22]). 

 
Figs. 26 and 27 show the pressure and Mach number contours generated by the [22] scheme. This UNO 
algorithm yields good solutions to the pressure and Mach number contours. The weak shock wave is well 
captured. 
 
Finally, Fig. 28 presents the wall pressure ratio calculated by all ten schemes. The pressure distributions are 
compared with the experimental results of [26]. The best wall pressure distribution is due to [21] in its TVD 
version. 
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15.2 Ramp problem 
 
For this problem, a supersonic Mach number of 2.0 and an entrance angle of 0.0o were employed as initial 
condition.  
 
Figs. 29 and 30 exhibit the pressure and Mach number contours obtained by the [6] scheme. The shock wave 
and the expansion fan are appropriately captured by the numerical algorithm. The curves of contours are of 
good quality, although the Mach contours present some oscillations close to the shock, the pre-shock 
oscillations. 

 
Fig. 28. Wall pressure distributions (Choosing the best distribution) 

 

Figs. 31 and 32 show the pressure and Mach number contours calculated by the [3] scheme. Both solutions 
present good contours of pressure and of Mach number. The Mach number field is free of pre-shock 
oscillations. Both solutions have good homogeneity properties. 
 

Figs. 33 and 34 present the pressure and Mach number contours generated by the [7] scheme. Both solutions 
are of good quality, although the Mach number contours present some pre-shock oscillations. 
 

Figs. 35 and 36 exhibit the pressure and Mach number contours obtained by the [8] scheme. Some pre-shock 
oscillations are observed in the Mach number contours. The pressure field is free of oscillations and the 
shock wave is well captured. 
 

Figs. 37 and 38 show the pressure and Mach number contours calculated by the [13] scheme in its TVD 
version. The shock is captured with formation of some pre-shock oscillations. The pressure field is better 
captured, without oscillations. Figs. 39 and 40 present the pressure and Mach number contours generated by 
[13] scheme in its ENO version. The Figs. are very similar to the respective ones of the TVD case. A line of 
pre-shock oscillations is observed along the shock. The pressure contours are well defined. 
 

Figs. 41 and 42 exhibit the pressure and Mach number contours obtained with the [9] scheme using Eq. (44) 
as the limiter. Both contours are well captured, characterizing the [3] and the [9] as the best one until now. 
The shock wave is well captured by the [9] scheme. 
 

Figs. 43 and 44 show the pressure and the Mach number contours generated by the [10] scheme. The 
pressure contours are of good quality, but the Mach number contours present the same behavior as in the 
[13] solutions. 
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Fig. 29. Pressure contours ([6]). 

 
 

Fig. 30. Mach number contours ([6]). 

 
Fig. 31. Pressure contours ([3]). 

 
 

Fig. 32. Mach number contours ([3]). 

 
Fig. 33. Pressure contours ([7]). 

 
Fig. 34. Mach number contours ([7]). 

 
Fig. 35. Pressure contours ([8]).  

Fig. 36. Mach number contours ([8]). 
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Fig. 37. Pressure contours ([13]-TVD). 

 
Fig. 38. Mach number contours ([13]-TVD). 

 
Fig. 39. Pressure contours ([13]-ENO). 

 
Fig. 40. Mach number contours ([13]-ENO). 

 
Figs. 45 and 46 present the pressure and Mach number contours obtained by the [11] scheme. The Mach 
number contours present some pre-shock oscillations, but the pressure contours are free of such instabilities. 
 
Figs. 47 and 48 exhibit the pressure and Mach contours generated by the [21] scheme. Both pressure and 
Mach number contours are badly captured. The shock wave is badly estimated. Oscillations along the shock 
wave are perceptible in the Mach number contours. 

 
Fig. 41. Pressure contours ([9]). 

 
Fig. 42. Mach number contours ([9]). 
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Fig. 43. Pressure contours ([10]). 

 
Fig. 44. Mach number contours ([10]). 

 
Fig. 45. Pressure contours ([11]). 

 
Fig. 46. Mach number contours ([11]). 

 
Figs. 49 and 50 present the pressure and the Mach number contours calculated with the [22] scheme. The 
similar behavior of the [13] scheme is observed in these solutions. A line of pre-shock oscillations is 
captured along the oblique shock wave. 
 
Fig. 51 shows the wall pressure distributions obtained with the TVD schemes, where the [10] and [11] 
solutions were the best, and 52 shows the wall pressure distributions obtained with the ENO schemes, where 
the [13]’s solutions in both variants were the best. The best distribution of each one is compared in Fig. 53 
and the best distribution is exhibited in Fig. 54. In this study, the best wall pressure distribution is due to [13] 
to both TVD and ENO variants. 

