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Abstract

In this paper, SEIR epidemic model is used to study Ebola transmission dynamics and compared
with SIR model against World Health Organisation data from Sierra Leone. It was found that the
constructed SEIR model was more representative of the situation in Sierra Leone. In addition,
the impact of quarantine, vaccination and/ or both interventions on the transmission dynamics
of the disease was studied. The introduction of interventions caused the disease free equilibrium
to become stable. Finally, the optimal control problem was solved for the transmission dynamics
of the disease using these interventions as control variables. It was observed that the best
intervention strategy is to implement require a combination of both quarantine and vaccination.
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1 Introduction

The World Health Organisation (WHQ) describes Ebola virus disease as a severe and often fatal
illness in humans [1]. It was first discovered in 1976 at Nzara in Sudan and Yambuku in DRC.
The virus is transmitted to humans through contact with an infected person dead or alive [2].
[2] investigated the 1976 outbreak in Yambuku, Zaire and the 1995 outbreak in Kikwit, Zaire.
Their objective was to understand the mathematical dynamics of a population infected by Ebola
when an outbreak occurs. They proposed an SIR model for Kikwit and SEIR model for Yambuku.
[3, 4] studied the Ebola outbreak in Democratic Republic of Congo (DRC) in 1995 and Uganda in
2000. Since the recent outbreak in West Africa in May 2014, there has been about 27,443 reported
confirmed cases with about 11,207 reported deaths [1]. This is the first outbreak to reach epidemic
level. Estimating the basic reproductive number or understanding the transmission dynamics and
effective control measures has been studied by [5, 6, 7, 8, 9, 10]. Again, [11, 12, 13] have used
optimal control to study the dynamics of the disease. [14] used an SEIR model type to study
the spread of malaria in Ghana. [15] used optimal control to study the impact of intervention on
malaria in Malawi. In this paper, we will construct an SEIR model for transmission dynamics of
Ebola and perform stability analysis of model, determine the controllability of the dynamics near
an equilibrium point with vaccination and quarantine as control variables and to obtain the optimal
control of the system and perform simulations, study effects of vaccination, quarantine and or both
on Ebola dynamics. We did not study the post-mortem effect of Ebola since it has been thoroughly
studied by [16]. Currently, there exist an SIR model [11] and there is the need to investigate whether
an SEIR model can be a significant improvement.

2 Methodology

Disease control has become a very complex problem for health officers. This is why mathematical
models are used to predict and understand diseases. The practical use of models is based on the
fact that they can be kept realistic depending on the assumptions given. The table below presents
the parameter values used in our computation and their sources.

2.1 SIR model of Ebola

The SIR model of Ebola was described using compartmental model. At time ¢, there are susceptible
humans S(t), infected humans I(t), quarantined human @Q(t) and removed human R(t). The
susceptible come into contact with an infected person at a rate 8. The infective are removed
at a rate p. It is assumed that without intervention every infected human will die. It is assumed
that the latent period is insignificant to the epidemics dynamics. The equations below represent
the SIR model of Ebola used by [11].

ds

5 = psI

dl

= = BSI—pl (2.1)
dR

P

with initial conditions S(0) = So > 0, I(0) = Ip > 0, R(0) = 0 and 8,p > 0. The constant
population size is obtained as N(t) = S(¢) + I(¢) + R(¢). From their differential equations

ds |, dI  dR _

dt  dt = dt

The basic reproductive number Ry = 5/p = 1.867.
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2.2 Plot of I(t) of SIR model compared with real data

We plot I(t) of SIR model comapred with real data. We plot the model without intervention against
confirmed cases real data of Sierra Leone obtained from WHO. We used these parameter values:
B = 0.0003589, € = 0.000799, 6 = 0.0179 and data in Table 1. We observed that Fig. 1 did not give
a good representation of the real data of Sierra Leone.

Table 1. Parameter values for Ebola model and their sources

Parameter | Value | Source
N 160000 | [17]
B8 0.710 [7]
5 0.089 [10]
5 0.083 9]
K 0.5 9]
P 0.1 [18]
I 0.20 [18]
o 2.57 [19]
P 0.50 [9]
wr 0.10 [18]
wQ 0.50 [18]
o 1.7 [18]
w 0.073 [20]

Comparing real data plot with model plot
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Fig. 1. Plotting real data with SIR model without intervention

2.3 SEIR model of Ebola

In this model, we introduce E(t) which is the number of exposed humans at time ¢. The transmission
rate due to contact with the dead is €. There is an average incubation period §. ¢ and w natural birth
and death rate respectively. We assume that without intervention all infected people eventually die.
The compartmental SEIR diagram is presented below:
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Fig. 2. Compartmental SEIR diagram of Ebola

The equations below represent SEIR model of Ebola.

