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Abstract

Although most offline and online training algorithms hhsen gradient search techniques |
backpropagation algorithm and its modifications or on Kalmarr fpproaches, it has been shown that
these techniques are severely limited in their abilitfirtd global solutions, they converge slowly, get

local minimization too easily and courses oscillation. @lafearch techniques have been identified as a
potential solution to this problem, but they are limitedoffline training because of the long time [of
convergence. The paper is focused on presenting of applying gelireic algorithm to train recurrent
artificial neural networks. Here; improvement are made lom real coding genetic algorithm by
introducing a reserve elite chromosome. The new appraacbsted on the Elman network (which
generally suffer from very long training time) for sevdsgles of dynamic system plants. The simulation
results show that the proposed algorithm is ableaio NN with less training data set in corresponding
to Kalman filter training algorithm.
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1 Introduction

Artificial Neural Networks (ANN's), also known as conriedist models, are rapidly evolving facet of
artificial intelligence (Al) [1]. In particular, the ain idea is to reproduce the intelligence and the capabil
to learn from examples, simulating the brain neuronal steicora calculator. ANN’s are interconnected
networks of simple elements which interact with the objettthe real world in the same way as biological
nervous system does. Because of the biological basiidaartificial neural networks, it is not surprising
that many of the terms used in their study are borrowad heurophysiology [1]. The processing units are
neurons, nodes or processors; while the connections betlesa tinits are known as interconnected,
synapses or weights. The pattern of the connections betleemits determines the architecture of the
network, which in the extremes, can be fully interconnefteclurrent neural networks) or connected in one
direction only (feed forward neural networks).

Multilayers feedforward neural network based on seriemection of neuron layers, each one composed by
a set of neurons connected in parallel. The signals flow fhemnput layer through the hidden layer(s) to
the output layer via uni-directional connections. There aeeavrmore layers between the input and output
layers.

Feedforward networks can be only used for dynamic relatipniséiiween input and output variable by
including lagged values of input and output variables in tpatitayer. Recurrent Neural Network (RNN)
allows for an internal feedback in the system. Intefeatlback is a more successful way to account for
dynamics in the model. It contains the entire historyinpluts as well as outputs [2]. Recurrent neural
networks are fundamentally different from feedforward #eckures in the sense that they not only operate
on an input space but also on an internal state [3].

ANN'’s must be learned before it is used; and therensy learning algorithms that can be used to train
ANN's; backpropagation (with its modifications) is currenthe mainstay of artificial neural networks
learning. BP algorithm has high accuracy, but it has sonsaldisitages: it converges slowly, gets local
minimization too easily and courses oscillation. Local minatian can be solved by adjusting the initial
weights, while slow convergence and the oscillation avallyscoursed by getting into local minimization
in the later period of the network training [4]. Miao et [8]] indicated that the BP solutions are usually
forced to the local minimum due to the gradient descentritligo used to get weights of connections.
Engoziner et al. [6] presented that BP uses some variafite gradient technique, which is essentially a
local optimizing method and thus has some inevitable drawbacks,asuehsily trapping into the local
optimal and dissatisfying generalization capability.

Genetic algorithms (or simply GAs) are powerful and widglpl@able stochastic search and optimization
methods based on the concepts of natural selection andlnawolution. Genetic algorithms were first
invented by John Holland in 1960s and were developed by Hadladdhis students and colleagues at the
university of Michigan in the 1960s and the 1970s [7]. GA shgrest promise in complex domains
because it operates in an iterative improvement fasfibe. search performed by it is probabilistically
concentrated towards regions of the given data set thatbwesre found to produce a good classification
behavior. An overview about GAs and their implementatioraious fields was given by Goldberg [8] or
Michalewicz [9]. GA may be used to do one or more of ftlowing when it's combined with neural
networks: - 1. Weight training for supervised learning aeinforcement learning applications. 2. Select
training data and 3. Finding neural network architecture.

