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Abstract

In this paper, we consider a discrete multispecies Gilpin-Ayala type competition-predator system.
Firstly, permanence of the system is studied. Assume that the coefficients in the system are almost
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1 Introduction

Recently, more and more authors have argued
that the discrete time models governed by
difference equations are more appropriate than
the continuous ones when the populations have
non-overlapping generations, also, since discrete
time models can provide efficient computational
models of continuous models for numerical
simulations, it is reasonable to study discrete
time population models governed by difference
equations.

In 2007, Chen et al. [1] had investigated the
dynamic behavior of the following discrete n-
species Gilpin-Ayala competition model

xi(k + 1) = (1.1)

xi(k) exp

{
bi(k)−

n∑
j=1

aij(k)(xj(k))θij
}
,

where i = 1, 2, · · · , n; xi(k) is the density
of competition species i at k-th generation.
aij(k) measures the intensity of intraspecific
competition or interspecific action of competition
species, respectively. bi(k) representing the
intrinsic growth rate of the competition species
xi. θij are positive constants. bi(k), aij(k), i, j =
1, 2, · · · , n are all positive sequences bounded
above and below by positive constants.
Obviously, when θij ≡ 1, system (1.1) reduces
to the traditional discrete multispecies Lotka-
Volterra competition model

xi(k + 1) =

xi(k) exp

{
bi(k)−

∑n
j=1 aij(k)xj(k)

}
.

The next goal of Ref. [1] is to investigate the
dynamic behavior of the following discrete n+m-
species Gilpin-Ayala type competition-predator
model

xi(k + 1) = xi(k) exp

[
bi(k)−

n∑
l=1

ail(k)x
αil
l (k)−

n∑
l=1

cil(k)xαii
i (k)x

αil
l (k)

−
m∑
l=1

dil(k)y
βil
l (k)

]
,

yj(k + 1) = yj(k) exp

[
− rj(k) +

n∑
l=1

ejl(k)x
δjl
l (k)−

m∑
l=1

fjl(k)y
ηjj
j (k)y

ηjl
l (k) (1.1)

−
m∑
l=1

gjl(k)y
ηjl
l (k)

]
,

where i = 1, 2, · · · , n; j = 1, 2, · · · ,m; xi(k) is the density of prey species i at k-th generation, yj(k)
is the density of predator species j at k-th generation. αil, βil, δjl, and ηjl are all positive constants;
ail(k), cil(k) and fjl(k), gjl(k)) measures the intensity of intraspecific competition or interspecific
action of prey species and predator species, respectively. bi(k) representing the intrinsic growth rate
of the prey species xi; rj(k)) representing the death rate of the predator species yj .

For general nonautonomous case, sufficient conditions which ensure the permanence and the global
stability of system (1.1) and (1.2) are obtained; For periodic case, sufficient conditions which ensure
the existence of a unique globally stable positive periodic solution of system (1.1) and (1.2) are
obtained.

Notice that the investigation of almost periodic solutions for difference equations is one of most
important topics in the qualitative theory of difference equations due to the applications in biology,
ecology, neural network, and so forth (see [2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15] and
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the references cited therein). Li and Chen [2] studied an almost periodic discrete logistic equation

x(n+ 1) = x(n) exp

(
r(n)

(
1− x(n)

K(n)

))
.

Sufficient conditions are obtained for the existence of a unique almost periodic solution which is
globally attractive. Wang and Liu [3] studied a discrete Lotka-Volterra competitive system

x1(n+ 1) = x1(n) exp

[
r1(n)− a1(n)x1(n)− c2(n)x2(n)

1 + x2(n)

]
,

x2(n+ 1) = x2(n) exp

[
r2(n)− a2(n)x2(n)− c1(n)x1(n)

1 + x1(n)

]
, n = 0, 1, 2, · · · .

With the help of the methods of the Lyapunov function, some analysis techniques, and preliminary
lemmas, they establish a criterion for the existence, uniqueness and uniformly asymptotic stability of
positive almost periodic solution of the system. Li and Chen [4] had studied extinction and almost
periodic solutions of system (1.1). Assume that the coefficients in system (1.1) are almost periodic
sequences, they obtained that r of the species in system (1.1) are permanent and stabilize at a unique
strictly positive almost periodic solution of the corresponding subsystem, which is globally attractive,
while the remaining n-r species are driven to extinction. However, few work has been done previously
on an almost periodic version which is corresponding to system (1.2). Then, we will further investigate
the global stability of almost periodic solution of system (1.2) with stimulation from the works of [8].