§27551765R7w5+0

9E 59T+ eSR— 6F — wE

dt 22)
I (2
Y sE— o1

a ~OE-»

dR

Gl

a P

with initial conditions S(0) = So > 0, E(0) = Eog > 0, I(0) = Ip > 0, R(0) =0 and g,¢,6, p,w > 0.
The constant population size is obtained as N(t) = S(t)+ E(t) 4+ I(t) + R(¢). From their differential
equations

dS dE  dI  dR

2.3.1 Disease free equilibrium point of SEIR model

At the disease free equilibrium point there is no disease in the population. Therefore £ = 0,1 =0
and we set equation (2.2) as below

—BSI —eSR—wS+0=0
BSI+eSR—0E —wE =0
O0E —pl =0

pl =0

(2.3)

Solving equation (2.3) with the natural birth rate and death rate not equal to zero, we obtained
the disease free equilibrium point as:

Eo = (g,o,o,o) (2.4)

2.3.2 Basic reproductive number Ry of SEIR model

Using the next generation matrix approach (G) developed by [21], we studied the basic reproductive
number Ry at the disease free equilibrium point. We obtained the Ry as:

6p

Ry = ————
B CEN)

(2.5)



Oduro et al.; BIMCS, 19(1), 1-19, 2016; Article no.BJMCS.29372

2.3.3 Local stability analysis of SEIR model at disease free equilibrium
point

We studied the local stability of the model at the disease free equilibrium point and obtained:
)\4+a1)\3+a2/\2—|—a3>\—|—a4 =0 (26)

Using Routh-Hurwitz criteria from [22] to describe the polynomial, we realised the disease free
equilibrium point was unstable.

2.4 Plot of I(t) of SEIR model (without intervention) compared
with real data

We plot I(¢) of SEIR model compared with real data. Parameter values are § = 0.0003589,
€ = 0.000799, § = 0.0179. We observe from Fig. 3 that the model closely depicts the real data of
Sierra Leone.
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Fig. 3. Plotting real data with SEIR model without intervention

2.5 Simulation of SEIR model

We simulate the SEIR model without any intervention. We observe that the infected will continue
to increase with time.
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SEIR Ebola model with vaccination as interventions
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Fig. 4. Plotting Simulation of SEIR model without intervention. Parameters values
N=160000, $=0.710, ¢=0.089

2.6 SEIR model (with vaccination) as intervention

The SEIR model with vaccination as intervention is investigated. 1 is the vaccination rate and
« is the rate at which the recovered return to the susceptible population. We assume that since
vaccination is implemented as intervention, most people will not be infected with the disease. We
also assume vaccination to be 100% effective. The compartmental model of the disease is represented

below:
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Fig. 5. Compartmental SEIR model of Ebola with vaccination
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The equations of the SEIR model with vaccination is presented below:

ds
dt
dE
— =pSI+eSR—-0E —wE —yFE

dt g v (2.7)
dI
i 0F — (p+wr)l
dR

=—8SI—eSR—wS+aR—yYS+o

=pl —aR+9YE+ ¢S

with initial conditions S(0) = Sp > 0, £(0) = Eo > 0, I(0) = Ip > 0,, R(0) = 0 and 8,¢, 6, p, , ¥, 0, w,wr >
0. The constant population size is obtained as N (t) = S(¢t)+E(t)+1(t)+R(t). From their differential
equations

ds  dE  dI  dR _ 0
@ a Tat T a T

2.6.1 Disease free equilibrium point of SEIR model (with vaccination)

At the disease free equilibrium point, there is no disease in the population. Since Ebola happens

for a short time, we do not study endemic equilibrium point. Therefore £ = 0,1 = 0 and we set
equation (2.7) as below

