
British Journal of Mathematics & Computer Science

19(1): 1-13, 2016; Article no.BJMCS.28512

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

An Algorithm for Solutions of Hammerstein Integral
Equations with Maximal Monotone Operators in

Classical Banach Spaces

M. O. Uba1∗ and M. A. Onyido1

1Department of Mathematics, University of Nigeria, Nsukka, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors made significant
contribution, author MOU wrote the first draft of the manuscript. All authors read and approved

the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/28512
Editor(s):

(1) Andrej V. Plotnikov, Department of Applied and Calculus Mathematics and CAD, Odessa
State Academy of Civil Engineering and Architecture, Ukraine.

Reviewers:
(1) Abdullah Sonmezoglu, Bozok University, Turkey.

(2) Lexter R. Natividad, Central Luzon State University, Philippines.
Complete Peer review History: http://www.sciencedomain.org/review-history/16473

Received: 22nd July 2016

Accepted: 7th August 2016

Original Research Article Published: 6th October 2016

Abstract

Let X = lp , 2 ≤ p < ∞. Let F : X → X∗ and K : X∗ → X be bounded maximal monotone
mappings such that the Hammerstein equation u+KFu = 0 has a solution. An explicit iteration
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method of proof is also of independent interest.
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1 Introduction

Let H be a real Hilbert space. A map A : H → 2H is called monotone if for each x, y ∈ H, the
following inequality holds:

⟨ξ − τ, x− y⟩ ≥ 0 ∀ ξ ∈ Ax, τ ∈ Ay. (1.1)

The monotonicity condition in Hilbert space has been extended to arbitrary normed linear spaces.
To introduce one of two known and studied extensions, we need the following definition.
Let E be a real normed space with dual space E∗. A mapping J : E → 2E

∗
is called the normalised

duality map if for each x ∈ E,

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||||x∗||, ||x|| = ||x∗||}.

A map A : E → 2E is called accretive if for each x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

⟨ξ − τ, j(x− y)⟩ ≥ 0, ∀ ξ ∈ Ax, τ ∈ Ay. (1.2)

It is well known that if E is a real Hilbert space, then J = I, the identity map on E. In this case,
the inequality (1.2) reduces to inequality (1.1). Hence, accretivity in normed spaces is one extension
of Hilbert space monotonicity condition to arbitrary real normed spaces.

Also, a mapping A : E → 2E
∗
is called monotone if for all x, y ∈ D(A)

⟨ξ − ζ, x− y⟩ ≥ 0 ∀ξ ∈ Ax, ∀ζ ∈ Ay. (1.3)

It is clear that if E = H a real Hilbert space, then E = E∗ = H and inequality (1.3) coincides
with the monotonicity definition in Hilbert spaces. So, this is another extension of Hilbert space
monotonicity.

A mapping A : X → 2X
∗
is said to be maximal monotone if it is monotone and for (x, u) ∈ X×X∗

the inequalities ⟨u − v, x − y⟩ ≥ 0, for all (y, v) ∈ G(A), imply (x, u) ∈ G(A) where G(A) is the
graph of A.

Let Ω ⊂ Rn be bounded. Let k : Ω × Ω → R and f : Ω × R → R be measurable real-valued
functions. An integral equation (generally nonlinear) of Hammerstein-type has the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x), (1.4)

where the unknown function u and inhomogeneous function w lie in a Banach space E of measurable
real-valued functions. If we define F : F(Ω,R) → F(Ω,R) and K : F(Ω,R) → F(Ω,R) by

Fu(y) = f(y, u(y)), x ∈ Ω,

and

Kv(x) =

∫
Ω

k(x, y)v(y)dy, x ∈ Ω,

respectively, where F(Ω,R) is a space of measurable real-valued functions defined from Ω to R, then
equation (1.4) can be put in the abstract form

u+KFu = 0. (1.5)

where, without loss of generality, we have assumed that w ≡ 0.

Interest in (1.4) stems mainly from the fact that several problems that arise in differential equations,
for instance, elliptic boundary value problems whose linear parts possess Green’s function can, as
a rule, be transformed into the form (1.4) (see e.g., Pascali and Sburian [1], chapter IV, p. 164).
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Equations of Hammerstein-type also play a crucial role in the theory of optimal control systems
and in automation and network theory (see e.g., Dolezale [2]).

Several existence results have been proved for equations of Hammerstein-type (see e.g., Brézis and
Browder [3, 4, 5], Browder [6], De Figueiredo and Gupta [7]).

In general, equations of Hammerstein-type are nonlinear and there is no known method to find
close form solutions for them. Consequently, methods of approximating solutions of such equations,
where solutions are known to exist, are of interest. Attempts had been made to approximate
solutions of equations of Hammerstein-type using Mann-type (see e.g., Mann [8]) iteration scheme.
However, the results obtained were not satisfactory (see [9]). The recurrence formulas used in these
attempts, even in real Hilbert spaces, involved K−1 which is required to be strongly monotone
when K is, and this, apart from limiting the class of mappings to which such iterative schemes are
applicable, is also not convenient in any possible applications.

