
 

British Journal of Mathematics & Computer Science 
  

19(1): 1-18, 2016; Article no.BJMCS.29369 
 

ISSN: 2231-0851 
 

SCIENCEDOMAIN international 
www.sciencedomain.org   

 
 

_____________________________________ 
*Corresponding author: E-mail: tisesko@yahoo.com; 
  
 

Utility Analysis of an Emergency Medical Service Model Using 
Queuing Theory 

 
T. K. Rotich1* 

 
1Center for Teacher Education, Moi University, P.O.Box 3900 - 30100, Eldoret, Kenya. 

 
Author’s contribution  

 
The sole author designed, analyzed and interpreted and prepared the manuscript. 

 
Article Information 

 
DOI: 10.9734/BJMCS/2016/29369 

Editor(s): 
(1) Sergio Serrano, Department of Applied Mathematics, University of Zaragoza, Spain. 

Reviewers: 
(1) Wenqing Wu, Southwest University of Science and Technology, China. 

(2) Hanifi Okan Isguder, Dokuz Eylul University, Turkey. 
(3) Rakesh Kumar, Smvd University-Katra Shri Mata Vaishno Devi University, Katra, India. 

Complete Peer review History: http://www.sciencedomain.org/review-history/16552 
 
 
 

Received: 6th September 2016 
Accepted: 4th October 2016 

Published: 14th October 2016 
_______________________________________________________________________________ 
 

Abstract 
 

Aims/ Objectives: To use queuing model to deter mine the optimum waiting and service cost in a 
hospital ICU emergency service. 
Study Design: Modeling and Simulation. 
Place and Duration of Study: ICU Emergency Service Department, Moi Teaching and Referral Hospital 
(MTRH), Uasin Gishu - County, between June 2016 and July 2016. 
Methodology: Use of M/M/s queuing model to analyze ICU services using secondary data of MTRH 
emergency patients arrival and service rates together with estimated service cost of available 6 beds. 
Waiting cost estimated using formulated Modified Normal Loss function. 
Results: With an average individual tolerance of � � 0.083 hrs and average response time of �̅  �0.083hrs, the present scenario of 6 ICU beds in MTRH is operating at a service cost of Ksh 60 and 
patient queuing cost of Ksh 415.53 per hour. The length of the queue is 1.4 hr or approximately 34 
patients per day. The optimum number of beds required for the facility to operate with zero response time 
and zero quality tolerance is 18 beds. This will facilitate the reduction of queuing cost to 153.98 and total 
cost to 333.98. 
Conclusion: The current status of ICU emergency services at MTRH is costly to both the health facility 
and the patients. Individuals seeking such services may either opt to get similar services elsewhere at an 
opportunity cost of Ksh 641.39 per hour of delay. With 1.4 patients waiting in the queue every hour, this 
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accumulates to 34 patients per day. Increasing ICU beds to 18 minimizes the length of the queue to 6 
patients per day and queuing cost by 76% and reduces the total cost by 65%. This will reduce the 
financial burden of the patients and increase the chances of saving lives during emergency cases. These 
predictors, however, need further work and inclusion of related services to give a bigger and better picture 
of the facility. 
 

 
Keywords: Queuing cost; service cost; normal loss function; individual tolerance; specification limit; 

optimum total cost. 
 
2010 mathematics subject classification: 60K25, 90B22, 68M20, 91B06. 
 

1 Introduction 
 
A queue is a line formed by objects or people waiting to be served. In everyday life, queuing is inevitable. 
We  find people queuing in the bank, hotel, bus stop, car wash, supermarkets, school, telephone boots, 
polling stations, traffic, airports, cafeterias, loading and offloading, hospitals just to mention but a few. Since 
queues are inevitable, the most important thing is to strike a balance between the length of the queue and the 
number of servers. An experiment on the fluctuating demand in telephone traffic was done by a Danish 
engineer named Erlang and a report addressing the delays in automatic dialing equipment was published, 
detailing equilibrium between the number of servers and the length of waiting time [1]. At the end of World 
War II, Erlang’s early work was extended to more general problems and to business applications of waiting 
lines. This gave rise to the study of waiting lines, called queuing theory which is still used to date in 
customer service delivery [2]. 
 
In queuing theory, the three basic components of a queuing process are arrivals patterns, the actual waiting 
line and service facilities [2]. Customers arrive to the facility from an infinite calling population, with a 
random arrival pattern following Poisson process. Once customers arrive, they are served immediately if the 
server(s) is empty, or otherwise the customers wait in the queue for the next empty server. Mostly, the 
service is on a first come first serve (FCFS) basis although other methods like Service at Random Order 
(SARO) can be used. Preference service depending on the level of risk, urgency or the social, economic or 
political standing of the customer, and Hold on Line (HL) discipline, where important arriving customer 
takes the lead of the queue is rampant in many facilities. Customers who may feel to have waited for long in 
the queue can renege or balk and seek alternative equivalent services elsewhere, however, the queue length 
and waiting time depends on the traffic intensity, which is the ratio of arrival and service rates. The service 
discipline follows an exponential pattern, with individual service time variation due to different nature of the 
problems to be handled. 
 