Consequently, newly research tends to hybridize sewdifidial intelligence (Al) techniques to improve the
performance. Neural networks and genetic algorithms denmadagiowerful problem solving ability. They
are based on quite simple principles, but take advantage ofniaéiematical nature: Non-linear iteration
[10]. Topchy et al. [11] proposed two algorithms torte&NN weights; in the first proposed algorithm,
learning process can be considered as evolutionary adaptatisetvadrk parameters to optimal internal
representation of the information being processed. Tl®nse algorithm mainly focuses on direct
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combination of genetic algorithm and delta- rule for tragnimwo subsets of multilayered perceptron's
parameters, i.e. hidden and output layer weights respactivekton et al. [12] made a comparison between
the backpropagation and genetic algorithms. Sexton et al.efahined two well known global search
techniques, Simulated Annealing and the Genetic Algorithm, camdpare their performance in neural
network training. Schiffmann et al. [14] wrote a techhiegort about using genetic algorithms in neural
networks fields. Topchy et al. [15] presented an RBF&ining algorithm based on evolutionary
programming and cooperative evolution. Gruau [16] combined neurbriearchitecture optimization and
weights learning in single algorithm. Schaffer et all][inade a good survey of various combinations of
genetic algorithms and neural networks. Fogel [18] usedugephry programming to create neural
networks that are capable of playing Tic-Tac-Toe. Wi&§ focused on the intersection of neural networks
and evolutionary learning and showed the basic aspects of cdiobin&these learning paradigm. Gupta
and Sexton [20] showed that the use of GA can provide bettersrémuttaining feedforward NN than the
traditional techniques of backpropagation. Zhang Lijun [21] dpdchElman network initial weights by GA
algorithm, then applied the ENN to predict stock price ardienan efficient GA-Elman neural network
stock prediction model. Zhang Xiuling [22] established a ehad Elman network prediction for nickel-
metal hydride battery capacity, he used GA to optimizertitial and threshold. Wang Tian’e [23] used GA
to optimize the structure and weights, of Elman network madd successfully applied it to Dongfeng
Motor’s stock price prediction. Other interesting papers aétil NN optimized by GA can be found in
[24-33].

The paper is structured as follows. Sections 2 give an @wemvi Elman recurrent neural networks. Section
3 describes the classical genetic algorithms. Sectiomstritbes in details the proposed online genetic
algorithm for training ENN. Section 5 the results of applying proposed genetic algorithm for training
ENN to model three plants. The conclusion is described tioset:

2 Elman Recurrent Neural Networks

In 1990 Elman introduced a simple recurrent neural network ithamainly used to deal with sound
processing. The Elman network can be considered as a tbneawork with a local memory unit and local
feedback connections. In addition to the input unit, the hiddets,usmd the output unit, there are also
context units. The hidden units can have linear or nonlinetafation functions. The context units are used
to remember the previous activations of the hidden unitcansidered to function as one-step time delays.
The block diagram of Elman network is shown in Fig. 1. Thewubf hidden associates with its input
through the delay and storage of undertake layer. Thisolvagsociation is sensitivity to historical data, and
internal feedback network can increase the ability of hagdiynamic information. Remembrances the
internal state makes it to have the dynamic mappingtitum which make the system to have the ability to
adapt to time varying characteristics [34].

Let the input signal isuf);

S" = WerXicx + Winl, (1)

X =F(S"), )
S° = WhoXi, 3)
Yirr = &, 4

where:-

S" is the net sum of the hidden layer neurons.
X is the output of the hidden layer neurons.
S, is the net sum of the output layer neurons.
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Vi+1 IS the outputs of the network.

Wi, is the connection weight between the input and hidden layer.

W_his the connection weight between the hidden layer and contekt laye
Wi,is the connection weight between the hidden and output layer.

F activation function of the hidden layer neurons.

The activation function of the hidden layer is tangéfitiaction as described in equation (5); while a linear
type used for the of the output layer as described intiequgl).

F(SM) = (&5 ¢S/ gSiny. ¢-Sin) (5)
Yiti
Output layer —o-
) A Who

=|E

Hidden layer —h-

v v
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=

Fig. 1. ElIman neural network structure

At the time k, the current input @nd the previous activations of the hidden unitsare used as inputs to
the network. At this moment, the network acts as a feedard network and propagates these inputs
forward to produce the output.y.

3 Genetic Algorithm

GAs have been shown to be an effective strategy in theefflesign of many fields. The GAs are not too
demanding, as could be natural to expect, in terms of thedsnef computational power, being applied so
far to a wide range of problems, going from the fieldl€ombinatorial or Numeric Optimization to Image
Processing or even Machine Learning. GAs operate on a piopulaft potential solutions applying the
principle of “survival of the fittest” to produce (hopefyllyetter and better approximations to a solution. At
each generation, a new set of approximations is cregtéuelprocess of selecting individuals according to
their level of fitness in the problem domain and breedingthegether using operators borrowed from
natural genetics. This process leads to the evolution milations of individuals that are better suited to
their environment than the individuals that they were crefabed, just as in natural adaptation.
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A genetic algorithm has three major components [34]. Tisedomponent is related with the creation of an
initial population of m randomly selected individuals. The @hipopulation shapes the first generation. The
second component inputs m individuals and gives as outpatvanation for each of them based on an
objective function known as fitness function. This evaluationrideess how close to our demands each one
of these m individuals is. Finally the third component @sponsible for the formulation of the next
generation. A new generation is formed based on the fittdstiduals of the previous one. This procedure
of evaluation of generation N and production of generation (daged on N) is iterated until a performance
criterion is met. The creation of offspring based on ittest individuals of the previous generation is known
as breeding. The breeding procedure includes three baseétig operations: reproduction, crossover and
mutation.