Part of the difficulty in establishing iterative algorithms for approximating solutions of Hammerstein
equations seems to be that the composition of two monotone maps need not be monotone.

The first satisfactory results on iterative methods for approximating solutions of Hammerstein
equations involving accretive-type mappings, as far as we know, were obtained by Chidume and
Zegeye [10, 11].

Recently, the following important result was proved in a Hilbert space by Chidume and Djitte.

Theorem 1.1. [Chidume and Djitte, [12]]Let H be a real Hilbert space and F,K : H → H be
bounded and maximal monotone operators. Let {un}∞n=1 and {vn}∞n=1 be sequences in H defined
iteratively from arbitrary points u1, v1 ∈ H as follows:

un+1 = un − λn(Fun − vn)− λnθn(un − u1), n ≥ 1, (1.6)

vn+1 = vn − λn(Kvn + un)− λnθn(vn − v1), n ≥ 1, (1.7)

where {λn}∞n=1 and {θn}∞n=1 are sequences in (0, 1) satisfying the folliowing conditions:
(i) limn→∞ θn = 0,
(ii)

∑∞
n=1 λnθn = ∞, λn = o(θn),

(iii) limn→∞

(
θn−1
θn

−1

)
λnθn

= 0.

Suppose that u + KFu = 0 has a solution in H. Then, there exists a constant d0 > 0 such
that if λn ≤ d0θn for all n ≥ n0 for some n0 ≥ 1, then the sequence {un}∞n=1 converges to u∗, a
solution of u+KFu = 0.

Remark 1.1. As is well known, among all infinite dimensional Banach spaces, Hilbert spaces have
the nicest geometric properties (Chidume [13]). However, even with these nice properties of Hilbert
spaces, it is known that many and probably most, mathematical objects and models do not naturally
live in Hilbert spaces. We quickly remark that once one moves out of Hilbert spaces, one loses these
nice properties.

It is our purpose in this paper to prove a strong convergence theorem in lp spaces (2 ≤ p < ∞)
which extends Theorem 1.1 to a more general space. Our method of proof is also of independent
interest.
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2 Preliminaries

Let E be a normed space with dimE ≥ 2. The modulus of convexity of E is the function δE :
(0, 2] → [0, 1], defined by

δE(ϵ) := inf
{
1−

∥∥∥x+ y

2

∥∥∥ : ∥x∥ = ∥y∥ = 1; ϵ = ∥x− y∥
}
.

It is known (see e.g., Alber [14]) that if

• E = lp, (2 ≤ p < ∞) then

δE(ϵ) ≥ p−1
( ϵ
2

)p
(2.1)

• E = lp, (1 < p ≤ 2) then

δE(ϵ) ≥
(p− 1)ϵ2

16
(2.2)

• E = lq, (1 < q ≤ 2) then

δE(ϵ) ≥
(q − 1)ϵ2

16
(2.3)

The space E is uniformly convex if and only if δE(ϵ) > 0 for every ϵ ∈ (0, 2].

A Banach space E is said to be strictly convex if

∥x∥ = ∥y∥ = 1, x ̸= y =⇒
∥∥∥x+ y

2

∥∥∥ < 1.

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E ,
ρE : [0,∞) → [0,∞), is defined by:

ρE(τ) := sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ = 1, ∥y∥ = τ, τ > 0

}
.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

The norm of E is said to be Fréchet differentiable if for each x ∈ S := {u ∈ E : ∥u∥ = 1},

lim
t→0

∥x+ ty∥ − ∥x∥
t

,

exists and is attained uniformly for y ∈ E.

In the sequel, we shall need the following definitions and results. Let E be a smooth real Banach
space with dual E∗. The function ϕ : E × E → R, defined by,

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, for x, y ∈ E, (2.4)

where J is the normalized duality mapping from E into 2E
∗
. It was introduced by Alber and has

been studied by Alber [15], Alber and Guerre-Delabriere [16], Kamimura and Takahashi [17], Reich
[18] and a host of other authors. If E = H, a real Hilbert space, then equation (2.4) reduces to
ϕ(x, y) = ∥x− y∥2 for x, y ∈ H. It is obvious from the definition of the function ϕ that

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2 for x, y ∈ E. (2.5)
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Define a map V : X ×X∗ → R by

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩+ ∥x∗∥2. (2.6)

Then, it is easy to see that

V (x, x∗) = ϕ(x, J−1(x∗)) ∀x ∈ X, x∗ ∈ X∗. (2.7)

Lemma 2.1. ([Alber, [15]]) Let X be a reflexive striclty convex and smooth Banach space with X∗

as its dual. Then,

V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗) (2.8)

for all x ∈ X and x∗, y∗ ∈ X∗.