1.1 Queuing theory and health facility 
 
A health facility provides a very essential service and the use of queues is crucial. The type of customers in a 
hospital is sick people whose lives are threatened and therefore needs urgent attention. Some of the 
customers queuing for services have life threatening conditions which require urgent attention and any delay 
in the queue means losing valuable time of saving life. Intensive Care Units (ICUs) are a critical component 
within hospitals, where patients are admitted when their vital functioning is compromised and their lives are 
in danger. With the introduction of motor bikes as a cheap and flexible means of transport, the number of 
fatal accidents increased and due to the availability of ambulance services, many accident patients can reach 
the hospital within a short time, thus increasing the arrival rate of customers who need urgent attention. 
Because some patients will remain in the ICU for a long time, and due to the nature and the cost of the life 
supporting machines necessary in the ICU, many hospitals aim at keeping a few but highly utilized units to 
address emergency needs. On the other hand, the demand for the service is high thus an equilibrium point 
needs to be determined for an optimum service delivery economical to the health facility and satisfactory to 
the customers. 
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Emergency case patients may be admitted to an ICU for intensive care immediately they arrive, or for 
postoperative care after an offensive operation. Emergency patients who need direct admission to the ICU 
may be rejected due to lack of space. This may lead to loss of lifers and poor image of the facility, not to 
mention loss of income which would be earned from the patient. For patients who need to be admitted to an 
ICU for postoperative care, lack of space in the ICU bed means the operation is either postponed or 
canceled. This cancelation may pose a severe health risk or have a major emotional impact on the patient. 
For the hospital, cancelation of operation may lead to unutilized operating room, which is equally costly to 
equip and thus a loss of resource capacity. 
 
In most cases, patients are prepared for an operation long enough through procedures like testing blood 
pressure, blood levels and starving for over 6 hours. This means once an operation has been canceled, it is 
not possible to start another operation immediately. The availability of ICU beds is thus a highly important 
factor which reflects the service quality of the hospital. A wide variety of queuing models can be used in 
operations management, to help solve problems involving queue length, satisfaction of customers, idle 
servers and optimum service and waiting costs involved. In this paper, a multi-channel within finite calling 
population and first come first served discipline is adopted. 
 
This model assumes that arrivals follow a Poisson Probability distribution and that service times is 
exponentially distributed and it is usually denoted by M/M/s: ∞/FCFS [3]. The cost of service versus the 
waiting costs is analyzed and equilibrium determined. The opportunity cost of customers waiting in the 
queue is highly individualized, but in this paper, it is assumed that the tolerance for the quality of service is 
normally distributed, and therefore the waiting costs follow a normal distribution. This paper will therefore 
focus on this ICU service, the cost in line waiting and the cost of service to optimize service delivery in Moi 
Teaching and Referral Hospital (MTRH). 
 
The study sufficiently provides information to medical managers for decision making on the use of available 
limited resources to improve service offered to patients. The optimum ICU bed capacity is determined to 
ease congestion and at the same time minimize service cost. 
 

2 Literature Review 
 
Queues or waiting lines or queuing theory, was first analyzed by A.K. Erlang a Danish Engineer in the 
context of telephone facilities [1]. The body of knowledge that developed from it after came to be known as 
”Queuing Theory”. It is widely practiced or utilized in industrial setting and management. Balancing the cost 
of providing services with the costs of customer waiting is the decision problem involved here. Use of 
queuing theory in health care is now utilized worldwide. Research has shown that queuing theory can be 
useful in real-world health care situations. McClain [4] reviews research on models for evaluating the impact 
of bed assignment policies on utilization, waiting time, and the probability of turning away patients. The use 
of queuing theory in pharmacy applications with particular attention to improving customer satisfaction is 
reviewed in [5] and the history on the use of queuing theory in health care facilities is presented in brief by 
[6]. However, it provides no description of the applications or results. Green [7] presents the theory of 
queuing as applied in health care. She discusses the relationship amongst delays, utilization and the number 
of servers, the basic M/M/s model, its assumptions and extensions; and the applications of the theory to 
determine the required number of servers. The researcher agrees with them that queuing theory is of valuable 
use in evaluating health care facilities and will use it to solve the problem at hand. 
 
The use of queuing theory as an analytical tool to predict how particular health care configurations affect 
delay in patient service and health care resource utilization with the associated costs. Fomundam and 
Herrmann [8] summarized a range of queuing theory results in the following areas: waiting time and 
utilization analysis, system design, and appointment systems. Their goal was to provide sufficient 
information to analysts who were interested in using queuing theory to model a health care process and who 
wanted to locate the details of relevant models. An important example of such a system is an emergency 
department. Broyles and Cochran [9] calculated the percentage of patients who leave an emergency 
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department without getting help using arrival rate, service rate, utilization, capacity. From this percentage, 
they determine the resulting revenue loss. Therefore Waiting Time and Utilization analysis in a queuing 
system aims at minimizing the time that customers have to wait and maximizing the utilization of the servers 
or resources (doctors, ICU beds, machines etc.) in order to reduce overall costs. The extension to include 
stochastic models was done by [10]. 
 