Denote as Z and Z+ the set of integers and the set of nonnegative integers, respectively. For any
bounded sequence {g(n)} defined on Z, define gu = sup

n∈Z
g(n), gl = inf

n∈Z
g(n).

Throughout this paper, we assume that:
(H1) bi(k), ail(k), cil(k), dil(k), rj(k), ejl(k), fjl(k) and gjl(k) are bounded nonnegative almost

periodic sequences such that

0 < bli ≤ bi(k) ≤ bui , 0 < alil ≤ ail(k) ≤ auil, 0 < clil ≤ cil(k) ≤ cuil, 0 < elil ≤ eil(k) ≤ euil,

l = 1, 2, · · · , n,

0 < rlj ≤ rj(k) ≤ ruj , 0 < dljl ≤ djl(k) ≤ dujl, 0 < f ljl ≤ fjl(k) ≤ fujl, 0 < gljl ≤ gjl(k) ≤ gujl,

l = 1, 2, · · · ,m,
i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

From the point of view of biology, in the sequel, we assume that x(0) = (x1(0), x2(0), · · · , xn(0),
y1(0), y2(0), · · · , ym(0)) > 0. Then it is easy to see that, for given x(0) > 0, the system (1.1)
has a positive sequence solution x(k) = (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k))(k ∈ Z+)
passing through x(0).

The remaining part of this paper is organized as follows: In Section 2, we will introduce some
definitions and several useful lemmas. In Section 3, we present the permanence results for system
(1.2). In Section 4, we establish the sufficient conditions for the existence of a unique globally
attractive almost periodic solution of system (1.2). The main results are illustrated by two examples
with numerical simulation in Section 5. Finally, the conclusion ends with brief remarks in the last
section.

2 Preliminaries
Firstly, we give the definitions of the terminologies involved.
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Definition 2.1 [16] A sequence x : Z → R is called an almost periodic sequence if the ε-translation
set of x

E{ε, x} = {τ ∈ Z :| x(n+ τ)− x(n) |< ε, ∀n ∈ Z}
is a relatively dense set in Z for all ε > 0; that is, for any given ε > 0, there exists an integer l(ε) > 0
such that each interval of length l(ε) contains an integer τ ∈ E{ε, x} with

| x(n+ τ)− x(n) |< ε, ∀n ∈ Z.

τ is called an ε-translation number of x(n).

Definition 2.2 [17] Let D be an open subset of Rm, f : Z ×D → Rm. f(n, x) is said to be almost
periodic in n uniformly for x ∈ D if for any ε > 0 and any compact set S ⊂ D, there exists a positive
integer l = l(ε, S) such that any interval of length l contains an integer τ for which

|f(n+ τ, x)− f(n, x)| < ε, ∀(n, x) ∈ Z × S.

τ is called an ε-translation number of f(n, x).

Definition 2.3 [18] The hull of f, denoted by H(f), is defined by

H(f) = {g(n, x) : lim
k→∞

f(n+ τk, x) = g(n, x) uniformly on Z × S},

for some sequence {τk}, where S is any compact set in D.

Definition 2.4 [19] A sequence x : Z+ → R is called an asymptotically almost periodic sequence if

x(n) = p(n) + q(n), ∀n ∈ Z+,

where p(n) is an almost periodic sequence and lim
n→+∞

q(n) = 0.

Lemma 2.5 [20] {x(n)} is an almost periodic sequence if and only if for any integer sequence {k′i},
there exists a subsequence {ki} ⊂ {k′i} such that the sequence {x(n+ ki)} converges uniformly for
all n ∈ Z as i→∞. Furthermore, the limit sequence is also an almost periodic sequence.

Lemma 2.6 [19] {x(n)} is an asymptotically almost periodic sequence if and only if, for any sequence
mi ⊂ Z satisfying mi > 0 and mi → ∞ as i → ∞ there exists a subsequence {mik} ⊂ {mi} such
that the sequence {x(n+mik )} converges uniformly for all n ∈ Z+ as k →∞.