Lemma 2.2 (Kamimura and Takahashi, [17]). Let X be a real smooth and uniformly convex Banach
space, and let {xn} and {yn} be two sequences of X. If either {xn} or {yn} is bounded and
ϕ(xn, yn) → 0 as n → ∞, then ∥xn − yn∥ → 0 as n → ∞.

Lemma 2.3. (Xu [19]) Let ρn be a sequence of non-negative real numbers satisfying the relation:

ρn+1 ≤ (1− βn)ρn + βnζn + γn, n ≥ 0, (2.9)

where,

(i) βn ⊂ [0, 1],
∑

βn = ∞; (ii) lim sup ζn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),
∑

γn < ∞. Then, ρn → 0
as n → ∞.

Remark 2.1. Let E∗ be a strictly convex dual Banach space with a Fréchet differentiable norm and
A : E → 2E

∗
, be a maximal monotone map with no monotone extension. Let z ∈ E∗ be fixed.

Then for every λ > 0, there exists a unique xλ ∈ E such that z ∈ Jxλ + λAxλ (see Reich [20], p.
342). Setting Jλz = xλ, we have the resolvent Jλ := (J + λA)−1 : E∗ → E of A, for every λ > 0. A
celebrated result of Reich follows.

Lemma 2.4. (Reich, [20]). Let E∗ be a strictly convex dual Banach space with a Fréchet differentiable
norm and let A : E → E∗ be maximal monotone such that A−10 ̸= ∅. Let z ∈ E∗ be an arbitrary but
fixed vector. For each λ > 0, there exists a unique xλ ∈ E such that z ∈ Jxλ +λAxλ. Furthermore,
xλ converges strongly to a unique v ∈ A−10.

Lemma 2.5 (Alber, [14], p45). Let X be a uniformly convex Banach space. Then for any R > 0
and any x, y ∈ X such that ∥x∥ ≤ R, ∥y∥ ≤ R the following inequality holds:

⟨Jx− Jy, x− y⟩ ≥ (2L)−1δX(c−1
2 ∥x− y∥), (2.10)

where c2 = 2max{1, R}, 1 < L < 1.7.

For X = lp, (2 ≤ p < ∞) we have that

⟨Jx− Jy, x− y⟩ ≥ ∥x− y∥p

2p+1pLcp2
. (2.11)

Also for X = lq, (1 < q ≤ 2) we have using 2.3 that

⟨Jx− Jy, x− y⟩ ≥ (q − 1)∥x− y∥2

32Lc22
. (2.12)
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Lemma 2.6 (Alber, [14], p45). Let X be a uniformly smooth and strictly convex Banach space.
Then for any R > 0 and any x, y ∈ X such that ∥x∥ ≤ R, ∥y∥ ≤ R the following inequality holds:

⟨Jx− Jy, x− y⟩ ≥ (2L)−1δX∗(c−1
2 ∥Jx− Jy∥), (2.13)

where c2 = 2max{1, R}, 1 < L < 1.7.

For X = lp, (2 ≤ p < ∞) we have using 2.3 that

⟨Jx− Jy, x− y⟩ ≥ (q − 1)∥Jx− Jy∥2

32Lc22
. (2.14)

Also, for X = lq, (1 < q ≤ 2) we have using 2.3 that

⟨Jx− Jy, x− y⟩ ≥ ∥Jx− Jy∥p

2p+1pLcp2
. (2.15)

Lemma 2.7 (Alber, [14], p.50). Let X be a reflexive strictly convex and smooth Banach space with
dual X∗. Let W : X ×X → R be defined by W (x, y) = 1

2
ϕ(y, x). Then,

ϕ(y, x)− ϕ(y, z) ≥ 2⟨Jx− Jz, z − y⟩, (2.16)

and
W (x, y) ≤ ⟨Jx− Jy, x− y⟩, (2.17)

for all x, y, z ∈ X

Lemma 2.8. From Lemma 2.4, if we set λn := 1
θn

where θn → 0 as n → ∞, z = Jv for some

v ∈ E, and yn :=
(
J + 1

θn
A
)−1

z, we obtain that:

Ayn = θn(Jv − Jyn), (2.18)

yn → y∗ ∈ A−10,

where A : E → E∗ is maximal monotone. We observe that equation (2.18) yields

Jyn−1 − Jyn +
1

θn

(
Ayn−1 −Ayn

)
=

θn−1 − θn
θn

(
Ju− Jyn−1

)
.