The arrival of patients into the health care facility will be random and will follow the Poisson distribution. 
According to Karlin, and McGregor [11], the Poisson distribution was named after the famous French 
Mathematician, Simeon Denis Poisson (1781-1840) who first studied it in 1837. He applied it to results such 
as the probability of death in the Prussian army resulting from the kick of a horse and suicides among 
women and children. The Poisson process is considered the most ”random” arrival process because of its 
assumption that the number of arrivals in any given time period, which has a Poisson distribution, is 
independent of the number in any other non-overlapping time period. Rosenquist [12] studied how an 
increase in patient arrival rate affected waiting times and queue length for an emergency radiology service. 
Many health care systems have a variable arrival rate though some models assume a constant arrival rate, but 
the Poisson process has been verified to be a good representation of unscheduled arrivals to various parts of 
the hospital including ICUs and obstetrics units. Similar results in the banking sector were echoed by [13]. 
 
Siddhartan, Jones, and Johnson [3] proposed a priority discipline for different categories of patients and then 
a first-in-first-out (FIFO) discipline for each category. They found that the priority discipline reduces the 
average waiting time for all patients. However, while the wait time for higher priority patients reduced, 
lower priority patients endured a longer average waiting time. An emergency anesthetic department 
operating with priority queuing discipline was modeled by [14] with an interest in the probability that a 
patient would have to wait more than a certain amount of time to be served. Haussmann, [15] investigated 
the relationship between the composition of prioritized queues and the number of nurses responding to 
inpatient demands. The authors found that a slight increase in the number of patients assigned to a nurse with 
a patient mix with more high-priority demands resulted in very large waiting times for low priority patients. 
 
McQuarrie [16] showed that it is possible, when utilization is high, to minimize waiting times by giving 
priority to clients who require shorter service times. This rule is a form of the shortest processing time rule 
that is known to minimize waiting times. It is rarely found in practice due to the perceived unfairness unless 
that class of customers is given a dedicated server, as in a bank with a dedicated teller to customers with bulk 
money. Worthington [17], analyzed patient transfer from outpatient physicians to inpatient physicians. The 
patient was assigned one of three priority levels. Based on the priority level, there was a standard time period 
before which a referred patient should be scheduled to see the inpatient physician. The model assumed 
sufficient in-patient capacity to treat the highest priority category within. 
 
Due to the availability of many parallel servers, the M/M/s queuing model is deduced from the Karlin and 
McGregor [11] representation for the transition probabilities. This representation allows for the study of 
arrival of patients, the queue length, the waiting in line cost and service cost. These will then enable us to 
determine the equilibrium to optimize service and reduce costs. Kembe [18], analyzed the queuing 
characteristics at the Riverside Specialist Clinic of the Federal Medical Centre, Makurdi using a Multi-server 
queuing Model and determined the Waiting and service Costs with a view to determining the optimal service 
level. The results of the analysis showed that average queue length, waiting time of patients as well as over 
utilization of doctors could be reduced when the service capacity level of doctors at the Clinic is increased 
from ten to twelve at a minimum total costs which include waiting and service costs. 
 
According to Keller and Laughhunn [19], the capacity of the health care facility can be good but there is 
need to redistribute in time to accommodate patient arrival patterns. Other optimization designs proposed an 
incremental analysis approach in which the cost of an additional bed is compared with the benefits it 
generates [20]. Beds are added until the increased cost equals the benefits. Whilst much literature is devoted 
to the analysis of service systems with constant mean arrival and service rates [21] stated that most actual 
systems today are subject to time-varying demand, where arrival rates and the number of servers vary 
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throughout the period of operation. In subsequent years and decades, research interest in health care 
modeling through queuing theory has developed and there now exist a multitude of studies. 
 
A considerable body of research has shown that queuing theory can be useful in real-world health care 
situations, and some reviews of this work have appeared. McClain [4], reviewed research on models for 
evaluating the impact of bed assignment policies on utilization, waiting time, and the probability of turning 
away patients. Gorunescu, McClean and Millard [22] developed a queuing model for the movement of 
patients through a hospital department. Performance measures, such as mean bed occupancy and the 
probability of rejecting an arriving patient due to hospital overcrowding, are computed. These quantities 
enable hospital managers to determine the number of beds needed in order to keep the fraction of delays 
under a threshold, and also to optimize the average cost per day by balancing the costs of empty beds against 
those of delayed patients. This ensures that patients are served promptly and their survival rate is increased. 
A medical-surgical Intensive Care Unit where critically ill patients cannot be put in a queue and had to be 
turned away when the facility was fully occupied [23]. This is a special case, where the queue length cannot 
be greater than zero, which is called a pure loss model. Green [7] applied queuing models to determine the 
number of nurses needed in a medical ward. They are relying on queuing models such as Erlang-C and loss 
systems, to recommend bed allocation strategies for hospital wards. Whitt [24] surveyed and developed 
time-varying queuing networks that help in determining the number of physicians and nurses required in an 
emergency department. The main interest of these researchers was to increase patient survival in emergency 
departments. In recent years, however, queuing models have been developed and used in studying multi-
facility interactions and their results have positively affected the management of service facilities towards 
optimizing customer survival. 
 

3 Materials and Methods 
 
This chapter gives an over view of the methodology that was employed in this study and the model that was 
used to calculate the parameters necessary to solve the problem at hand. Data for three months was collected 
form Moi Teaching and Referral Hospital (MTRH) and spreadsheet software used to analyze the data. In this 
study, the M/M/s model was used to analyze the utility and cost optimization in the ICU health facility of 
MTRH. The following are the model characteristics and assumptions. 
 