Reproduction selects probabilistically one of the fittestiviiuals of generation N and passes it to
generation N+1 without applying any changes to it. Crosseedects probabilistically two of fittest
individuals of generation N; then in a random way choaseamber of their characteristics and exchanges
them in a way that the chosen characteristics of therig/idual would be obtained by the second and vice
versa. Following this procedure creates two new offsptiag both belong to the new generation. Finally
the mutation selects probabilistically one of the fittadividuals and changes a number of its characteristics
in a random way. The offspring that comes out of this trameftion is passed to the next generation. Fig. 2
illustrates the principle structure of a genetic aljoni It starts with the random generation of an insigtl

of individuals, and ending with the mutation operator.

Generation of
initial individuals

Evaluation

Selection

Crossover

Fig. 2. The principle structure of classical GA [10]

4 Proposed GA Elman Neural Networks L earning

4.1 Objective function

The objective function is to choose the weight parametetiseonetworkd such that the squared error for
data points is minimized. Thus, the objective functian be represented as follows:

0" =arg(min(E(k+10), (6)
where,
E(k+ 119) = (Zk+l _Yk+1, 9)27 (7)

0 is the vector containing the weight parameters; z(k) isattteal observed plant output. The weight
parameters W, Wi, and W, are updated using each collected sample according to ¢tpesad genetic
algorithm described in 4.2.
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4.2 Proposed online genetic training algorithm

The use of online GA for training ENN to model a plardutput is illustrated in Fig. 3. A sequence of input
signals ¥, where k 0; 1; ..., is fed to both the plant and the ENM @utput signals,Zor the plant andy

for the ENN are compared, and the difference E(k8);lis computed. The error is used as a measure of the
fitness of the ENN under consideration.

Each chromosome (individual) contains the weight paramefi¢ine metworkd.
Chromosomg= 0=[ Wch , Wih Who}y (8)

where kk=1,2,3,..... population maximum number.

Plant  |-Z=t

EVN Y1 -
i E(k+1
Online GA

Fig. 3. Online GA training EIman neural network
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The basic idea of this work is by inserting the best chemmes from previous generations in the elite
matrix; then we check the performance of the problem, fitlveielite matrix matches the requirements then
exist the GA, else perform the GA and update the eliteixn&tig. 4 summarizes the proposed algorithm
[35-38]:

4.2.1 General online GA

a: Initialization:-

1. Get the first input and output measurements.

2. Perform GA initialization by create random Populatiori;.i=
3. Calculate the best performance chromosome.

4. Elite Matrix[i]= best performance chromosome.

b: For each input/ output measurements, do:

1. Checks the Elite Matrix == required performance.

2. Test the stopping conditions: if they matching the requireérttean Designate the results and get
another input/output measurement. Else:

3. =i+l

4. Perform GA.

5. Elite Matrix[i] = best performance chromosome.

The following steps describe the details of the propossidgenetic algorithm [35-38]:

1. Defines and initialize the variables and parametetise ENN and GA (the most important of them
are):

NIND - number of individuals or chromosomes in the population;X#AIT - maximum number
of individuals in the elite-population; MAXGEN - the maximummber of generation for each
optimization cycle;E - desired error value.
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2.

First generation initialization:

First generation is initialized by a random real numbEesh real number corresponds to gene in
the individual (or chromosome). Number of individuals is €daaNIND, while the number of
genes equals to number of variables to be optimized. The geeesandomly generated from
predefined limits as follows:

Bl <0, < By C)

wherekk =1,2,.... M , 0 is representing a gene; M is the number of genes ichituosome;

Bll<k and BIL:k are lower and upper limits of the gens respectively.

The real value encoding scheme saves memory and impn@esping speed [39-40].
Read the new measurements:

The new measurements are made to clarify the currenevalf the objective function (fithess
function) in real-time tasks.

Fitness evaluation of each individual in a generation:

For each individual in the current generation, calculatefithess function using a predefined
formula or procedure.

Adding the best individuals in the elite population:

Elite population, which has a maximum size equal to MAKEIduring operation of the genetic
algorithm, it is constantly formed from the individualghnthe best fitness function. Further, if the
elite population has MAXELIT individuals and we get an wuidiial from the current population,
which has a best fitness function value better than timeemt fithess function of one or more
individuals from the elite population, then this individual repmthe individual having the worst
fithness of the current function in the elite population.

Checking the termination criterion optimization afespopulation:

Decision to complete the procedure of searching an acceptdbt®is at the current step of the
algorithm and output measurement results shall be accéptedelite population has at least one
such individual has a fitness function better than the spédqifiecision optimization error). If
such individuals are more than one, of course, select thi@dndl which has the best fithess
function. Otherwise, the decision will be on the implemeotadf the main stages of the classical
GA.