Taking the duality pairing of the LHS of this equation with yn−1 − yn, and using the monotonicity
of A we obtain that,

⟨Jyn−1 − Jyn, yn−1 − yn⟩ ≤ θn−1 − θn
θn

∥∥∥Jv − Jyn−1

∥∥∥∥yn−1 − yn∥. (2.19)

It follows that for E = lp (2 ≤ p < ∞), using equations 2.11, 2.14 and 2.19 we obtain that,

∥yn−1 − yn∥ ≤
(
θn−1 − θn

θn

) 1
p

C1, and (2.20)

∥Jyn−1 − Jyn∥ ≤
(
θn−1 − θn

θn

) 1
2

C2, (2.21)

where C1 and C2 are some positive constants.
Similarly, for E∗ = lq (1 < q ≤ 2), using equations 2.12, 2.15 and 2.19 we obtain that,

||y∗
n−1 − y∗

n|| ≤
(θn−1 − θn

θn

) 1
2
C3, and (2.22)

∥J∗y
∗
n−1 − J∗y

∗
n∥ ≤

(
θn−1 − θn

θn

) 1
p

C4, (2.23)

where C3 and C4 are some positive constants.
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The following important results are known.

Lemma 2.9. Let E be a smooth real Banach space with dual E∗ and the function
ϕ : E × E → R defined by,

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, for x, y ∈ E,

where J is the normalized duality mapping from E into 2E
∗
. Then,

ϕ(y, x) = ϕ(x, y) + 2⟨x, Jy⟩ − 2⟨y, Jx⟩. (2.24)

Lemma 2.10. Let X, X∗ be uniformly convex and uniformly smooth real Banach spaces. Let

E = X ×X∗ with the norm ∥z∥E = (∥u∥X + ∥v∥X∗)
1
2 , for any z = [u, v] ∈ E. Let E∗ = X∗ ×X

denote the dual space of E. For arbitrary x = [x1, x2] ∈ E, define the map JE : E → E∗ by

JE(x) = JE [x1, x2] := [JX(x1), JX∗(x2)],

so that for arbitrary z1 = [u1, v1], z2 = [u2, v2] in E, the duality pairing ⟨·, ·⟩ is given by

⟨z1, JE⟩ := ⟨u1, JX(u2)⟩+ ⟨v1, JX∗(v2)⟩.

Then, E is uniformly smooth and uniformly convex.

Lemma 2.11. Let E be a uniformly convex and uniformly smooth real Banach and F : E → E∗,
K : E∗ → E be maximal monotone. Define A : E × E∗ → E∗ × E by

A[u, v] = [Fu− v,Kv + u] ∀ [u, v] ∈ E × E∗.

Then, A is maximal monotone.

Remark 2.2. From Lemma 2.4, setting λn := 1
θn

where θn → 0 as n → ∞, z = [z1, z2] = JE×E∗ [u, v]

for some [u, v] ∈ E × E∗, and [yn, y
∗
n] :=

(
JE×E∗ + 1

θn
A
)−1

[z1, z2], we obtain that:

Jyn +
1

θn
(Fyn − y∗

n) = z1, ∀n ≥ 0, and (2.25)

J∗y
∗
n +

1

θn
(Ky∗

n + yn) = z2 ∀n ≥ 0; (2.26)

Remark 2.3. Let yn → y and y∗
n → y∗. From lemma 2.4 we have that [yn, y

∗
n] converges to a point

in A−10. This implies that [y, y∗] ∈ A−10. Consequently, A[y, y∗] = 0, that is, Fy − y∗ = 0 and
Ky∗ + y = 0. Hence, y∗ = Fy and y +KFy = 0.

3 Main Results

In theorem 3.1 below, the sequences {λn}∞n=1 and {θn}∞n=1 are in (0, 1) and are assumed to satisfy
the following conditions:
(i) λn, θn → 0 as n → ∞,

∑∞
n=1 λnθn = ∞;

(ii) (λ
1
p
n + λ

1
2
n ) ≤ γ0θn where γ0 > 0;

(iii) For p ≥ 2,
∑∞

n=1 λ
1
p
n < ∞,

(
θn−1−θn

θn

) 1
p

λnθn
→ 0 as n → ∞.

7
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Theorem 3.1. Let E = lp, 2 ≤ p < ∞, E∗ = lq, 1 < q ≤ 2 and F : E → E∗, K : E∗ → E be
maximal monotone and bounded maps. For u1 ∈ E , v1 ∈ E∗, define the sequences {un} and {vn}
in E and E∗, respectively by

un+1 = J−1(Jun − λn(Fun − vn)− λnθn(Jun − Ju1)), n ≥ 1, (3.1)

vn+1 = J−1
∗ (J∗vn − λn(Kvn + un)− λnθn(J∗vn − J∗v1)), n ≥ 1, (3.2)

Assume that the equation u+KFu = 0 has a solution. Then, the sequences {un}∞n=1 and {vn}∞n=1

converge strongly to u∗ and v∗, respectively, where u∗ is the solution of u+KFu = 0 with v∗ = Fu∗.