3.1 Model characteristics and assumptions 
 
MTRH is a level five hospital serving more than 10 counties. The neighbouring health facility of the same 
standards is Nairobi, which implies that the calling population is infinite. Despite the presence of competing 
hospitals in its proximity, the provision of emergency services which require ICU facilities is solely in 
MTRH except for isolated cases. The following assumptions were made for the queuing system at MTRH 
which is in accordance with the queuing theory. They are; 
 

(i) Arrivals follow a Poisson probability distribution at an average rate of � customers (patients) per 
unit of time. 

(ii)  The queue discipline is First-Come, First-Served (FCFS) basis by any of the servers. There is 
minimal priority classification for some extremely critical arrivals but not significantly affecting the 
services. 

(iii)  Service times are distributed exponentially, with an average of � patients per unit of time. 
(iv) There is no limit to the number of the queue (infinite). 
(v) The service providers are working at their full capacity. 
(vi) The average arrival rate should be less than average service rate. This is necessary to ensure that the 

queue would not eventually grow infinitely. 
(vii)  Servers here represent doctors, beds, theater, ICU equipment and other medical personnel necessary 

to provide full services to the ICU patients. 
(viii)  Service rate is independent of line length; service providers do not go faster because the line is 

longer. 
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A model satisfying the above assumptions has the capacity to capture all the parameters that involve a multi-
channel server system, where clients are served in a parallel server system. The waiting customers in a queue 
can be fully served if they are attended by any one of the available channels. This model could apply to 
many qualitative analysis of different situations. Some of the physical examples that apply include, a 
telephone booth or an operator help desk, where the time on hold on the phone would represent the time in 
queue; and the queue length would be the number of calls that the system will accept and put on hold before 
giving a busy signal on the caller’s phone or playing a recorded message asking the caller to hang up and try 
again later. Also in an hospital setting, the ICU admission desk, the time waiting for a bed after a request 
represent the time in queue and the queue length would be the number of request waiting for service. This 
can also apply to a retail store, where customers wait to be served over a counter with many cashiers. With 
these conditions, the most appropriate model adopted for this work is the Multi-server Queuing model 
(M/M/s): (∞/FCFS) is chosen to model the dynamics of an emergency medical service with respect to utility 
of ICU resources. 
 
3.2 Model flow chart 
 
Following the characteristics of the hospital emergency service, and the assumptions of the model, the 
following flow chart represents the components of a hospital queuing system. The system is illustrated to 
include servers, one queue and a general ward facility for recuperating patients. In this study, the patients 
admitted directly to the general ward are not considered to be in the queue, and those transferred from ICU 
to general ward are assumed to have left the system even when still admitted in the ward. Also, a patient 
admitted in the general ward who may require ICU services is assumed that the patient will join the queue 
for the services. 
 

3.3 Model description (M/M/s): (∞/FCFS) 
 
In (M/M/s) queuing model, it is assumed that the arrivals of patients follow a Poisson probability distribution 
at an average arrival rate of � per unit of time. It is also assumed that arriving customers are served on a 
first-come, first-served (FCFS) basis by any of the empty servers with service times distributed 
exponentially with an average rate of � per server per customer. With 
 number of servers, the average 

length of service time is �
��.  

 
If there are n patients in the queuing system at any point in time, then the following two cases may arise; 
Case I: That � < 
, hence there will be no queue and (
 − �) number of servers will be idle. Case II: If 
 ≥ � then all servers will be busy and the maximum number of customers in the queue will be (� −  
). 
 
Let ��  be the probability that there are no customers in the system, ��  be the probability of having � 
customers in the system, �� expected number of customers in the queue, �� expected number of customers in 
the system, �� expected time a customer (patient) spends in the queue, �� expected time a customer spend 
in the system, then; if ��� is the probability that an arrival enters the system between time � and time � +  �� interval, then 1 − ��� is probability that no arrival enters the system within interval or �� time units. 
Also let µ��  be the probability of one service completion between �  and � +  ��  time interval. Using ��!"(�);  $ � 0, 1, 2, . .. as the transient state probability of exactly � +  $ customers in the system at time �, 
and assuming the system started its operation at time zero, then ��!"(� +  ��);  $ � 0, 1, 2, . .. is the transient 
state probability of exactly � +  $ customers in the system at time � +  ��. As a property of the Multi-
channel model, it is necessary to find an expression for the probability of n customers in the system at time �. 
This can happen in three ways; namely, when � � 0, 1 ≤  � ≤  
 −  1  and � �  
 −  1 . By discrete 
method and starting from when � � 0 , the number of clients in the next unit of time is equal to the 
accumulation rate multiplied by the initial population, defined as; 
 

�� � (
� �)                                                (1) 

 



 
 
 

Rotich; BJMCS, 19(1): 1-18, 2016; Article no.BJMCS.29369 
 
 
 

7 
 
 

When � lies between 1 and 
 −  1, all customers arriving will be immediately served and � channels out of 
  will be busy. The value of ��(� +  ��)  can occur in three exclusive and exhaustive ways and by 
considering the steady state of the system, these are obtained to be;  
 ���*� −  (� + �µ)�� + (� + 1)µ��!� � 0;    1 ≤  � ≤  
 –  1               (2) 
 
Putting � � 1 in equation (2), and using Equation (3.1), we get 
 

�, � 12! .��/, �) 

 
and the recurrence relation for any value of 1 ≤ � ≤ 
 −  1 is given in general by, 
 

�� � �
�! 0(

�1� �)                                                                           (3) 

 
In case � ≥ 
, we begin with when � � 
 − 1, substituting it in equation (2), we get 
 

�� � �
�� 2� + (
 − 1)�3��*� − 0 (

��1 ��*,                                                          (4) 

 

Now from Equation (3), ��*� � �
(�*�)! 0(

�1�*� �)  and ��*, � �
(�*,)! 0(

�1�*, �)  or in general, �� � �
�! 0(

�1� �). 