3 Permanence
In this section, we establish a permanence result for system (1.2), which can be given in [1].

Proposition 3.1 Assume that (H1) holds. Then any positive solution (x1(k), x2(k), · · · , xn(k), y1(k),
y2(k), · · · , ym(k)) of system (1.2) satisfies

lim sup
k→+∞

xi(k) ≤Mi, (3.1)

where

Mi =

(
1

αiialii

) 1

αii exp

{
bui −

1

αii

}
, i = 1, 2, · · · , n.

Proposition 3.2 Assume that (H1) and
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(H2) −rlj +
n∑
j=1

eujl(Ml)
δjl > 0

hold for all i = 1, 2, · · · , n, where Mi, i = 1, 2, · · · , n are defined by (3.1). Then for every solution
(x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) of system (1.2) satisfies

lim sup
k→+∞

yj(k) ≤ Nj , (3.2)

where

Nj =

(
1

ηjjgljj

) 1

ηjj exp

{
− rlj +

n∑
l=1

eujl(Ml)
δjl − 1

ηjj

}
, j = 1, 2, · · · ,m.

Proposition 3.3 Assume that (H1) and (H2) hold, assume further that

(H3) bli −
n∑

l=1,l 6=i
auil(Ml)

αil −
m∑
l=1

duil(Nl)
βil > 0

hold for all i = 1, 2, · · · , n, where Mi, i = 1, 2, · · · , n and Nj , j = 1, 2, · · · ,m are defined by (3.1)
and (3.2). Then for every solution (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) of system (1.2)
satisfies

lim inf
k→+∞

xi(k) ≥ mi, (3.3)

where

mi = Ai exp{Bi},

Ai =

( bli − u∑
l=1,l 6=i

auil(Ml)
αil −

m∑
l=1

duil(Nl)
βil

auii +
n∑
l=1

cuil(Ml)αil

) 1

αii
,

Bi = bli −
n∑
l=1

auil(Ml)
αil −

n∑
l=1

cuil(Mi)
αii(Ml)

αil −
m∑
l=1

duil(Nl)
βil ,

i = 1, 2, · · · , n.

Proposition 3.4 Assume that (H1)-(H3) hold; assume further that

(H4) −ruj +
n∑
l=1

eljl(ml)
δjl −

m∑
l=1,l 6=j

gujl(Nl)
ηjl > 0

hold for all j = 1, 2, · · · ,m, where Nj , j = 1, 2, · · · ,m and mi, i = 1, 2, · · · , n are defined by (3.2)
and (3.3). Then for every solution (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) of system (1.2)
satisfies

lim inf
k→+∞

yj(k) ≥ nj ,

where

nj = Cj exp{Dj},

Cj =

(−ruj +
u∑
l=1

eljl(ml)
δjl −

m∑
l=1,l 6=j

gujl(Nl)
ηjl

gujj +
m∑
l=1

fujl(Ml)ηjl

) 1

ηjj
,

Dj = −ruj +

n∑
l=1

eujl(ml)
δjl −

m∑
l=1

fujl(Nj)
ηjj (Ml)

ηjl −
m∑
l=1

gujl(Nl)
ηjl ,
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j = 1, 2, · · · ,m.
As the direct corollary of Proposition 3.1-3.4, we have

Theorem 3.5 Assume that (H1)-(H4) hold, then system (1.2) is permanent.

The next result tells us that there exist solutions of system (1.2) totally in the interval of Theorem
3.5. We denote by Ω the set of all solutions (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) of
system (1.2) satisfying mi ≤ xi(k) ≤ Mi(i = 1, 2, · · · , n) and nj ≤ yj(k) ≤ Nj(j = 1, 2, · · · ,m) for
all k ∈ Z+.

Proposition 3.6 Assume that (H1)-(H4) hold. Then Ω 6= Φ.
Proof. By the almost periodicity of bi(k), ail(k), cil(k), dil(k), rj(k), ejl(k), fjl(k) and gjl(k), there
exists an integer valued sequence {δp} with δp → +∞ as p→ +∞ such that

bi(k + δp)→ bi(k), ail(k + δp)→ ail(k), cil(k + δp)→ cil(k), dil(k + δp)→ dil(k),

rj(k+ δp)→ rj(k), ejl(k+ δp)→ ejl(k), fjl(k+ δp)→ fjl(k), gjl(k+ δp)→ gjl(k), as p→ +∞.
Let ε be an arbitrary small positive number. It follows from Theorem 3.5 that there exists a positive

integer N0 such that

mi − ε ≤ xi(k) ≤Mi + ε, nj − ε ≤ yj(k) ≤ Nj + ε, k > N0.