Proof. We first prove that the sequences {un}∞n=1 and {vn}∞n=1 are bounded.

For (un, vn), (u
∗, v∗) ∈ E × E∗ where u∗ is a solution of (1.5) with v∗ = Fu∗, set wn = (un, vn)

and w∗ = (u∗, v∗). Define Λ : (E × E∗)× (E × E∗) → R by

Λ(w1, w2) = ϕ(u1, u2) + ϕ(v1, v2), (3.3)

where w1 = (u1, v1) and w2 = (u2, v2). Let E × E∗ be endowed with the norm ∥(u, v)∥ = (∥u∥2E +

∥v∥2E∗)
1
2 . We show that Λ(w∗, wn) ≤ r, for all n ≥ 1 and for some r > 0. Using the fact that F

and K are bounded, define

M1 := sup{||(Fu− v) + θ(Ju− Ju1)|| : (u, v) ∈ BE×E∗ , θ ∈ (0, 1)}+ 1;

M2 := sup{||(Kv + u) + θ(J∗v − J∗v1)|| : (u, v) ∈ BE×E∗ , θ ∈ (0, 1)}+ 1;

M3 := sup{||(Ju− Ju1|| : ||u|| ≤ r0}+ 1, for some r0 > 0;

M4 := sup{||J−1(Ju− λ(Fu− v)− λθ(Ju− Ju1))− u|| : (u, v) ∈ BE×E∗ , λ, θ ∈ (0, 1)}+ 1;

M5 := sup{||(Jv − Jv1|| : ||v|| ≤ r∗0}+ 1, for some r∗0 > 0;

M6 := sup{||J−1
∗ (J∗v − λ(Kv + u)− λθ(J∗v − J∗v1))− v|| : (u, v) ∈ BE×E∗ , λ, θ ∈ (0, 1)}+ 1;

M∗
1 := (M1M42

p+1pLcp2)
1
p

M∗
2 :=

(32M2M6Lc
2
2

q − 1

) 1
2

M∗ =: max{2M∗
1M1 + 2M∗

1M3, 2M
∗
2M2 + 2M∗

2M5,M1M4 +M2M6}
where c2 and L are constants appearing in Lemma 2.5 and BE×E∗ = {w ∈ E×E∗ : Λ(w∗, w) ≤ r}.
Let r > 0 be such that

r

4
≥ Λ(w∗, w1).

Define
γ0 := min

{
1,

r

4M∗

}
.

Claim: Λ(w∗, wn) ≤ r, ∀ n ≥ 1.
The proof of this claim is by induction. By construction, we have Λ(w∗, w1) ≤ r.

Assume that Λ(w∗, wn) ≤ r for some n ≥ 1. This implies that

ϕ(u∗, un) + ϕ(v∗, vn) ≤ r, for some n ≥ 1.

We prove that Λ(w∗, wn+1) ≤ r. Suppose, for contradiction, that this is not the case, then
Λ(w∗, wn+1) > r. From lemma (2.5), we have that

||un+1 − un||p ≤ ||Jun+1 − Jun||||un+1 − un||2p+1pLcp2

≤ λnM1||un+1 − un||2p+1pLcp2

≤ λnM1M42
p+1pLcp2.

8
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This yields

||un+1 − un|| ≤ λ
1
p
n M∗

1 . (3.4)

Similarly, we obtain

||vn+1 − vn|| ≤ λ
1
2
nM

∗
2 . (3.5)

Using the definition of un+1, equation (2.7) and inequality (2.8) with

y∗ = λn(Fun − vn) + λnθn(Jun − Ju1),

we obtain

ϕ(u∗, un+1) = V (u∗, Jun − λn(Fun − vn)− λnθn(Jun − Ju1))

≤ V (u∗, Jun)− 2
⟨
un+1 − u∗, λn(Fun − vn) + λnθn(Jun − Ju1)

⟩
= ϕ(u∗, un)− 2

⟨
un+1 − un, λn

(
(Fun − vn) + θn(Jun − Ju1)

)⟩
−2
⟨
un − u∗, λn

(
(Fun − vn) + θn(Jun − Ju1)

)⟩
Which implies that

ϕ(u∗, un+1) ≤ ϕ(u∗, un) + 2∥un+1 − un∥λnM1 (3.6)

−2λn

⟨
un − u∗, (Fun − vn) + θn(Jun − Ju1)

⟩
Observe that using the monotonicity of F and J , we have:⟨

un − u∗, (Fun − vn) + θn(Jun − Ju1)
⟩

≥ ⟨un − u∗, (Fu∗ − vn)⟩+ θn⟨un − un+1, Jun − Jun+1⟩
+θn⟨un − un+1, Jun+1 − Ju1⟩+ θn⟨un+1 − u∗, Jun − Jun+1⟩
+θn⟨un+1 − u∗, Jun+1 − Ju1⟩

≥ ⟨un − u∗, (Fu∗ − vn)⟩ − θn||un − un+1||||Jun+1 − Ju1||
−θn||un+1 − u∗||||Jun − Jun+1||+ θn⟨un+1 − u∗, Jun+1 − Ju1⟩.