—BSI —eSR—-—wS+aR—-9S+0=0

BSI+eSR —6F —wE —¢pE =0

0E — (p+wr)l=0

pl —aR+YE+ ¢S =0

Solving equation (2.8) with the natural birth rate and death rate not equal to zero, we obtained

the disease free equilibrium point as:

(2.8)

)
wo

Eo = (g,o,o @) (2.9)

2.6.2 Basic reproductive number R, of SEIR model (with vaccination)

Using the next generation matrix approach (G) developed by [21], we obtained the Ry as:
6p
Ry —
*T @t y)

(2.10)

2.6.3 Local stability analysis of SEIR model (with vaccination) at disease
free equilibrium point
We studied the local stability of the model at the disease free equilibrium point and obtained:
M4 aiX + a2\ +ash +as =0 (2.11)

Using Routh-Hurwitz criteria to describe the polynomial, we realised the disease free equilibrium
point was stable.

2.7 Herd immunity

According to [21], herd immunity r is the proportion of the population effectively vaccinated to
control disease transmission.
(0 +w+ ) (s + p+wr)

rete 36 (2.12)

= 0.7353
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2.8 Simulation of SEIR model (with vaccination)

We simulate the SEIR model with vaccination as intervention. We assume that only 20% of the
population is vaccinated. We observe that the infected decrease very fast and stays close to zero.

SEIR Ebola model with vaccination as interventions

susceptible
exposed
infectives

recovered
121 q

Population(ten thousands)
e
|

N " . " : .
0 2 4 6 8 10 12 14 16 18 20
time (weeks)

Fig. 6. Simulation of SEIR model with vaccination. Parameters have values
N=160000, 5=0.410, ¢=0.049 and =0.2

2.9 SEIQR model (with quarantine)

We used quarantine (@) as a compartment to obtain SEIQR model. The probability of an infective
being quarantined is x, removal rate of quarantined is p and wr,wg are natural death rate. We
assume that since quarantine is implemented as intervention, some infected people will recover. The
diagram of the model is presented below:

B
P e LA AR | R
w w tl,K N

Fig. 7. Diagram for SEIQR model of Ebola with quarantine
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The equations of the model with quarantine is presented below:

% =—pBSI—eSR—wS+aR+o

% =pBSI+eSR - 0FE —wE

% =0FE - (k+p+wr)l (2.13)

dQ _

- kI — pQ — we@

dR

e pl +pQ —aR
with initial conditions S(0) = So > 0, E(0) = Ey > 0, I1(0) = Ip > 0, Q(0) = 0, R(0) = 0 and
B,€,0,K, p, 1, &,w,wr,wg > 0. The constant population size is obtained as N(t) = S(t) + E(t) +

I(t) + Q(t) + R(t). From their differential equations

dS | dE _dI _dQ  dR

w T a tata e

2.9.1 Disease free equilibrium point of SEIQR model (with quarantine)

At the disease free equilibrium point, there is no disease in the population. Therefore £ = 0,1 =
0,Q = 0 and we set equation (2.12) as below
—BSI —eSR—wS+aR+0=0
BSI+eSR—0FE —wE =0
SE—(k+p+wr)I=0 (2.14)
Kl —pQ —wg =0
pl+pQ —-—aR=0

Solving equation (2.13) with the natural birth rate and death rate not equal to zero, we obtained
the disease free equilibrium point as:

Eo = (5,070,0) (2.15)

2.9.2 Basic reproductive number Ry of SEIQR model (with quarantine)

Using the next generation matrix approach (G) developed by [21],we obtained the Ry as:

Bé

Bo= i)t pran)

(2.16)

2.9.3 Local stability analysis of SEIQR model (with quarantine) at disease
free equilibrium point

We studied the local stability of the model at the disease free equilibrium point and obtained:
Nt aid + a4 a3A’ Fasd +as =0 (2.17)

Using Routh-Hurwitz criteria from [22] to describe the polynomial, we realised the disease free
equilibrium point was stable.
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2.10 Simulation of SEIQR model (with quarantine)

We simulate the SEIQR model with quarantine as intervention. We assume that only 30% of the

infective is quarantined. We observe that the infected decrease very fast and stays close to zero.