 
Fig. 47. Pressure contours ([21]). 

 
Fig. 48. Mach number contours ([21]). 



 
 
 

Maciel and Andrade; JAMCS, 25(1): 1-31, 2017; Article no.JAMCS.36902 
 
 
 

28 
 
 

 
Fig. 49. Pressure contours ([22]). 

 
Fig. 50. Mach number contours ([22]). 

 
Fig. 51. Wall pressure distributions (TVD). 

 
Fig. 52. Wall pressure distributions (ENO). 

 
A way to quantitatively verify if the solutions generated by each scheme are satisfactory consists in 
determining the shock angle of the oblique shock wave, , measured in relation to the initial direction of the 
flow field. [27] presents a diagram with values of the shock angle, , to oblique shock waves. The value of 
this angle is determined as function of the freestream Mach number and of the deflection angle of the flow 
after the shock wave, . To  = 20º (ramp inclination angle) and to a freestream Mach number equals to 2.0, 
it is possible to obtain from this diagram a value to  equals to 53.0º. Using a transfer in all pressure 
contours figures, it is possible to obtain the values of  to each scheme, as well the respective errors, shown 
in Tab. 2. As can be noted, the best results are due to [6], [9], [10], and [13] (in both TVD and ENO variants) 
with an error of 0.00%. Hence, in this supersonic problem, the [13], in both TVD and ENO versions, was the 
best. 

 
Fig. 53. Wall pressure distributions (Choosing the 

best profile). 

 
Fig. 54. Wall pressure distributions (The best 

profiles). 
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Table 2. Shock angle and percentage errors 
 

Scheme  (°) Error (%) 
Yee, Warming and Harten (1982), [6] 53.0 0.00 
Harten (1983), [3] 54.0 1.89 
Yee and Kutler (1985), [7] 54.0 1.89 
Yee, Warming and Harten (1985), [8] 53.3 0.57 
Harten and Osher (1987), [13] – TVD 53.0 0.00 
Harten and Osher (1987), [13] – ENO 53.0 0.00 
Yee (1987), [9] 53.0 0.00 
Yee and Harten (1987), [10] 53.0 0.00 
Yang (1990) – TVD 58.0 9.43 
Hughson and Beran (1991) 53.4 0.75 
Yang and Hsu (1992) – UNO3 53.4 0.75 

 

16 Conclusions 
 
In this work, the Euler equations in two-dimensions were solved by the use of TVD, ENO and UNO 
schemes, second and third order accurate. The following ten flux difference splitting algorithms were 
employed: [6,3,7-11], on a TVD approach, [13,21], on an ENO approach, and finally [22], on a UNO 
approach. A finite volume formulation was employed on conservative and unstructured contexts. The time 
discretization employed a Runge-Kutta method of five steps. All ten algorithms were applied to the solution 
of two problems: the transonic convergent-divergent symmetrical nozzle, and the supersonic ramp. All 
schemes were accelerated to the steady state solution using a spatially variable time step procedure, which 
had proved excellent characteristics of convergence [24-25]. The results have demonstrated that the best 
result of the wall pressure distribution in the nozzle case was due to [21] and the best wall pressure 
distribution and shock angle in the ramp case was due to [13] to its both TVD and ENO versions. 
 
The merit of this study was to highlight the [13] scheme, in both TVD and ENO versions, and the [21] 
scheme as able to capture the main aspects of the flow field and, in the case of supersonic flow, to capture 
the shock wave with accuracy. Moreover, the implementation of these schemes on an unstructured context is 
also a significant and important contribution to the CFD community. 
 
The new algorithm developed by the first author is easy to work and present the possibility of using 10 
different numerical schemes for solving the fluid flow. They were implemented on both two- and three-
dimensional contexts. They are implemented on a cell centered database. It can use different time step 
procedures, one for inviscid flows and another for viscous flows. It needs more elaboration on grid 
refinement, but for simple geometries it works well. Grid refinement is the next step to improve the 
algorithm. In relation to existing ones, it is comparable in computational cost, being cheaper than the others 
because of the grid refinement absence, and presents solutions as good as the others. 
 
Finally, together with grid refinement, the focus of new works are concentrated in more high order 
unstructured schemes to evaluation and to study error estimation. With this in mind some new references are 
cited here as promising in such areas: [28-33]. 
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