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Abstract 
 
The present paper deals with the effect of linearly temperature on transverse vibration of non-homogeneous 
orthotropic trapezoidal plate of parabolically varying thickness. The deflection function is defined by the 
product of the equations of the prescribed continuous piecewise boundary shape. The non homogeneity of 
the plate is characterized by taking linear variation of the Young's modulus and parabolically variation of the 
density of the material. The non homogeneity is assumed to arise due to the variation in the density of the 
plate material and it is taken as parabolically. Rayleigh Ritz method is used to evaluate the fundamental fre-
quencies. The equations of motion, governing the transverse vibrations of orthotropic trapezoidal plates, are 
derived with boundary condition clamped-simply supported-clamped-simply supported. Frequencies corres-
ponding to first two modes of vibration are calculated for the trapezoidal plate for various combinations of 
the parameters of the non-homogeneity, thermal gradient, taper constant and for different values of the aspect 
ratios and shown by figures. All The results presented here are entirely new and are not found elsewhere. 
Comparison can only be made for homogeneous plates, and in that cases the results have been compared 
with those found in the existing literatures and are in excellent agreement. 
 
Keywords: Thermal Gradient, Vibration, Orthotropic Trapezoidal Plate, Parabolically Thickness,  

Non-Homogeneity 

1. Introduction 
 
Plate structures are fundamental elements in engineering 
and are used in a variety of structural applications. Stru- 
ctures like aircraft wings, satellites, ships, steel bridges, 
sea platforms, helicopter rotor blades, space craft anten-
nae and subsystems of more complex structures can be 
modeled as orthotropic plate elements. The practical im-
portance of plates has made vibration analysis essential 
for avoiding resonance excited by internal or external 
forces. Plate structures undergoing transverse deflection 
can be classified into numerous regimes that describe the 
nature of their behavior and thus the characteristics of the 
mathematical problem. Plate theory has been applied to 
reduce vibration and noise in structures since the end of 
the 19th century where it began with the work of German 
physicist Chladni, who discovered various modes of free 
vibrations experimentally. Since then it has developed 

into an escalating and expansive field with a wide variety 
of theoretical and empirical techniques, dealing with 
increasingly complicated problems. Also in recent years, 
the development of solid propellant rocket motors, the 
increased use of soft filaments in aerospace structure, 
high speed runways, many practical solid structure inte-
raction problems such as floor slabs of multistory build-
ings or buildings activities in cold regions has intensified 
the need for solution of various problems of plates and 
other structure supported on elastic media. 

In addition, the non-homogeneity of longitudinal to 
transverse modules of these new materials demands im-
provement in the existing analytical tools. As a result, the 
analysis of plate’s vibrations has attracted many research 
workers, and has been considerably improved to achieve 
realistic results. In the design of modern high-speed air-
craft and missile structures, swept wing and tail surfaces 
are extensively employed. The literature on the free vi-
brations of plates is vast. A number of researchers have 
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worked on free vibration analysis of rectangular, circular, 
elliptical etc. plates and variable thickness. Little res- 
earch work has been done on non uniform thickness tra-
pezoidal plates as compared to the other plates.  

Trapezoidal plates are used commonly as structural 
components in many engineering applications such as 
ships, aircraft, engineering constructions etc. many res- 
earcher have investigated the free vibration behavior of 
trapezoidal plates. Leissa’s monograph [1-3] contains an 
excellent discussion of the subject of vibrating plates. 
Chopra and Durvasula [4] solved the problem of vibra-
tion of simple-supported trapezoidal plate symmetric 
trapezoids. Vibration of skew plate was discussed by 
Nair and Durvasula [5]. Thermal effect on axisymmetric 
vibration of an orthotropic circular plate of variable thi- 
ckness was discussed by Tomar and Gupta [6]. Tomar 
and Gupta [7] solved the problem of vibration of ortho-
tropic rectangular plate of linearly varying thickness with 
thermal gradient effect. Orris and Petyt [8] study of the 
vibration of trapezoidal plate by using finite element me- 
thod. Narita, Maruyama and Sonada [9] studied the tran- 
sverse vibration of clamped trapezoidal plate having rec-
tangular orthotropy. Mirza and Bijlani [10] discussed the 
vibration of triangular plates. Bhatnagar and Gupta [11] 
solved the problem of thermal effect on vibration of vis-
co elastic elliptic plate of variable thickness. Transverse 
free vibration of fully clamped symmetrical trapezoidal 
plates was discussed by Sahba [12]. Laura, Gutierrez and 
Bhat [13] studied the transverse vibrations of a trapezoi- 
dal cantilever plate of variable thickness. Liew and Lam 
[14] studied a Rayleigh-Ritz approach to transverse vi-
bration of isotropic and anisotropic trapezoidal plates 
using orthogonal plate functions. Problem of variable of 
symmetric laminated cantilever trapezoidal composite 
plates was solved by Liew [15].Liew and Lim [16] stu-
died the transverse vibration of trapezoidal plates of va-
riable thickness: symmetric trapezoids. Qatu, Jaber and 
Leissa [17] work out to analyze the natural frequencies 
for completely free trapezoidal plates. Vibration of pret-
wisted cantilever trapezoidal symmetric laminates was 
discussed by Lim and Liew [18]. Sakiyama and Hung 
[19] studied the free vibration analysis of right triangular 
plates with variable thickness. Lal [20] studied the trans- 
verse vibration of orthotropic non uniform rectangular 
plate with continuously varying density. Leissa [21] dis-
cussed the historical bases of the Rayleigh and Ritz me-
thods. Chi-Hung, Chien and Yen-Kuang [22] did expe-
rimental and numerical investigations for the free vibra-
tion of cantilever trapezoidal plates. Gupta, Johri and 
Vats [23,24] work out to investigate the thermal effect on 
vibration of non homogeneous orthotropic rectangular 
plate having bi-directional varying thickness. Karami, 
Shahpari and Malekzadeh [25] have applied Differential 