Write xip(k) = xi(k + δp) and yjp(k) = yj(k + δp) for k ≥ N0 − δp and p = 1, 2, · · · . For any positive
integer q, it is easy to see that there exists two sequences {xip(k) : p ≥ q} and {yjp(k) : p ≥ q} such
that the sequences {xip(k)} and {yjp(k)} have two subsequences, respectively, denoted by {xip(k)}
and {yjp(k)} again, converging on any finite interval of Z as p→ +∞. Thus we have two sequences
{x̃i(k)} and {ỹj(k)} such that

xip(k)→ x̃i(k), yjp(k)→ ỹj(k) for k ∈ Z as p→ +∞.

This, combined with

xi(k + 1 + δp) = xi(k + δp) exp

[
bi(k + δp)−

n∑
l=1

ail(k + δp)x
αil
l (k + δp)

−
n∑
l=1

cil(k + δp)x
αii
i (k + δp)x

αil
l (k + δp)−

m∑
l=1

dil(k + δp)y
βil
l (k + δp)

]
,

yj(k + 1 + δp) = yj(k + δp) exp

[
− rj(k + δp)−

n∑
l=1

ejl(k + δp)x
δjl
l (k + δp)

−
m∑
l=1

fjl(k + δp)y
ηjj
j (k + δp)y

ηjl
l (k + δp)−

m∑
l=1

gjl(k + δp)y
ηjl
l (k + δp)

]
,

i = 1, 2, · · · , n, j = 1, 2, · · · ,m

gives us

x̃i(k + 1) = x̃i(k) exp

[
bi(k)−

n∑
l=1

ail(k)x̃
αil
l (k)−

n∑
l=1

cil(k)x̃αii
i (k)x

αil
l (k)−

m∑
l=1

dil(k)ỹ
βil
l (k)

]
,

ỹj(k + 1) = ỹj(k) exp

[
− rj(k)−

n∑
l=1

ejl(k)x̃
δjl
l (k)−

m∑
l=1

fjl(k)ỹ
ηjj
j (k)y

ηjl
l (k)−

m∑
l=1

gjl(k)ỹ
ηjl
l (k)

]
,

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
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We can easily see that (x̃1(k), x̃2(k), · · · , x̃n(k), ỹ1(k), ỹ2(k), · · · , ỹm(k)) is a solution of system (1.2)
and mi−ε ≤ x̃i(k) ≤Mi+ε, nj−ε ≤ ỹj(k) ≤ Nj +ε for k ∈ Z. Since ε is an arbitrary small positive
number, it follows that mi ≤ x̃i(k) ≤Mi, nj ≤ ỹj(k) ≤ Nj and hence we complete the proof.

4 Almost Periodic Solution

The main results of this paper concern the existence of a unique globally attractive almost periodic
solution of system (1.2). Firstly, we establish a global attractivity result for system (1.2), which can be
given in [1].

Theorem 4.1([1]) Assume that (H1)-(H4) and

(H5) λi = max

{∣∣∣∣1− αii(auii(Mi)
αii + cuii(Mi)

2αii +
n∑
l=1

cuil(Mi)
αii(Ml)

αil

)∣∣∣∣,
∣∣∣∣1− αii(alii(mi)

αii + clii(mi)
2αii +

n∑
l=1

clil(mi)
αii(ml)

αil

)∣∣∣∣
}

+
n∑

l=1,l 6=i
αil[a

u
il(Ml)

αil + cuil(Mi)
αii(Ml)

αil ] +
m∑
l=1

βild
u
il(Nl)

βil < 1, i = 1, 2, · · · , n,

γj = max

{∣∣∣∣1− ηjj(gujj(Nj)ηjj + fujj(Nj)
2ηjj +

m∑
l=1

fuil(Nj)
ηjj (Nl)

ηjl

)∣∣∣∣,
∣∣∣∣1− ηjj(gljj(nj)ηjj + fujj(nj)

2ηjj +
m∑
l=1

fuil(nj)
ηjj (nl)

