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Abstract

Let X be a p−uniformly convex and q−uniformly smooth real Banach space with dual space X∗.
Let T1 : X → 2X

∗
and T2 : X → 2X

∗
be bounded maximal monotone mappings. An iterative

process is constructed and proved to converge strongly to a zero of sum of the two maps.
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1 Introduction

Let H be a real Hilbert space. A map T : H → 2H is called monotone if for each x, y ∈ H, the
following inequality holds:

〈ξ − τ, x− y〉 ≥ 0 ∀ ξ ∈ Tx, τ ∈ Ty. (1.1)

This monotonicity condition in Hilbert space has been extended to arbitrary normed linear spaces.
To introduce one of two known and studied extensions, we need the following definition. Let E be
a real normed space with dual space E∗. A mapping J : E → 2E

∗
is called the normalised duality

map if for each x ∈ E,

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||||x∗||, ||x|| = ||x∗||}.

A map T : E → 2E is called accretive if for each x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈ξ − τ, j(x− y)〉 ≥ 0, ∀ ξ ∈ Tx, τ ∈ Ty. (1.2)

It is well known that if E is a real Hilbert space, then J = I, the identity map on E. In this case,
the inequality (1.2) reduces to inequality (1.1). Hence, accretivity in normed spaces is one extension
of Hilbert space monotonicity condition to arbitrary real normed spaces.

The map T is called maximal accretive if it is accretive and, in addition, the graph of T is not
properly contained in the graph of any other accretive operator. In other words, a map T is
maximal accretive if and only if T is accretive and R(I + tT ) = E for all t > 0. If E = H, a real
Hilbert space, maximal accretive mappings are called maximal monotone.

Also, a mapping T : E → 2E
∗

is called monotone if for all x, y ∈ D(T )

〈ξ − ζ, x− y〉 ≥ 0 ∀ξ ∈ Tx, ∀ζ ∈ Ty. (1.3)

It is clear that if E = H a real Hilbert space, then E = E∗ = H and inequality (1.3) coincides
with the monotonicity definition in Hilbert spaces. So, this is another extension of Hilbert space
monotonicity.

A mapping T : X → 2X
∗

is said to be maximal monotone if it is monotone and for (x, u) ∈ X×X∗
the inequalities 〈u − v, x − y〉 ≥ 0, for all (y, v) ∈ G(T ), imply (x, u) ∈ G(T ) where G(T ) is the
graph of T .

A fundamental problem in the study of monotone operators in Hilbert spaces is that of finding an
element u ∈ H such that 0 ∈ Tu. This problem has been investigated by many researchers.

The proximal point algorithm (PPA) introduced by Martinet [1] and studied extensively by Rockafellar
[2] and numerous authors is concerned with an iterative method for approximating a solution of
0 ∈ Tu where T is a maximal monotone operator. Specifically, given xn ∈ H, the proximal point
algorithm generates the next iterate xn+1 by solving the following equation:

xn+1 =
(
I +

1

λn
T
)−1

(xn) + en, (1.4)

where λn > 0 is a regularizing parameter.

Rockafellar [2] proved that if the sequence {λn}∞n=1 is bounded from above, then the resulting
sequence {xn}∞n=1 of proximal point iterates converges weakly to a solution of 0 ∈ Tu, provided that
a solution exists. He then posed the following question.
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Question i. Does the proximal point algorithm always converge strongly?

Güler [3], (see also Bauschke et al. [4]) resolved this question in the negative. This raised the
following question naturally.

Question ii. Can the proximal point algorithm be modified to guarantee strong convergence?

Authors like Bruck [5],Solodov and Svaiter [6], Kamimura and Takahashi [7], Reich and Sabach
[8], Xu [9] and Lehdili and Moudafi [10] obtained modifications of the PPA that yield strong
convergence.

Remark 1.1. Observe that in using the proximal point algorithm, at each step of the iteration

process, one has to compute
(
I + 1

λn
T
)−1

(xn) and this may not generally be convenient in several

applications.