Substituting into inequality (3.6), we obtain

ϕ(u∗, un+1) ≤ ϕ(u∗, un) + 2∥un+1 − un∥
∣∣∣∣∣∣λn

(
(Fun − vn) + θn(Jun − Ju1)

)∣∣∣∣∣∣
−2λn⟨un − u∗, (Fu∗ − vn)⟩+ 2λnθn||un − un+1||||Jun+1 − Ju1||
+2λnθn||un+1 − u∗||||Jun − Jun+1|| − 2λnθn⟨un+1 − u∗, Jun+1 − Ju1⟩.

Now, using inequality (2.16) of lemma 2.7 and inequality (3.4), we have that

ϕ(u∗, un+1) ≤ ϕ(u∗, un)− λnθnϕ(u
∗, un+1) + λnθnϕ(u

∗, u1) + λn(λ
1
p
n M∗

1 )(2M1) + 2λnθn(λnM1)M4

+λnθn(λ
1
p
n M∗

1 )(2M3)− 2λn⟨un − u∗, (Fu∗ − vn)⟩

≤ ϕ(u∗, un)− λnθnϕ(u
∗, un+1) + λnθnϕ(u

∗, u1) + λn[λ
1
p
n (2M∗

1M1 + 2M∗
1M3)] (3.7)

+2λnθn(λnM1)M4 − 2λn⟨un − u∗, (Fu∗ − vn)⟩

9
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Similarly, using the fact that K and J are monotone, inequality (2.16) of lemma 2.7 and inequality
(3.5), we have

ϕ(v∗, vn+1) ≤ ϕ(v∗, vn)− λnθnϕ(v
∗, vn+1) + λnθnϕ(v

∗, v1) + λn[λ
1
2
n (2M

∗
2M2 + 2M∗

2M5)]

+2λnθn(λnM2)M6 − 2λn⟨vn − v∗, (Kv∗ + un)⟩

Observe that since u∗ + KFu∗ = 0, setting Fu∗ = v∗, we obtain that Kv∗ = −u∗, and these
equations yield

2λn⟨un − u∗, (vn − Fu∗)⟩+ 2λn⟨vn − v∗,−(Kv∗ + un)⟩ = 0,

so that adding (3.7) and (3.8), we obtain

r < Λ(w∗, wn+1) ≤ Λ(w∗, wn)− λnθnΛ(w
∗, wn+1) + λnθnΛ(w

∗, w1) + λn(λ
1
p
n + λ

1
2
n )M

∗ + λnθn(2λnM
∗)

So we have

r < Λ(w∗, wn+1) ≤ Λ(w∗, wn)− λnθnΛ(w
∗, wn+1) + λnθnΛ(w

∗, w1) + λnθnγ0M
∗ + λnθnγ0M

∗

≤ r − λnθnr + λnθn
r

4
+ λnθn

r

4
+ λnθn

r

4
< r.

This is a contradiction, hence, Λ(w∗, wn+1) ≤ r and so Λ(w∗, wn) ≤ r for all n ≥ 1. Consequently,
we have ϕ(u∗, un) ≤ r and ϕ(v∗, vn) ≤ r for all n ≥ 1. Thus from inequality (2.5), we have that
{un}n≥1 and {vn}n≥1 are bounded.

We now prove that {un} converges strongly to a solution of the Hammerstein equation.

Using equation (2.7), lemmas 2.9 and 2.1, with y∗ = λn(Fun − vn) + λnθn(Jun − Ju1), we have

ϕ(yn, un+1) = ϕ(yn, J
−1(Jun − λn(Fun − vn)− λnθn(Jun − Ju1)))

≤ V (yn, Jun)− 2⟨un+1 − yn, λn(Fun − vn) + λnθn(Jun − Ju1)⟩
= ϕ(un, yn) + 2⟨un, Jyn⟩ − 2⟨yn, Jun⟩ − 2λn⟨un+1 − yn, (Fun − vn)

+θn(Jun − Ju1)⟩
= V (un, Jyn) + 2⟨un, Jyn⟩ − 2⟨yn, Jun⟩ − 2λn⟨un+1 − yn, (Fun − vn)

+θn(Jun − Ju1)⟩
≤ V (un, Jyn−1)− 2⟨yn − un, Jyn−1 − Jyn⟩+ 2⟨un, Jyn)⟩ − 2⟨yn, Jun)⟩