Quadrature Method (DQM) for static, free vibration, and 
stability analysis of skewed and trapezoidal composite 
thin plates without hole. Recently, Gupta and Sharma [26] 
solved the problem of thermally induced vibration of 
orthotropic trapezoidal plate of linearly varying thick-
ness. 

From the review of available literature it is observed 
that the linearly temperature on transverse vibration of 
non-homogeneous orthotropic trapezoidal plate of para- 
bolically varying thickness with non-homogeneity effect 
has not been studied. So it is necessary to analyze this 
kind of problem using elasticity theory based Rayleigh 
Ritz method to evaluate for the most accurate behavior of 
frequencies of the plate. Therefore, a method is devel-
oped to study the problem both theoretically and experi-
mentally. In order to calculate natural frequencies for 
first and second mode of vibration, Rayleigh Ritz method 
is used. The frequencies for the first and second mode of 
vibration are calculated for the trapezoidal plate having 
C-S-C-S edges for the different values of taper constant , 
thermal gradient and aspect ratio and presented in graph-
ically form.  
 
2 Method of Analysis 
 
Let us assume that orthotropic trapezoidal plate under 
consideration is subjected to steady one dimensional 
temperature distribution   along the length, therefore 
one can take   as, 

0

1
1

2
          

              (1) 

where 0  is the temperature at 
1

2
  . 

For most orthotropic materials modulus of elasticity 
are described as a function of temperature as, 
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Using Equation (1), Equation (2) becomes  
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where 1 2 0,E E and G are the values of moduli at some 
reference temperature, i.e. 0  . 
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The parabolically varying plate thickness can be ex-
press as, 

   0h x h g x                 (4) 

where g(x) is the thickness variation function.  
The non-dimensional thickness variation function can 

be expressed as, 

     
2

1
1 1 , 0

2
g g   

        
   

     (5) 

With the assumption of small free vibration, the dis-
placement function is periodic in time so it can be ex-
pressed as, 

   , , , sinw x y t W x y t  

where   denotes the frequency of vibration.  
The energy functional for the plate is, 

F V T                   (6) 

The expression for the strain energy V and kinetic 
energy T in the plate is given by, 

2 22 2

2 2

2 2

1 2 2

22

2

2

4

ab W W
V D D

W W
D

W
D d d

 



 

 

 
 

         
     

   
   

   
        

 

     (7) 
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T h g W d d               (8) 

Expression for flexural rigidity and torsion rigidity 
are,  
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(11) 

Also 

1D D D       

Introducing non–dimensional coordinate system as 
,x a y b    

where a and b are the span and width of the plate plan 
form as shown in Figure 1. 

To apply Rayleigh Ritz technique, one must has  
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The two term deflection function taken as, 
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where A1 and A2 are constants. 
The orthotropic plate with symmetric parabolically 

varying thickness and symmetric trapezoidal plan form is 
taken. The thickness h0 is along the edge x = –a/2 and 

0h  is the plate thickness at the edge x = a/2, where   
is the thickness variation ratio.  

Two edges of the plates are clamped and two are sim- 
ply supported i.e. all the four degree of freedoms of the 
nodes to the side faces of the plates are constrained as 
shown in the Figure 1.  

Here limit of   is 
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  and limit of   is –0.5 to 0.5. 

 
Figure 1. The geometry of symmetry trapezoidal thin plate. 
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Assume that the density varies parabolically in x di-
rection. 
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where α1 is the non homogeneity of the plate. 
Substitute Equations (5), (9) to (11) and (13) in Equa- 

tions (7) and (8), one has 
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(15) 
Using Equations (14) and (15) in (6) we have, 
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Equation (16) contains two unknown constants A1 and 
A2 which can be evaluated as  
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The Equation (17) simplifies to the form 

1 1 2 2 0,  1,2n nc A c A n             (18) 

where cn1 and cn2 (n = 1,2) involves parametric constants 
and frequency parameter. 

For a non-zero solution, the coefficient matrix of Equ-
ation (18) must be zero. In this way the frequency equa-
tion must comes out to be  
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From Equation (19) one can obtain a quadratic equa-
tion in 2  from which two values of 2  can be found.  
 