Consequently, while thinking of modifications of the proximal point algorithm that will guarantee
strong convergence, the following question may be, perhaps, more important than Question ii.

Question iii. Can an iteration process be developed which will not involve the

computation of
(
I + 1

λn
T
)−1

(xn) at each step of the iteration process and which will

still guarantee strong convergence to a solution of 0 ∈ Tu?

In response to Question iii, Chidume and Djitte [11] gave an affirmative answer when the space
E involved is a 2-uniformly smooth real Banach space. In fact, they proved the following theorem.

Theorem 1.1. Let E be a 2−uniformly smooth real Banach space, and let T : E → E be a bounded
m−accretive map.For arbitrary x1 ∈ E, define a sequence {xn}∞n=1 by,

xn+1 = xn − λnTxn − λnθn(xn − x1), n ≥ 1,

where {λn}∞n=1 and {θn}∞n=1 are sequences in (0, 1) satisfying the folliowing conditions:

(i) limn→∞ θn = 0, {θn}∞n=1 is decreasing;
(ii)

∑∞
n=1 λnθn =∞, λn = o(θn);

(iii) limn→∞

[
θn−1
θn
−1

]
λnθn

= 0,
∑∞
n=1 λ

2
n <∞ . There exists a constant γ0 > 0 such that if

λn ≤ γ0θn for all n ≥ 1. Then the sequence {xn}∞n=1 converges strongly to a solution of the equation
Tx = 0.

Remark 1.2. We note here that Lp spaces, p ≥ 2 are 2-uniformly smooth but Lp spaces, p ∈ (1, 2)
are not. So, this theorem of Chidume and Djitte does not guarantee strong convergence to a solution
of the equation Tu = 0 on Lp spaces, for p ∈ (1, 2).

Remark 1.3. A solution of 0 ∈ Tu where T is an accretive-type multi-valued mapping, in general,
corresponds to an equilibrium state of a dynamical system (see e.g., Zeidler, [12]).

We now consider the inclusion 0 ∈ Tu where T : E → 2E
∗

is of the monotone-type and E is a real
normed space. Assuming f : E → R∪ {∞} is a proper convex function, then, the subdifferential of
f, ∂f : E → 2E

∗
is defined as follows: for x ∈ E,

∂f(x) = {x∗ ∈ E∗ : f(y)− f(x) ≥ 〈y − x, x∗〉, ∀ y ∈ E}
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and it is easy to see that 0 ∈ ∂f(u) if and only if u is a minimizer of f. It is equally easy to see that
the subdifferential of f, ∂f : E → 2E

∗
satitsfies the following inequality:

〈x∗ − y∗, x− y〉 ≥ 0 ∀x∗ ∈ ∂f(x), y∗ ∈ ∂f(y). (1.5)

In this case, the subdifferential is said to be monotone.

Remark 1.4. If T is the subdifferential of a convex functional defined on the Banach space E, then
a solution of 0 ∈ Tu, corresponds to a minimizer of some convex functional defined on E.

Our objective in this paper is to prove a strong convergence theorem for sum of two multi-valued
maximal monotone and bounded mappings in p−uniformly convex and q−uniformly smooth real
Banach space. This complements theorem 1.1 and is applicable in all Lp spaces, 1 < p < ∞. Our
method of proof is different and of independent interest.

2 Preliminaries

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E ,
ρE : [0,∞)→ [0,∞), is defined by:

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ, τ > 0

}
.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

It is well known (see e.g., Chidume [13] p. 16, also Lindenstrauss and Tzafriri [14]) that ρE is
nondecreasing. If there exist a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτ q,
then E is said to be q-uniformly smooth. Typical examples of such spaces are the Lp, `p and Wm

p

spaces for 1 < p <∞ where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth if 2 ≤ p <∞;
p− uniformly smooth if 1 < p < 2.

A Banach space E is said to be strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y =⇒
∥∥∥x+ y

2

∥∥∥ < 1.

The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) := inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖
}
.

The space E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2].