−2λn⟨un+1 − yn, (Fun − vn) + θn(Jun − Ju1)⟩
= ϕ(yn−1, un) + 2⟨yn−1, Jun⟩ − 2⟨un, Jyn−1⟩ − 2⟨yn − un, Jyn−1 − Jyn⟩

+2⟨un, Jyn⟩ − 2⟨yn, Jun⟩ − 2λn⟨un+1 − yn, (Fun − vn) + θn(Jun − Ju1)⟩
= ϕ(yn−1, un) + 2⟨yn−1 − yn, Jun⟩+ 2⟨yn, Jyn − Jyn−1⟩

−2λn⟨un+1 − yn, (Fun − vn) + θn(Jun − Ju1)⟩

10
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Appying monotonicity of F and using equations (2.25), (2.17), (3.4), (2.20) and (2.21), we have

ϕ(yn, un+1) ≤ ϕ(yn−1, un) + ||yn − yn−1||K1 + ||Jyn − Jyn−1||K2 + 2λn||un+1 − un||M1

−2λn⟨un − yn, (Fun − vn) + θn(Jun − Ju1)⟩
= ϕ(yn−1, un) + ||yn − yn−1||K1 + ||Jyn − Jyn−1||K2 + 2λn||un+1 − un||M1

−2λn⟨un − yn, (Fun − vn) + θn(Jun − Jyn − 1

θn
(Fyn − y∗

n))⟩

≤ ϕ(yn−1, un) + ||yn − yn−1||K1 + ||Jyn − Jyn−1||K2 + 2λn||un+1 − un||M1

−2λn⟨un − yn, y
∗
n − vn⟩ − 2λnθn⟨un − yn−1, Jun − Jyn−1⟩

−2λnθn⟨un − yn−1, Jyn−1 − Jyn⟩ − 2λnθn⟨yn−1 − yn, Jun − Jyn⟩
≤ ϕ(yn−1, un) + ||yn − yn−1||K1 + ||Jyn − Jyn−1||K2 + 2λn||un+1 − un||M1

−λnθnϕ(yn−1, un) + ||Jyn − Jyn−1||K3 + ||yn − yn−1||K4 − 2λn⟨un − yn, y
∗
n − vn⟩

≤ ϕ(yn−1, un)− λnθnϕ(yn−1, un) +
(θn−1 − θn

θn

) 1
p
C1K5 (3.8)

+
(θn−1 − θn

θn

) 1
2
C2K6 + 2λn(λ

1
p
n M∗

1 )M1 − 2λn⟨un − yn, y
∗
n − vn⟩;

where K1, K2, K3, K4 are positive constants and K5 = K1 +K4, K6 = K2 +K3.

Similarly, applying monotonicity of K and using equations (2.26), (2.17), (3.5), (2.22) and (2.23),
we have

ϕ(y∗
n, vn+1) ≤ ϕ(y∗

n−1, vn)− λnθnϕ(y
∗
n−1, vn) +

(θn−1 − θn
θn

) 1
2
C3K

∗
5 (3.9)

+
(θn−1 − θn

θn

) 1
p
C4K

∗
6 + 2λn(λ

1
p
n M∗

2 )M2 − 2λn⟨vn − y∗
n, un − yn⟩;

where C3, C4, K∗
5 and K∗

6 are positive constants.

Hence, adding equations (3.8) and (3.9) we have

Λ(pn, wn+1) ≤ Λ(pn−1, wn)− λnθn
(
ϕ(yn−1, un) + ϕ(y∗

n−1, vn)
)
+ 2λn(λn)

1
pM∗

1M1

+2λn(λn)
1
2M∗

2M2 +
(θn−1 − θn

θn

) 1
p
C1K5 +

(θn−1 − θn
θn

) 1
p
C4K

∗
6

+
(θn−1 − θn

θn

) 1
2
C2K6 +

(θn−1 − θn
θn

) 1
2
C3K

∗
5 .

Letting M∗ = max{C1K5 + C4K
∗
6 , C2K6 + C3K

∗
5 , 2M

∗
1M1, 2M

∗
2M2}, we have

Λ(pn, wn+1) ≤ Λ(pn−1, wn)− 2λnθnΛ(pn−1, wn) + λ
1
p
n M∗ + λ

1
2
nM

∗

+
(θn−1 − θn

θn

) 1
p
M∗ +

(θn−1 − θn
θn

) 1
2
M∗.

Setting

ρn := Λ(pn−1, wn); βn := λnθn; ζn :=

(( θn−1−θn
θn

) 1
p
M∗

λnθn
+

(
θn−1−θn

θn

) 1
2
M∗

λnθn

)
; γn := λ

1
p
n M∗+λ

1
2
nM

∗;

we have
ρn+1 ≤ (1− βn)ρn + βnζn + γn, n ≥ 1.