3 Results and Discussion 
 
Numerical results are obtained for the first two modes of 
vibrations for transverse vibration of non-homogeneous 
orthotropic trapezoidal plate of parabolically varying thi- 
ckness with thermal gradient effect and non-homo- gene-
ity effect for different values of aspect ratios. Frequency 
(19) is quadratic in 2 , so it will give two roots.  

The parameters for orthotropic material have been 
taken as [3]: 
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1 1 1

0.32, 0.04, 1 0.09
GE E
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These results are plotted in Figures 2-9. 
A study will now be presented for a set of trapezoidal 

plate configurations by varying c/b and a/b values.  
In Figure 2, results have been displayed for the fol-

lowing values: 
a/b = 1.0, c/b = 0.5, 
α = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
β = 0.0, 0.2 
α1 = 0.0, 0.2 
It can be concluded that with the increase in thermal 

gradient, frequency decreases for both the modes. 
Result have been displayed for the following values 
a/b = 1.0, c/b = 0.5  



A. K. GUPTA  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

5

 

 

Figure 2. Value of frequency parameter for orthotropic trapezoidal plate for different values of thermal gradient 
and fixed values for a/b = 1, c/b = 0.5. 

 

 

Figure 3. Value of frequency parameter for orthotropic trapezoidal plate for different values of taper constant and 
fixed values for a/b = 1, c/b = 0.5. 
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Figure 4. Value of frequency parameter for orthotropic trapezoidal plate for different values of thermal gradient 
and fixed values for a/b = 0.75, c/b = 0.5. 

 

 

Figure 5. Value of frequency parameter for orthotropic trapezoidal plate for different values of taper constant and 
fixed values for a/b = 0.75, c/b = 0.5. 
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Figure 6. Value of frequency parameter for orthotropic trapezoidal plate for different values of non homogeneity 
and fixed values for a/b = 1.0, c/b = 0.5. 

 

 

Figure 7. Value of frequency parameter for orthotropic trapezoidal plate for different values of non homogeneity 
and fixed values for a/b = 0.75, c/b = 0.5. 
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Figure 8. Value of frequency parameter for orthotropic trapezoidal plate for different values of c/b and fixed val-
ues for a/b = 1. 

 

 

Figure 9. Value of frequency parameter for orthotropic trapezoidal plate for different values of c/b and fixed val-
ues for a/b = 0.75.   
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β = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
α = 0.0, 0.2 
α1 = 0.0, 0.2 
In Figure 3. It can be concluded that with the increase 

in taper constant, frequency increases for both the modes. 
In Figure 4, results have been displayed for the fol-

lowing values: 
a/b = 0.75, c/b = 0.5 
α = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
β = 0.0, 0.2 
α1 = 0.0, 0.2 
It can be concluded that with the increase in thermal 

gradient, frequency decreases for both the modes. 
Figure 5 show the results for the following values: 
a/b = 0.75, c/b = 0.5 
β = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
α = 0.0, 0.2 
α1 = 0.0, 0.2 

and it can be concluded that with the increase in taper 
constant ,frequency increases for both the modes. 

In Figure 6, results have been displayed for the fol-
lowing values: 

a/b = 1.0, c/b = 0.5 
α1 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
β = 0.0, 0.2 
α = 0.0, 0.2 
It can be concluded that with the increase in non ho-

mogeneity, frequency decreases for both the modes. 
In Figure 7, results have been displayed for the fol-

lowing values: 
a/b = 0.75, c/b = 0.5 
α1 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
β = 0.0, 0.2 
α = 0.0, 0.2 
It can be concluded that with the increase in non ho-

mogeneity, frequency decreases for both the modes. 
In Figure 8, results have been displayed for the fol-

lowing values: 
a/b = 1.0; c/b = 0.25, 0.5, 0.75, 1.0; 
β = 0.0, 0.2;  
α = 0.0, 0.2 
α1 = 0.0, 0.2 
It can be concluded that with the increase in the value 

of c/b, frequency decreases for both the modes and for all 
combinations of α, α1 and β. 

In Figure 9, results have been displayed for the fol-
lowing values: 

a/b = 0.75; c/b = 0.25, 0.5, 0.75, 1.0; 
β = 0.0, 0.2;  
α = 0.0, 0.2 
α1 = 0.0, 0.2 
It can be concluded that with the increase in the value 

of c/b, frequency decreases for both the modes and for all 

combinations of α, α1 and β. 
 
4. Conclusions 
 
The paper presented a comprehensive review for the ana- 
lysis of the linear vibration characteristics of orthotropic 
trapezoidal plates. The review covered numerical proce-
dures by using Ritz method. The influence of various 
parameters as non homogeneity, taper constant, thermal 
gradient etc, affecting the frequency was also discussed. 
Accurate data has obtained by varying the length ratios 
a/b and c/b. The results for orthotropic trapezoidal plates 
of parabolically varying thickness are verified by the 
literature [3,16]. It has been shown that the method pro-
vides accurate results. 

The frequencies presented in this paper are considera-
ble accurate in order that these should be useful in sub-
sequent research carried out for these plates. 
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