It is also well known (see e.g., Chidume [13] p. 34, also Lindenstrauss and Tzafriri [14]) that δE
is nondecreasing. If there exist a constant c > 0 and a real number p > 1 such that δE(ε) ≥ cεp,
then E is said to be p-uniformly convex. Typical examples of such spaces are the Lp, `p and Wm

p

spaces for 1 < p <∞ where,

Lp (or lp) or W
m
p is

{
p− uniformly convex if 2 ≤ p <∞;
2− uniformly convex if 1 < p < 2.

The norm of E is said to be Fréchet differentiable if for each x ∈ S := {u ∈ E : ‖u‖ = 1},

lim
t→0

‖x+ ty‖ − ‖x‖
t

,
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exists and is attained uniformly for y ∈ E.

In what follows, we shall need the following definitions and results. Let E be a smooth real Banach
space with dual E∗. The Lyapounov functional φ : E × E → R, is defined by,

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for x, y ∈ E, (2.1)

where J is the normalized duality mapping from E into E∗. It was introduced by Alber and has
been studied by Alber [15], Alber and Guerre-Delabriere [16], Kamimura and Takahashi [7], Reich
[17] and a host of other authors. If E = H, a real Hilbert space, then equation (2.1) reduces to
φ(x, y) = ‖x− y‖2 for x, y ∈ H. It is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for x, y ∈ E. (2.2)

Define a map V : X ×X∗ → R by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, for x ∈ X, x∗ ∈ X∗. (2.3)

Then,

V (x, x∗) = φ(x, J−1(x∗)) ∀x ∈ X, x∗ ∈ X∗. (2.4)

Lemma 2.1 (Alber, [18]). Let X be a reflexive strictly convex and smooth Banach space with X∗

as its dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) (2.5)

for all x ∈ X and x∗, y∗ ∈ X∗.

Lemma 2.2 (Alber, [18]). Let X be a reflexive strictly convex and smooth Banach space with X∗

as its dual. Let W : X ×X → R1 be defined by W (x, y) = 1
2
φ(y, x). Then,

W (x, y)−W (z, y) ≥ 〈Jx− Jz, z − y〉, (2.6)

i.e.,
φ(y, x)− φ(y, z) ≥ 2〈Jx− Jz, z − y〉, (2.7)

and also
W (x, y) ≤ 〈Jx− Jy, x− y〉, (2.8)

for all x, y, z ∈ X.

Lemma 2.3 (Alber, [18]). Let X be a uniformly convex Banach space. Then, for any R > 0 and
any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R, the following inequality holds:

〈Jx− Jy, x− y〉 ≥ (2L)−1δX(c−1
2 ‖x− y‖),

where c2 = 2max{1, R}, 1 < L < 1.7.

Lemma 2.4 (Alber, [18]). Let X be a uniformly smooth and strictly convex Banach space. Then
for any R > 0 and any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R the following inequality holds:

〈Jx− Jy, x− y〉 ≥ (2L)−1δX∗(c−1
2 ‖Jx− Jy‖),

where c2 = 2max{1, R}, 1 < L < 1.7.

Lemma 2.5 (Alber, [18]). Let T1 and T2 be maximal monotone operators from X to 2X
∗

and
D(T1) ∩ intD(T2) 6= ∅. Then their sum T1 + T2 is also a maximal monotone operator.
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Let E∗ be a real strictly convex dual Banach space with a Fréchet differentiable norm. Let T :
E → 2E

∗
be a maximal monotone map with no monotone extension. Let z ∈ E∗ be fixed. Then,

for every λ > 0 there exists a unique xλ ∈ E such that Jxλ + λTxλ 3 z (see [19], p. 342). Setting
Jλz = xλ, we have the resolvent Jλ := (J + λT )−1 : E∗ → E of T for every λ > 0. The following is
a celebrated result of Reich.