Population(ten thousands)

16

-
B>

-
N

=
o

e

SEIQR Ebola model with quarantine as intervention

susceptible
exposed
infectives
quarantined
recovered ||

1 e I I L
0 2 4 6 8 10 12 14 16 18 20
time (weeks)

Fig. 8. Simulation of SEIQR model with quarantine. Parameter values N=160000,

2.11 SEIQR model (with quarantine and vaccination)

3=0.410, ¢=0.049

We investigate the SEIQR model with both quarantine and vaccination. We assume that since
quarantine and vaccination are implemented as intervention, most infected people will recover. The
compartmental diagram of the model is presented below:

I
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Fig. 9. Compartmental SEIQR model of Ebola with quarantine and vaccination
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The equations of model for SEIQR model with both quarantine and vaccination is presented below:

%zfﬁSIfESwaS+awaS+a
%ZﬁS[+ESR*5E7wE7¢E

dl

u =0F — (k+p+wr)l (2.18)
d

9 — 140 —we0

d

d—}::pIJrquozRerEerS

with initial conditions S(0) = So > 0, E(0) = Eo > 0, I(0) = Iy > 0, Q(0) = 0, R(0) = 0 and
By€,0, K, p, by, Y, 0, w,wr,wg > 0. The constant population size is obtained as N(t) = S(t) +
E(t)+ I(t) + Q(t) + R(t). From their differential equations

ds , dE | dl | dQdR _
dt  dt dt  dt dt
2.11.1 Disease free equilibrium point of SEIQR model (with quarantine
and vaccination)
At the disease free equilibrium point, there is no disease in the population. Therefore £ = 0,1 =
0,Q = 0 and we set equation (2.17) as below
—BSI —eSR—wS+aR—4yYS+0=0
BSI+eSR—0F — wE —E =0
0E—(k+p+wr)I=0 (2.19)
kI —p@Q —we@ =0
pl+u@Q —aR+YE+9S =0

Solving equation (2.18) with the natural birth rate and death rate not equal to zero, we obtained
the disease free equilibrium point as:

EO = (57070707 wa) (220)

wo

2.11.2 Basic reproductive number R, of SEIQR model (with quarantine
and vaccination)

Using the next generation matrix approach (G) developed by [21], we obtained the Ry as:

86

Ho = O +w+Y)(k+p+wr)

(2.21)

2.11.3 Local stability analysis of SEIQR model (with quarantine and
vaccination) at disease free equilibrium point

We studied the local stability of the model at the disease free equilibrium point and obtained:
)\5+a1)\4+a2/\3+a3/\2+a4)\+a5 =0 (2.22)

Using Routh-Hurwitz criteria from [22] to describe the polynomial, we realised the disease free
equilibrium point was stable.

11
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2.12 Simulation of SEIQR model (with quarantine and vaccination)

We simulate the SEIQR model with both quarantine and vaccination as intervention. We observe
that the infected decrease very fast and stays very close to zero.

SEIQR Ebola model with quarantine and vaccination as intervention

16 T T T T T T T T T
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ﬁ infectives
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T 6 1
S S —
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£ -
4t i 4
/’//
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2r / T
/ . & =
\-’ /_77_
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0 2 4 6 8 10 12 14 16 18 20
time (weeks)

Fig. 10. Simulation of SEIQR model with quarantine and vaccination. Parameters
values N=160000, =0.410, ¢=0.049, x=0.7, )=0.2

SEIQR Ebola model with quarantine and vaccination as intervention
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Fig. 11. Simulation of SEIQR model with quarantine and vaccination. Parameters
values N=160000, /=0.112, ¢=0.029, k=0.9, ¥=0.5

2.13 Optimal control

We studied the optimal control problem using Pontryagin Maximum Principle. u1, u2 are the control
variables representing vaccination and quarantine respectively.

12
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2.13.1 Optimal control problem

An optimal control problem can be written as

ty
Mindla(0) u(t] = [ 5(t.a0),u(t) (2.23)
subject to
@(t) = g(t, z(t),u(t)) (2.24)

where x is the state vector and w is the control vector.

J[x(t), u(t)] is the objective functional.
X4, is the initial state.
Tt is the target state.

2.13.2 Optimal control problem with vaccination and quarantine

tr c1 o C2 o
J(u1,uz) = [I(t) + a2+ qu(t)] dt (2.25)
s 2 2
subject to

ds

g =—pBSI—eSR—wS+aR—u1S+o

% =pBSI+eSR—0F —wE —wFE

% =0FE — pI —wil —ual (2.26)

dQ _

- u2d — pQ —wqeQ

dR

’ =pl +pQ —aR+wiE+uS

where u1(t), u2(t) are bounded Lebesgue integrable functions with time interval [0, ¢¢] and c1, c2 are
weights for vaccination and quarantine respectively.