Similarly, when � � 
 + 1, substituting in Equation (2) and simplifying, we obtain 
 

��!� � 1
. 
! .��/�!� �),      ��!, � 1
,. 
! .��/�!, �), … 

 
which in general, for � ≥ 
, 
   

�� � �
�567.�! 0(

�1� × �)                                                                          (5) 

 
Thus equation (1), (4) and (5) give the value of �� for � � 0, 1 ≤  � ≤  
 −  1 and � ≥ 
. We now need to 
find the value of  �) in terms of 
, µ and �. Then the values of  �� and  �) can be used to develop the other 
equations. To find the value of  �), we use the relation; 
 

9  �� �  1
∞

�:)
 

 
or 
 

9  �� +  9  �� �  1
∞

�:�

�*�

�:)
 

 
Replacing the first �� using Equation (3) and replacing the second �� using Equation (5), we obtain, 
 

9 1�! .��/� �) +  9 1
�*�. 
! .��/� × �) �  1
∞

�:�

�*�

�:)
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which with little algebra simplifies to 
 

�) � ;∑ �
�! 0(

�1��*��:) + �
�! 0(

�1� × 0 ��
��*(1=*�

                                                             (6) 

 
Now the other properties of the multi-channel system can be found using the equations in >(1) − (6)@ as 
follows;  
The expected (average) number of customers in the system denoted by �� will be, 
 

�� � (.�0AB17
(�*�)!(�*,)C  �) + (

�                                                                          (7) 

 
while the expected (average) number of customers waiting in the queue �� is, 
 

�� � D (.�0AB17
(�*�)!(��*()CE �) − (

�                                              (8) 

 
Using Equations (7) and (8), we determine the satisfaction of patients, using the parameter accounting for 
the average time a customer spends in the system defined as, 
 

�� �  F7( �  D �0AB17
(�*�)!(��*()CE �) + �

�                                                           (9) 

 
Before a patient is served, the patient is expected to wait in the queue for a duration defined as, 
 

�� �  FG( � D �0AB17
(�*�)!(��*()CE �) − �

�                                                         (10) 

 
with the probability of having to wait given by the proportion defined in form of a probability as 
 

�(� ≥ 
) � D �0AB17
(�*�)!(��*()CE �)                                                         (11) 

 
Under normal circumstances, no patient arrives to a health facility and finds no queue. This happens when 
the service rate µ is faster than the arrival rate �. The interpretation of this in the physical situation is that the 
ICU is idle, thus will have a cost impact to the facility. The chances of a customer or a patient to enter the 
service without waiting is given by 1 −  �(� ≥ 
). The analysis of parameters used to check the minimum 
number of servers necessary to meet the requirements of the patients without idle servers is obtained from 
the average number of idle servers given by 
 −(average number of customers served). The utilization rate 

of the servers is defined by H � (
� and thus the efficiency of M/M/s model is obtained from the traffic 

intensity, 
 

  H � IJKLMNK �OPQKL RS TO
�RPKL
 
KLJK��R�MU �OPQKL RS TO
�RPKL
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Fig. 1. Flow chart showing the major components of queuing system 
Source: Author 

 

4 Introducing Costs into the Model 
 
In order to evaluate and determine the optimum number of servers required in the system, two opposing 
costs must be considered in making decisions: (i) Service costs (ii) Waiting costs. The first involves the cost 
incurred in the provision of desired service, here called service cost denoted by (VW �  W�). Service cost is 
directly incurred while providing services and it includes salaries paid to employees, cost of facilities, 
equipment and tools used, cost of service space, rent, supplies, ICU facilities, beds, electronics, doctor’s 
fees, support staff allowances, oxygen, theater cost just to mention but a few. Waiting cost on the other hand 
entails the opportunity cost incurred by the customer due to waiting for service. It includes cost of losing life 
due to waiting, cost of getting equivalent service elsewhere, quality or value of time wasted and other costs 
associated with accepting incomplete and unsatisfactory services. This cost is referred to as service waiting 
cost and denoted by �W �  ��. 
 
It is the wish of every customer to be given individual attention using the best equipment by qualified and 
experienced servant promptly. This is what they define as quality service. On the other hand, service 
provider on the other hand wishes to use minimum operation costs to provide services so as to maximize 
profit. This means customers will have to stand in long queues waiting to be served. Analysis of these costs 
helps in finding equilibrium point between the increased costs of providing better service and decreased 
waiting costs of customers. 
 