Classical genetic algorithm (Fig. 4 inner loop argl B):

The classical or conventional genetic algorithm has followiagor components [39]: selection of
the parents - the most appropriate individuals to participatbe creation of a new generation
(recombination); crossover: genes are exchanged or combimaty decombination; mutation:
selects probabilistically one of the fittest individualsl @hanges a number of its characteristics in a
random way. The formation of a new generation and evaluatiagtsfoonstituent is species of the
fithess function. Finally, for each new generation a \edlé criterion formed at the end of the
optimization process. This criterion is met in two waysati least one of the individuals of the
current generation of fitness function is better than tleeiSpd precision optimizationq), i.e.
convergence of GA population [40]; or turn out of maximgeneration (MAGEN). With this
approach, in principle, complete the loop of optimizatiorcedure, and then quit the GA.
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8. Choosing the best individuals from the current genetic popular the elite population, then
output of the result:

In this step, the current chromosome is selected from eithercl#ssical genetic algorithm
population or from the elite-population individuals, whibas the best fitness function. This
chromosome is taken as the result of solving the pmolaethe current step measuring real-time

algorithm.
[ st )

v

Create initial
random Population

v
)
v

=[ Enter ux and zx ]4

v

For |=1:i Evaluate
NN by Elite Matrix

ves -
Designate

Results

Criterion is
Satisfied

/ —> Perform GA: \

Do until reach max generation
 rank individuals

Sel ect individuals
reconmbi ne individual s
Apply nutation

Eval uate of fspring

Criterion is
Satisfied

No
\ | )
\
Elite Matrix[i]=Best
Chromosome
< ll i=i+1 ]

Fig. 4. Proposed genetic algorithm
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5 Results

This section shows some simulation results, the trgimput signal for one second that is corresponding

to100 sample used is of sinusoidal function:-
u=sin(2eft) ,

where f is the frequency of value 5 hertz.

(10)

the testing signal of one second- which is correspondii®® sample input samples used is:-

0 t<Osec
1 0< 025sec
squarg27t) 025<t < 0.75sec
sin(27ft) t= 0.75sec

(11)

The real number encoding is employed. The population sizetigo 20 individuals, and the initial

generation number is set to 1000 then reduced to 50 after ore cycl

The simulation is made on the following three plants tHé&trdin their degree of nonlinearity [41].

Plant Number 1:- Which is a linear in both input and output behaasadescribe in equation (12).

z=Alzk-1+ A2zk-2 +B1luk-1+ B2uk-2,
where A1=1.752821, A2=-0.818731, B1=0.011698, B2=0.010942.

12)

The neural network is trained using extended Kalman filbercbmparison purposes. Fig. 5 shows the

training phase using the proposed GA; while Fig. 6 showplém output.

0.6 T T
0.4+ ° 4 =
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[ )
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@ " ¢ q %, ¢

@ © [CR ] P % ® €3]
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° ° () Qe @. @ & @ @
® . =~ © < &
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@ @ .
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0.6 —&— Actual O/P
——%-— Proposed Algorithm O/P
L]
°, GAO/IP
-0.8 | 1 1 | | L \)
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time sec

Fig. 5. Thefirst system training phase
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Fig. 6. Thefirst system output response

Plant Number 2:- Which is a linear in the input and madr in the output behaviour, as describe in
equation (13).

z=A1zk+ Aszyo +A3ng_3+Bluk_2, (13)
where A1=1.04, A2=-0.824, A3=0.130667, B1=-0.16

Fig. 7 shows the training phase using the proposed GA; wilgilé& Bhow the plant output.
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Fig. 7. The second system training phase
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Fig. 8. The second system output response

Plant Number 3:- Which is a strong nonlinear in boghutnand in the output behaviours, as describe in
equation (14).

2EALZ (W D)+, (14)
Fig. 9 shows the training phase using the proposed GA wilgile. & shows the plant output.
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Fig. 9. The third system training phase
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Fig. 10. Thethird system output response
6 Conclusion

It is well known that most NN especially EIman NN suffemirong time convergence problem as well as
falling in local minima points when its optimized by eitheackpropagation algorithms or real time
Extended Kalman filter. In this work, an online promising mj#ation algorithm based on GA was
proposed. The algorithm allows fast convergence and prevente#nch from falling into local optimum.
The algorithm was simulated with three dynamical systamd different nonlinearities. The results show
that the proposed approach is suitable for real time NN afiptica@he significance of proposed algorithm
is optimizing the connection weights to improve the trajrspeed and convergence, save the running time
of the neural network and improve the neural network effigiemhich can lead to improved the treatment
capacity of the network in dealing with more complicated proble
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