Lemma 2.6 (Reich, [19]). Let E∗ be a strictly convex dual Banach space with a Fréchet differentiable
norm, and let T be a maximal monotone map from E to E∗ such that T−10 6= ∅. Let z ∈ E∗ be
arbitrary but fixed. For each λ > 0 there exists a unique xλ ∈ E such that Jxλ + λTxλ 3 z.
Furthermore, xλ converges strongly to a unique p ∈ T−10.

Lemma 2.7. From Lemma 2.6, setting λn := 1
θn

where θn → 0 as n→∞,

θn ≤ θn−1 ∀ n ≥ 1, z = Jv for some v ∈ E, and yn :=
(
J + 1

θn
T
)−1

z, we obtain that:

Tyn = θn(Jv − Jyn), (2.9)

yn → y∗ ∈ T−10,

where T : E → E∗ is maximal monotone.

Remark 2.1. We observe that equation (2.9) yields

Jyn−1 − Jyn +
1

θn

(
Tyn−1 − Tyn

)
=
θn−1 − θn

θn

(
Jv − Jyn−1

)
.

Taking the duality pairing of the LHS of this equation with yn−1 − yn, and using the monotonicity
of T we obtain that,

〈Jyn−1 − Jyn, yn−1 − yn〉 ≤
θn−1 − θn

θn

∥∥∥Jv − Jyn−1

∥∥∥‖yn−1 − yn‖. (2.10)

In a p-uniformly convex space, we have (see e.g., Chidume [13], p.34,) that, for some constant r > 0,

δE(ε) ≥ rεp for 0 < ε ≤ 2. (2.11)

From lemma 2.3 and inequalities (2.10) and (2.11) we obtain that,

‖yn−1 − yn‖ ≤
(
θn−1 − θn

θn

)1/p

C1, for some C1 > 0. (2.12)

Similarly, from lemma 2.4 and inequalities (2.10) and (2.11) we obtain that

‖Jyn−1 − Jyn‖ ≤
(
θn−1 − θn

θn

)1/p

C2, for some C2 > 0. (2.13)

Lemma 2.8 (Kamimura and Takahashi, [7]). Let X be a real smooth and uniformly convex Banach
space, and let {xn}∞n=1 and {yn}∞n=1 be two sequences of X. If either {xn}∞n=1 or {yn}∞n=1 is bounded
and φ(xn, yn)→ 0 as n→∞, then ‖xn − yn‖ → 0 as n→∞.

Lemma 2.9 (Xu, [20]). Let {an}∞n=0 be a sequence of non-negative real numbers satisfying the
following condition

an+1 ≤ (1− σn)an + σnbn + cn, n ≥ 0, (2.14)

where {σn}∞n=0, {bn}∞n=0 and {cn}∞n=0 satisfy the conditions:
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(i) {σn}∞n=0 ⊂ [0, 1],
∞∑
n=1

σn =∞ or equivalently,
∞∏
n=1

(1− σn) = 0;

(ii) lim sup
n→∞

bn ≤ 0;

(iii) cn ≥ 0 (n ≥ 0),
∞∑
n=1

cn <∞.

Then, lim
n→∞

an = 0.

Lemma 2.10. Let E be a smooth real Banach space with dual E∗ and the function
φ : E × E → R defined by,

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for x, y ∈ E,

where J is the normalized duality mapping from E into 2E
∗
. Then,

φ(y, x) = φ(x, y) + 2〈x, Jy〉 − 2〈y, Jx〉. (2.15)

3 Main Results

Theorem 3.1. For p > 1, q > 1, let E be a p-uniformly convex and q-uniformly smooth real
Banach space and let E∗ be its dual. Let T1 : E → 2E

∗
and T2 : E → 2E

∗
be maximal monotone

and bounded maps such that (T1 + T2)−1(0) 6= ∅ For arbitrary u1 ∈ E, define a sequence {un}
iteratively by:

un+1 = J−1(Jun − αnξn − αnτn − αnθn(Jun − Ju1)), ξn ∈ T1un, τn ∈ T2un n ≥ 1,

where {λn}∞n=1 and {θn}∞n=1 are sequences in (0, 1) such that limn→∞ θn = 0, λ
1
p
n ≤ γ0θn for all

n ≥ 1 and for some γ0 > 0. Then, the sequence {un}∞n=1 is bounded.