2.13.3 Pontryagin’s maximum principle

We will use Pontryagin’s Maximum Principle to find a solution for the optimal control variables
ul,u3. Let p;(t) be the co-state variables. Using the optimal control problem, the Hamiltonian H
is given as:

H(Ivu17u25p17p27p37p47p5) =1+ %U% + %’Ug
+ pi[lo — BST —eSR — wS + aR — u1 5]
+ pa[BSI + SR — 6B — wE — uy F] (2.27)

+ pafua] — pQ — wQQ)]
+pslpl + pQ — aR+ u1 E + u1S]

Solving the Hamiltonian, we obtained the solution of the optimal control problem as:

ul = min {1,mam {O, (p1 7p5)s * (p2 7p5)E}}

[
[
+p3[0E — pI —wil — ual]
[
[

C1

uy = min {Lmax {07 7(1)3 ;p4)[}}
2

(2.28)

13
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The necessary condition for the Pontryagin’s maximum principle shows that the adjoint variables

satisfy the following:

dpy _
dt
dp
dt
dps
dt
dpa
dt
dps
dt

oOH

39 =p1B8I + preR + prw + prur — p2BI — p2eR — psua

OH _ 0 + paw + pau1 — p3d — pPsu

OF = P2 P2 p2u1 — Pp3 pPsu1

OH

57 =1 + p18S — p2BS + p3p + pswr + psuz — pauz — psp (2.29)
om _

90 = Papt T PawQ — Pslb

0OH

R = P1ES — pra — p2eS + psa

with transversality conditions

p1(ts) = p2(ty) = ps(ty) = pa(ty) = ps(ty) =0 (2.30)

where ui,us satisfy the optimality condition. The solution to the optimal control problem was

obtained numerically.

We performed simulations of the models using forward backward sweep for the optimal control

problem.

Using the values ¢1 = 0.6,c2 = 0.4, yo = (16,0, 1,0, 0), initial state tc = 0 and target state t; = 20

weeks. Then we have:

Control (u2)

0 I I I |

0 2 4 6 8 10 12 14 16 18 20
time (weeks)

Fig. 12. Simulation of control state

14
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Fig. 14. Simulation of optimal control with quarantine (Infective)
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Fig. 16. Simulation of control states
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Fig. 17. Simulation of optimal control with quarantine and vaccination (Susceptible)
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Fig. 18. Simulation of optimal control with quarantine and vaccination (Infective)
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Fig. 19. Simulation of optimal control with quarantine and vaccination

3 Conclusion

We derived a mathematical model for Ebola virus disease considering quarantine and vaccination
as intervention strategies and performed stability analysis of the models. We analysed the model
to understand the transmission dynamics of the disease in Sierra Leone and Liberia. The basic
reproductive number for our model without intervention is Ro = 3.7775, this shows that there is an
epidemic. For the model with quarantine, Ry = 0.5502, this shows the epidemic will eventually die
out when quarantine is implemented. For the model with vaccination, Ry = 0.4492, this shows the
epidemic will eventually die out when vaccination is implemented. For the model with quarantine
and vaccination, Ry = 0.1283, this shows the epidemic will eventually die out and this is more faster
than the former. The stability analysis of the disease free equilibrium showed that, the disease
without intervention was unstable but when quarantine, vaccination and/both was implemented
the system was stable meaning the epidemic can be controlled. If the proportion of the population
vaccinated exceeds the herd immunity, the disease will be eliminated. We realised from Figs. (8—12)
that the best intervention strategy is to implement both quarantine and vaccination immediately
the disease is discovered.

Using optimal control, we observed that when both quarantine and vaccination are implemented the
disease dies out in the first three weeks. The approximated solution of the optimal control problem
is given as 0.002473 and 0.003355 for uj,us respectively. This is aimed at reducing Ry < 1.

Finally, we did not use an SIR model because without exposed class it does not represent the
real data in Sierra Leone well this is also observed from Figs. (6,7). Hence SEIR model is
an improved method for Ebola. We recommend that future research should investigate more
intervention strategies such as contact tracing.
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