In a hospital facility, the most crucial time is the waiting time in the queue before service starts denoted by �� . Most patients belief that they are safe as soon as they see a doctor, even before treatment commence, 
but possibly first aid and pre-treatment tests conducted which include but not limited to checking blood 
reassure, body temperature, resuscitation, oxygen supply, rehydration, stopping bleeding or any other 
measure which reduces the risk that the patient is facing, and making them out of danger. Therefore, time in 
the queue would be the preferred characteristic to measure quality specification and thus used to estimate 

waiting and service cost. The waiting in line time for (M/M/s) model is defined in Equation (10) as �� � FG( , 

and using this relation, the expected cost of queuing in the system per person per unit time is the product, 
 W� � ���WX � ��WX                                                                        (12) 
  
Denote the expected service cost incurred by the health facility by W�. Then the total service cost is given by 
 Y(VW) � 
W�                                                           (13) 
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where 
 is the number of servers. Using Equation (12) and (13), the total cost is obtained by adding the 
service cost and the waiting cost to yield, 
 ZW �  
W�  +  W�                                                          (14) 
 
4.1 Loss function for waiting lines 
 
The measure of quality, as related to both the product and the service, is often dif cult to precisely quantify 
because of different perspectives of individuals, but quality involves short waiting time, cleanliness, 
satisfactory service, affordable and friendly. A low level of service may be inexpensive, in the short run but 
the service provider may incur high cost of customer dissatisfaction such as lose of future business, lose of a 
potential sale, development of poor reputation, loss of goodwill and increased competition by firms in the 
same industry. Deviation from the expected quality of service leads to a situation where the client incurs 
opportunity cost. The level of cost incurred can be determined by a loss function which links the cost and the 
level of deviation from the expected standards. The following two loss functions have been used previously 
in deter mining the opportunity cost a customer incurs when the product or service fails to meet the target 
specification value. These are the traditional loss function and the Taguchi loss functions discussed below. 
 
4.1.1 Traditional loss functions 
 
As expected, customers incur costs when the services provided are not meeting the expected limits, that is, 
the services are either too low to meet the required expectations, or too high that the consumer is not able to 
meet the cost. The traditional quality loss function was a square function illustrated in Fig. 2. In this 
function, the customers are equally satisfied, and therefore do not incur any loss, as long as the quality of 
services meets the specifications between �V� and [V�. This is not realistic, and thus, an improved Taguchi 
loss function shown in Fig. 3 was formulated using a quadratic function [25]. Principles of formulating 
Taguchi loss function assumes that, there is no cost incurred by the service providing organization or by the 
customer unless the product or service goes beyond its Upper or Lower Specification Limits, (USL or LSL). 
 

 
 

Fig. 2. Traditional loss function showing USL and LSL 
Source: Author 

 
4.1.2 Taguchi loss functions 
 
The Taguchi Loss Function takes a different perspective on when the cost of poor quality are incurred. 
Taguchi theorized that rather than incur costs beginning at two finite points that are \ a specific level of 
tolerance from the target value (or specification nominal value), costs are actually incurred as soon as the 
value moves from its target value [25]. In addition, rather than continue at a constant rate, these costs are 
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incurred at the square of the deviation from the target value, and therefore continue to increase the farther the 
specification deviates from the targeted value. The only point in the model at which no loss is incurred is at 
the actual targeted value  Z. 
 

 
Fig. 3. Taguchi function showing calculation of loss function 

Source: Author 
 
In contrast with traditional models, the Taguchi Loss Function describes the failure to meet desired 
specification cost W incurred as; 
 

W �  ]0,     $S �V� ≥  P ≥ [V�^(P − Z),,   R�_KL`$
Ka                                                         (15) 
 
where Z is the target specification, m is the unit measure of quality specification and the constant ^  is 
determined from the cost of rejecting the item at a specification limit from the relation, 
 

^ � b([V� −  Z), , 
 , 

where b  is the cost or rejecting the item at specification limit. Clearly, the Taguchi loss function is a 
quadratic function which hits the zero cost line if the specification limit is equal to the target value � �  Z. It 
also has a uniform gradient for all customers and infinite cost on extreme deviation from the target value. 
This model does not put into account individual tolerance differences on levels of satisfaction of the item or 
service specification. 
 
4.1.3 Modified normal loss function 
 
In this study, it is assumed that individual preference is normally distributed with a mean of �̅ and a standard 
deviation of c. A normal distribution table is used to determine the proportion of the cost incurred if the 
measure of product or service quality deviates from the nominal specification value. In this case, the loss 
function S(�) has a graph similar to an inverted normal curve, but with a gap of 2� in between as shown in 
Fig. 4.  
 
The cost function S(�) is equivalent to a one sided normal distribution function which assigns a numerical 
value proportional to the amount at which the quality of service or product deviates from the individual 
specification target. The individual target quality will be a range of values in the interval d ∶�  −� ≤ Z ≤ �. 
If the actual quality of the product or service � �  P  is outside the interval d, the customers will start 
incurring costs due to dissatisfaction. The area under the curve S(�), the x-axis and the lines � � [V� and � � P measures the proportion of opportunity cost an individual will incur due to unsatisfactory standards.  
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Fig. 4. Normal function showing calculation of loss function 
Source: Author 

 
The cost function is defined by, 
 

S(�) � �
√,gh K*iC0j6jk6lm 1C

                                                          (16) 

 
where �̅ is the mean quality specification value, which is equivalent to the standards provided by the service 
provider and \
$NPM  models the quality specification deviation, while� models the individual tolerance 
levels and � is the measure of the actual quality specification. 
 