Proof. Since (T1 + T2)−1(0) 6= ∅, let u∗ ∈ (T1 + T2)−1(0). Then, there exists r > 0 such that

r

5
≥ φ(u∗, u1).

Define B := {x ∈ E : φ(x∗, x) ≤ r}. We show that φ(u∗, un) ≤ r, ∀ n ≥ 1; we do this by induction.
By construction, φ(u∗, u1) ≤ r. Assume φ(u∗, un) ≤ r for some n ≥ 1.

We show that φ(u∗, un+1) ≤ r. Suppose, for contradiction, that this is not the case, i.e., suppose
that φ(u∗, un+1) > r. Since T1 and T2 are bounded, define

M : = sup{||ξ + τ + θ(Ju− Ju1)|| : u ∈ B, θ ∈ (0, 1), ξ ∈ T1u, τ ∈ T2u}+ 1,

K1 : = sup{||J−1(Ju− αξ − ατ − αθ(Ju− Ju1))− u|| : u ∈ B,α, θ ∈ (0, 1), ξ ∈ T1u, τ ∈ T2u}+ 1,

K2 : = sup{||Ju− Ju1|| : ||u|| ≤ r0}+ 1 for some r0 > 0,

M∗ =
(2Lcp2MK1

r

) 1
p

γ0 : = min
{

1,
r

10M∗(M +K2)
,

r

10MK1

}
,

where c2 and L are constants appearing in lemma 2.3.

From the recurrence relation,

||Jun+1 − Jun|| = λn||ξn + τn + θn(Jun − Ju1)|| ≤ λnM. (3.1)

7
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Observe that using lemma 2.3, equations (2.11) and (3.1), we have

||un+1 − un|| ≤ λ
1
p
nM

∗. (3.2)

Take y∗ = λnξn + λnτn + λnθn(Jun − Ju1). Using lemma 2.1 and relation (2.4), we now compute
as follows:

r < φ(u∗, un+1)

= V (u∗, Jun − λnξn − λnτn − λnθn(Jun − Ju1))

≤ V (u∗, Jun)− 2〈un+1 − u∗, λnξn + λnτn + λnθn(Jun − Ju1)〉
= V (u∗, Jun)− 2λn〈un+1 − un, ξn + τn + θn(Jun − Ju1)〉
−2λn〈un − u∗, ξn + τn + θn(Jun − Ju1)〉

≤ φ(u∗, un) + 2λn‖un+1 − un‖‖ξn + τn + θn(Jun − Ju1)‖
−2λn〈un − u∗, ξn + τn + θn(Jun − Ju1)〉.

Using inequality (3.2) and the fact that T1 and T2 are monotone, we obtain

φ(u∗, un+1)

≤ φ(u∗, un) + 2λn(λ
1
p
n )M∗M − 2λnθn〈un − u∗, Jun − Ju1〉. (3.3)

But using the monotonicity of J , we have that

−2λnθn〈un − u∗, Jun − Ju1〉
= −2λnθn〈un − un+1, Jun − Jun+1〉 − 2λnθn〈un − un+1, Jun+1 − Ju1〉
−2λnθn〈un+1 − u∗, Jun − Jun+1〉 − 2λnθn〈un+1 − u∗, Jun+1 − Ju1〉

≤ 2λnθn‖un+1 − un‖K2 + 2λnθn‖Jun+1 − Jun‖K1

+2λnθn〈un+1 − u∗, Ju1 − Jun+1〉.

Using inequalities (3.2), (3.1) and inequality (2.7) in lemma 2.2 we have that

−2λnθn〈un − u∗, Jun − Ju1〉

≤ 2λnθn(λ
1
p
n )M∗K2 + λnθnφ(u∗, u1)− λnθnφ(u∗, un+1) + 2λ2

nθnMK1.