11
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It now follows from Lemma (2.4) that ρn → 0 as n→ ∞, i.e.,Λ(pn−1, wn) → 0 as n→ ∞.
Consequently, by lemma (2.3), we obtain that lim||un − yn−1|| = 0. Hence using remark 2.3, we
have that the sequence {un}∞n=1 converges strongly to a solution of (1.5).

Example 3.2. Real sequences that satisfy the conditions (i)−(iii) of theorem 3.1 are the following:

λn = (n+ 1)−a and θn = (n+ 1)−b, n ≥ 1.

0 < b <
a

p
, and a+ b <

1

p
.

For example, take a := 1
(p+1)

and b := 1
2p(p+1)

then conditions (i) - (iii) are satisfied.

Remark 3.1. Theorem 3.1 is an extension of theorem 1.1 to lp spaces (2 ≤ p < ∞).

Open question 1. Does Theorem 3.1 hold in lp spaces for all p such that 1 < p < 2?

Remark 3.2. (see e.g., Alber [14], p.36) The analytical representations of duality mappings are
known in a number of Banach spaces. For instance, in the spaces lp, Lp(G) and W p

m(G), p ∈ (1,∞),
p−1 + q−1 = 1, respectively,

Jx = ||x||2−p
lp y ∈ lq, y = (|x1|p−2x1, |x2|p−2x2, ...), x = (x1, x2, ...),

Jx = ||x||2−p
Lp |x(s)|p−2x(s) ∈ Lq(G), s ∈ G,

and
Jx = ||x||2−p

W
p
m

∑
|α|≤m

(−1)|α|Dα(|Dαx(s)|p−2Dαx(s)) ∈ W q
−m(G),m > 0, s ∈ G

4 Conclusion

Theorem 3.1 is a strong convergence theorem

which extends Theorem 1.1 to a space more general than Hilbert space.
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[5] Brézis H, Browder FE. Nonlinear integral equations and systems of Hammerstein type. Bull.
Amer. Math. Soc. 1976;82:115-147.

[6] Browder FE. Nonlinera Functional Analysis and Nonlinear Integral equations of Hammerstein
and Uryshon type. Contributions to Nonlinear Functional Analysis, Academic Press. 1971:425-
500.

[7] Browder FE, De Figueiredo DG, Gupta CP. Maximal mono- tone operators and nonlinear
integral equations of Hammerstein type. Bull. Amer. Math. Soc. 1970;76:700-705.

[8] Mann WR. Mean value methods in iteration. Proc. Amer. Math. Soc. 1953;4:506-510.

[9] Chidume CE, Osilike MO. Iterative solutions of nonlinear integral equations of Hammerstein-
type. J. Nigerian Math. Soc. 1992;11:9-18 (MR96c:65207).

[10] Chidume CE, Zegeye H. Iterative approximation of solutions of nonlinear equation of
Hammerstein-type. Abstr. Appl. Anal. 2003;6:353-367.

[11] Chidume CE, Zegeye H. Approximation os solutions of nonlinear equations of monotone and
Hammerstein-type. Appl. Anal. 2003;82(8):747-758.

[12] Chidume CE, Djitte N. Approximation of Solutions of Nonlinear Integral Equations of
Hammerstein Type. ISRN Mathematical Analysis. vol. 2012, Article ID 169751. 2012;12.

[13] Chidume CE. Geometric Properties of Banach Spaces and Nonlinear iterations. vol. 1965 of
Lectures Notes in Mathematics. Springer, London, UK; 2009.

[14] Alber Ya, Ryazantseva I. Nonlinear Ill Posed Problems of Monotone Type. Springer, London,
UK, 2006. J. Nonlinear Convex Anal. 2014;15(5):851-865.

[15] Alber Ya. Metric and generalized projection operators in Banach spaces: Properties and
applications. In Theory and Applications of Nonlinear Operators of Accretive and Monotone
Type (A. G. Kartsatos, Ed.), Marcel Dekker, New York. 1996;15-50.

[16] Alber Ya, Guerre-Delabriere S. On the projection methods for fixed point problems. Analysis
(Munich). 2001;21(1):17-39.

[17] Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach
space. SIAMJ. Optim. 2002;13(3):938-945.

[18] Reich S. A weak convergence theorem for the alternating methods with Bergman distance.
in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and
Monotone Type, in Lecture notes in pure and Appl. Math., Dekker, New York. 1996;178:313-
318.

[19] Xu HK. Iterative algorithms for nonlinear operators. J. London Math. Soc. 2002;66(2):240-256.

[20] Reich S. Constructive techniques for accretive and monotone operators. Applied non-linear
analysis, Academic Press, New York. 1979;335-345.

——————————————————————————————————————————————–
c⃝2016 Uba and Onyido; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://sciencedomain.org/review-history/16473

13

http://creativecommons.org/licenses/by/4.0

	 Introduction
	 Preliminaries
	Main Results
	 Conclusion