4.1.4 Tolerance and opportunity cost 
 
The opportunity cost incurred due to delay of service or poor quality of products is inversely proportional to 
the individual level of tolerance. The lesser the tolerance, the higher the opportunity cost. Quality tolerance 
is hereby defined as the measure of the deviation from quality nominal specification without incurring any 
opportunity cost. This should be a natural stretch without any influence or duress. This characteristic is 
measured by the parameter � , which accounts for individual differences on preferences or expected 
standards. The difference in individual preferences or tastes or tolerance is mainly due to individual lifestyle, 
social status, occupation, financial status, cost of alternative similar service elsewhere, urgency of the 
required service, risk associated with delay of the required service, purpose of the product required, just to 
mention but a few. 
 
Let WX be the cost of rejection at the specification limit � � P and let Z be the mean target specification 
value with individual level of tolerance of � ≥ Z. Then the actual cost of rejection incurred by the customer 
satisfies the condition 
 

WX � ]^S(P),   $S  P o |�̅ + �|0,          $S  P < |�̅ + �| a                                                 (17) 

 
where ̂  is the maximum opportunity cost incurred as P → \∞ and �̅ + � � V� (Specification Limit). 
 
4.1.5 Estimating waiting cost 
 
The cost of waiting of an individual patient is estimated to be equal to the cost of the next best alternative 
opportunity, and it is proportional to length of time delay. The ICU services are very essential services which 
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save lives and the most important parameter of determining the quality of service is the response time �̅ of 
the paramedics. Using time as the measure of quality specification, the target of every client is to be served 
at once without waiting. This means the value of  �̅ in our model is zero. Since we are using time t as a 
measure of quality, the parameter � in (12) will represent time. The new function will therefore be given by; 
 

S(�) � �
√,gh K*iC0r6lm 1C

                                                          (18) 

 
The waiting cost therefore is determined using equation (14) as 
 W�  �  ^S(�)                                                           (19)  
In order to use Standard Normal Tables, the observed values of service time � can be standardized using the 

relation s � (t *u) 
h  to obtain a standard normal distribution, which can be read directly from the tables. 

 
Example 
 
A server provides emergency services with an average target time of �̅  � 0 and a standard deviation of c � 15P$�. Consider an individual who can incur a maximum opportunity cost of ̂  �  ^
_500 if service 
is delayed. If the individual has a tolerance of � � 15P$� and the service was provided at � � 40P$�, then 
the waiting cost of the individual will be; 
 

The standard score of s �  (x )* ) *� y) 
�y  � 1.667 

 
From the Normal Tables, the area under the curve { (|s| � 1.67)  �  0.9050 
 
The waiting cost will be WX  � }S(�) �  500 ×  0.9050 WX  �  ^
_452.50 
 

 
 

Fig. 5. Opportunity cost incurred 
Source: Author 

 
4.2 Queuing cost analysis 
 
In this section, queuing costs is simulated in order to determine the optimum cost of the facility in relation to 
service cost and waiting costs. From section 4, using Equation (14) and Equation (19), we obtain the total 
cost as; 
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ZW �  
W�  +  ^S(�)                                                                        (20) 
 
4.3 Data analysis 
 
The following data was obtained from MTRH showing the bed occupancy, or number of servers and service 
and arrival rates of the patients to the ICU. Using MATLAB, simulation was done to analyze the effects of 
varying the individual tolerance and response time. Computation of Queuing parameters and costs were done 
using MTRH ICU data presented in Table 1 below. 
 

Table 1. Data showing values of parameters relating to MTRH ICU services 
 

Item Description Symbol Value 
1 Number of ICU beds 
 Variable 
2 Arrival rate of patients per unit time � 7 
3 Service rate of each server � 2 
4 Average expected response time (in hours) �̅ 0.833 
5 Standard deviation of service response time (in hours) c 0.083 
6 Individual waiting time tolerance � Variable 
7 Maximum average waiting cost per individual (Ksh/hr) ~ 800 
8 Average service cost of each server (in Ksh) per hour ̂  100 
9 Measure of service quality specification P or � (time) Variable 
10 Individual target service time �̅ + � Variable 
11 Total number of customers arriving in the facility � � o 
 

 
Using the data in Table 1, the following costs are generated from MATLAB simulation. Simulation for 5 
beds to 32 beds results is presented in Table 2. This is done with tolerance level of � � 0.083 hours and a 
response time of �̅  � 0.083 hours. With service time standard deviation of c � 0.0162 hours, we obtain the 
optimum queuing cost of Ksh 129.52 per hour and the desired number of servers as 
 � 14 (See Table 2). 
 

Table 2. Simulation results for non-zero tolerance  � � �. ���,  and  �k � �. ��� 
 � � �� �� �� �� �� �� �� 