So, from inequality (3.3), we have, using conditions on θn and λn, that

r < φ(u∗, un+1)

≤ φ(u∗, un)− λnθnφ(u∗, un+1) + 2λn(λ
1
p
n )M∗(M +K2) + λnθnφ(u∗, u1) + 2λ2

nθnMK1

≤ r − λnθnr + λnθn
r

5
+ λnθn

r

5
+ λnθn

r

5
< r.

This is a contradiction. Hence, φ(u∗, un) ≤ r for all n ≥ 1 and so the sequence {un}∞n=1 is
bounded.

Theorem 3.2. For p > 1, q > 1, let E be a p-uniformly convex and q-uniformly smooth real
Banach space and let E∗ be its dual. Let T1 : E → 2E

∗
and T2 : E → 2E

∗
be maximal monotone

and bounded maps such that (T1 + T2)−1(0) 6= ∅ and D(T1) ∩ intD(T2) 6= ∅. For arbitrary u1 ∈ E,
define a sequence {un} iteratively by:

un+1 = J−1(Jun − αnξn − αnτn − αnθn(Jun − Ju1)), ξn ∈ T1un, τn ∈ T2un n ≥ 1.

where {λn}∞n=1 and {θn}∞n=1 are sequences in (0, 1) such that
∑∞
n=1 λnθn = ∞, limn→∞

λ

1
p
n
θn

= 0

and limn→∞

(
θn−1−θn

θn

) 1
p

λnθn
= 0. Then, the sequence {un}∞n=1 converges strongly to a solution of

0 ∈ (T1 + T2)u.

8
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Proof. Using the same method of computation as in theorem 3.1, relation (2.15) and the fact that
T1 and T2 are monotone we have, for some constant M1 > 0,

φ(yn, un+1)

= V (yn, Jun − λnξn − λnτn − λnθn(Jun − Ju1))

≤ V (yn, Jun)− 2〈un+1 − yn, λnξn + λnτn + λnθn(Jun − Ju1)〉
= φ(un, yn) + 2〈un, Jyn〉 − 2〈yn, Jun〉 − 2〈un+1 − yn, λnξn + λnτn + λnθn(Jun − Ju1)〉
= V (un, Jyn) + 2〈un, Jyn〉 − 2〈yn, Jun〉 − 2〈un+1 − yn, λnξn + λnτn + λnθn(Jun − Ju1)〉
≤ V (un, Jyn−1)− 2〈yn − un, Jyn−1 − Jyn〉+ 2〈un, Jyn〉 − 2〈yn, Jun〉
−2〈un+1 − yn, λnξn + λnτn + λnθn(Jun − Ju1)〉

= φ(yn−1, un) + 2〈yn−1, Jun〉 − 2〈un, Jyn−1〉 − 2〈yn − un, Jyn−1 − Jyn〉
+2〈un, Jyn〉 − 2〈yn, Jun〉 − 2〈un+1 − yn, λnξn + λnτn + λnθn(Jun − Ju1)〉

= φ(yn−1, un) + 2〈yn−1 − yn, Jun〉+ 2〈yn, Jyn − Jyn−1〉
−2λn〈un+1 − un, ξn + τn + θn(Jun − Ju1)〉 − 2λn〈un − yn, ξn + τn + θn(Jun − Ju1)〉

≤ φ(yn−1, un) + ||yn − yn−1||M1 + ||Jyn − Jyn−1||M1 + λn||un+1 − un||M1

−2λn〈un − yn, (ξn + τn)− (ζn + µn)〉 − 2λn〈un − yn, ζn + µn〉 − 2λnθn〈un − yn, Jun − Ju1〉

for yn as in lemma 2.7, ζn ∈ T1yn and µn ∈ T2yn.

But for some constant K∗ > 0, using equation (2.8), the fact that un and yn are bounded,

−2λnθn〈un − yn, Jun − Ju1〉
= −2λnθn〈un − yn−1, Jun − Jyn−1〉 − 2λnθn〈yn−1 − yn, Jun − Jyn−1〉
−2λnθn〈un − yn, Jyn−1 − Ju1〉

≤ −λnθnφ(yn−1, un) + λnθn||yn − yn−1||K∗

−2λnθn〈un − yn, Jyn−1 − Jyn〉 − 2λnθn〈un − yn, Jyn − Ju1〉
≤ −λnθnφ(yn−1, un) + λnθn||yn − yn−1||K∗ + λnθn||Jyn−1 − Jyn||K∗

−2λnθn〈un − yn, Jyn − Ju1〉.

Also, from lemma 2.5, T1 + T2 is maximal monotone and applying lemma 2.7, we have that

−2λn〈un−yn, ζn+µn〉−2λnθn〈un−yn, Jyn−Ju1〉 = −2λn〈un−yn, (ζn+µn)+θn(Jyn−Ju1)〉 = 0.

Hence,

φ(yn, un+1)

≤ φ(yn−1, un)− λnθnφ(yn−1, un) + λn||un+1 − un||M1 + ||yn − yn−1||M1

+||Jyn − Jyn−1||M1 + λnθn||Jyn − Jyn−1||K∗ + λnθn||yn − yn−1||K∗. (3.4)

Using inequalities (2.12), (2.13) and (3.2), together with conditions on θn and λn we have that,

φ(yn, un+1)

≤ φ(yn−1, un)− λnθnφ(yn−1, un) + λn(λ
1
p
n )M∗M1 +

(θn−1 − θn
θn

) 1
p
C1M1

+
(θn−1 − θn

θn

) 1
p
C2M1 + λnθn

(θn−1 − θn
θn

) 1
p
C2K

∗ + λnθn
(θn−1 − θn

θn

) 1
p
C1K

∗

≤ φ(yn−1, un)− λnθnφ(yn−1, un) + λn(λ
1
p
n )K0 +

(θn−1 − θn
θn

) 1
p
K0,
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where K0 := max{M∗M1, C1M1 + C2M1 + C1K
∗ + C2K

∗}.

Setting
an := φ(yn−1, un), σn := λnθn, cn ≡ 0,

and

bn := K0

[
λ

1
p
n

θn
+

(
θn−1−θn

θn

) 1
p

λnθn

]
we obtain that

an+1 ≤ (1− σn)an + σnbn + cn, n ≥ 0.

It now follows from lemma 2.9 that an → 0 as n → ∞, i.e., φ(yn−1, un) → 0 as n → ∞.
Consequently, by lemma 2.8, we have that lim||un − yn−1|| = 0. Since yn → y∗ ∈ (T1 + T2)−1(0),
we have that un converges strongly to y∗. This completes the proof.

Example 3.3. Prototypes for our theorems are the following:

λn = (n+ 1)−a and θn = (n+ 1)−b, n ≥ 1,

where

0 < b <
a

r
, a+ b <

1

r
, r = max{p, q}.

For example, without loss of generality, set r = p, and take

a :=
1

(p+ 1)
; b := min

{1

2
,

1

2p(p+ 1)

}
,

Remark 3.1. (see e.g., Alber [18]) The analytical representations of duality mappings are known
in a number of Banach spaces. For instance, in the spaces lp, Lp(G) and W p

m(G), p ∈ (1,∞),
p−1 + q−1 = 1, respectively,

Jx = ||x||2−plp y ∈ lq, y = {|x1|p−2x1, |x2|p−2x2, ...}, x = {x1, x2, ...},

Jx = ||x||2−pLp |x(s)|p−2x(s) ∈ Lq(G), s ∈ G,
and

Jx = ||x||2−p
W
p
m

∑
|α|≤m

(−1)|α|Dα(|Dαx(s)|p−2Dαx(s)) ∈W q
−m(G),m > 0, s ∈ G

.

4 Conclusion

Theorem 3.2 complements Theorem 1.1 to provide iterative process for the approximation of zeros
of bounded maximal monotone operators. The result is applicable in all Lp spaces, 1 < p <∞.
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