5 0              2.3333          5.8333       0.83333       0.33333       0 50 50 
6 0.37101 1.4           4.9             0.7           0.2       415.53          60 475.53 
7 0.42463 1 4.5             0.64286       0.14286        339.7             70 409.7 
8 0.46583 0.77778        4.2778       0.61111       0.11111        289.85           80 369.85 
9  0.49816 0.63636        4.1364       0.59091      0.090909       253.61           90 343.61 
10  0.52405 0.53846        4.0385       0.57692      0.076923       225.74          100 325.74 
11  0.54515 0.46667        3.9667       0.56667      0.066667       203.52          110 313.52 
12  0.56265 0.41176        3.9118       0.55882      0.058824       185.34          120 305.34 
13  0.57736 0.36842        3.8684       0.55263      0.052632       170.17          130 300.17 
14  0.58988 0.33333        3.8333       0.54762      0.047619       157.3            140 297.3 
15  0.60066 0.30435        3.8043       0.54348      0.043478       146.25          150 296.25 
16  0.61003 0.28              3.78           0.54             0.04                136.65          160 296.65 
17  0.61825 0.25926        3.7593       0.53704      0.037037       128.23          170 298.23 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
28  0.66854  0.14286        3.6429       0.52041      0.020408       76.405          280 356.4 
29  0.67115  0.13725        3.6373       0.51961      0.019608       73.695          290 363.69 
30  0.67357  0.13208        3.6321       0.51887      0.018868       71.17            300 371.17 
31  0.67584  0.12727        3.6273       0.51818      0.018182       68.812          310 378.81 
32  0.67795  0.12281        3.6228       0.51754      0.017544       66.606          320 386.61 
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In absence of tolerance, simulation results show an increase in the queuing cost. This is expected because 
absence of tolerance increases the length of waiting time in the queue which attracts costs. In this scenario, 
at � � 0, queuing cost increased to W� � 145.93 and an optimum number of servers of 
 � 18. This will 
allow for having an extra idle server/bed and have traffic intensity H ≤ 1 to handle emergencies. These 
results concur with the findings of [13]. The combined graph for the two scenarios is depicted in Fig. 6.  
 

 
 

Fig. 6. Queuing costs against number of servers 
 
The response time affects the cost of queuing if the level of tolerance is shorter than the response time. In 
any case, the length of delay which attracts cost is calculated at �� − � . Using the normal curve 
with �(�̅, c) � � (0.0083, 0.0083), the corresponding probability of waiting in the queue is  �� � 0.7036 
which gives the proportion of total cost of waiting. The Queuing cost is therefore calculated using Equation 
(19) as, W�  �  ^S>��@ � 0.7036 × � × �� × 800 �  562.88. 
 

5 Conclusions 
 
In the analysis done in section 4, the queuing characteristics at Moi Teaching and Referral Hospital (MTRH) 
in Eldoret, Uasin-Gishu County was analyzed using M/M/s queuing model. Waiting and Service costs were 
introduced into the model in order to determine the optimal service level. With the support from the 
government, the target was to determine the optimum number of servers which will reduce the patient 
queuing cost thus satisfying the consumers and save lives. Incorporating tolerance in the loss function, the 
proportion of customer’s willingness to meet the waiting costs due to delayed service was used to determine 
the queuing cost. From the current scenario of 6 ICU beds, the operation cost in absence of delay (tolerance) 
is estimated at, W� � 60 and W� � 415.53, with �� � 1.4  people per hour. Since ICU operates 24 hours a 
day, this translates to a service and queuing cost of ^
_. 1,440 and ̂ 
_. 9,972.72 per day. If the first set of 
patients admitted to ICU spends an average of 4 days in bed, the total accumulated people waiting in the 
queue will be 134.4 patients with a total opportunity cost of ^
_. 55,847.23. The following are the results 
of the model analysis.  
 

a) In subsection (3.3), M/M/s queuing model is analyzed to determine the number of customers in the 
system �� , length of the queue �� , waiting time in the system �� and waiting time in the queue ��. 
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b) In subsection (4), the total cost ZW � 
W� + W� was represented in terms of the service cost W� and 
the queuing cost W�. 

c) In the sub subsection (4.1.3), a modified normal loss function was formulated. This probability 
function S(�)  use the individual level of tolerance �  to determine the proportion of loss the 
individual incur due to waiting in the queue. This loss function modifies the waiting cost to W� �^S(�). 

d) In the subsection (4.3), data from MTRH is simulated using equations ((3.7)-(3.10), (4.5)-(4.7)) to 
determine the optimum total cost for different number of servers (beds). These simulation results 
are shown in Table 2. 

e) From simulation results in (d) above, it is shown that in absence of tolerance  � � 0, the facility 
operating currently at 
 � 6 beds has ≈ 34 patients waiting in the queue in a day each incurring a 
waiting cost of ̂ 
_ 641.39 per hour. If the beds are increased to an optimum number 
 � 18, the 
queuing cost will reduce to ^
_ 153.98, which is a 76% reduction. If the patients allow a tolerance 
of � � 0.083 hrs, the optimum beds will reduce to 
 � 15 with a corresponding queuing cost of ^
_ 146.25 representing a 65% reduction from the current scenario. These optimum points are 
illustrated in Fig. 6. 

 
Following the description of results above, data analysis indicates that there is a strong need to acquire more 
ICU beds to a minimum of 18. This is less than 30 units proposed by the current CEO in an article which 
appeared in the Kenya Daily Nation dated Wednesday 27th July 2016. If the CEO’s proposal is 
implemented, the facility will operate at 
 � 30,   W� � 87.91,   W� � 300,   ZW � 387.91. This will reduce 
the customers queuing cost by 86% and reduce the total operation service cost by 45%.  
 
This analysis can however be extended to include related facilities and departments like the theater, wards, 
endoscopy, dialysis, RMI, X-ray, CT scan services and number of doctors, just to mention but a few. This 
will give an overall performance of the entire facility. The data used was collected for three weeks between 
June and July 2016. Reliability of analytic results will improve if data is collected for a longer period of 
time. 
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