ηjl

)∣∣∣∣
}

+
n∑

l=1,l 6=j
ηjl[g

u
jl(Nl)

ηjl + fujl(Nj)
ηjj (Nl)

ηjl ] +
n∑
l=1

δile
u
jl(Ml)

δjl < 1, j = 1, 2, · · · ,m,

hold. Then for any two positive solutions (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) and (x̃1(k),
x̃2(k), · · · , x̃n(k), ỹ1(k), ỹ2(k), · · · , ỹm(k)) of system (1.2), we have

lim
k→+∞

(xi(k)− x̃i(k)) = 0, i = 1, 2, · · · , n, (4.1)

lim
k→+∞

(yj(k)− ỹj(k)) = 0, j = 1, 2, · · · ,m. (4.2)

Now, we consider the almost periodic property of system (1.2).

Theorem 4.2 Assume that (H1)-(H5) hold. Then system (1.2) admits a unique almost periodic
solution which is globally attractive.

Proof. It follows from Proposition 3.6 that there exists a solution (x1(k), x2(k), · · · , xn(k), y1(k), y2(k),
· · · , ym(k)) of system (1.2) satisfying mi ≤ xi(k) ≤Mi, nj ≤ yj(k) ≤ Nj , k ∈ Z+.

Suppose that (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) is any solution of system (1.2),
then there exists an integer valued sequence {k

′
p}, k

′
p → +∞ as p → +∞, such that (x1(k +

k
′
p), x2(k + k

′
p), · · · , xn(k + k

′
p), y1(k + k

′
p), y2(k + k

′
p), · · · , ym(k + k

′
p)) is a solution of the following
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system

xi(k + 1) = xi(k) exp

[
bi(k + k

′
p)−

n∑
l=1

ail(k + k
′
p)x

αil
l (k)−

n∑
l=1

cil(k + k
′
p)x

αii
i (k)x

αil
l (k)

−
m∑
l=1

dil(k + k
′
p)y

βil
l (k)

]
,

yj(k + 1) = yj(k) exp

[
− rj(k + k

′
p)−

n∑
l=1

ejl(k + k
′
p)x

δjl
l (k)−

m∑
l=1

fjl(k + k
′
p)y

ηjj
j (k)y

ηjl
l (k)

−
m∑
l=1

gjl(k + k
′
p)y

ηjl
l (k)

]
,

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

From above discussion and Theorem 3.5, we have that not only (x1(k + k
′
p), x2(k + k

′
p), · · · , xn(k +

k
′
p), y1(k+k

′
p), y2(k+k

′
p), · · · , ym(k+k

′
p)) but also (∆x1(k+k

′
p),∆x2(k+k

′
p), · · · ,∆xn(k+k

′
p),∆y1(k+

k
′
p),∆y2(k+ k

′
p), · · · ,∆ym(k+ k

′
p)) are uniformly bounded, thus (x1(k+ k

′
p), x2(k+ k

′
p), · · · , xn(k+

k
′
p), y1(k + k

′
p), y2(k + k

′
p), · · · , ym(k + k

′
p)) are uniformly bounded and equi-continuous. By Ascoli’s

theorem[[21]], there exists a uniformly convergent subsequence (x1(k + kp), x2(k + kp), · · · , xn(k +

kp), y1(k+kp), y2(k+kp), · · · , ym(k+kp)) ⊆ (x1(k+k
′
p), x2(k+k

′
p), · · · , xn(k+k

′
p), y1(k+k

′
p), y2(k+

k
′
p), · · · , ym(k + k

′
p)) such that for any ε > 0, there exists a k0(ε) > 0 with the property that if

m,n ≥ k0(ε) then

|xi(k + km)− xi(k + kn)| < ε, |yj(k + km)− yj(k + kn)| < ε,
which shows from Lemma 2.6 that (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) is asymptotically
almost periodic sequence. Thus, by Definition 2.4, we can express it as

xi(k) = pi(k) + qi(k), yj(k) = uj(k) + vj(k),

i = 1, 2, · · · , n, j = 1, 2, · · · ,m, where {pi(k)} and {uj(k)} are almost periodic in k ∈ Z and qi(k)→
0, vj(k) → 0 as k → +∞. In the following we show that {(p1(k), p2(k), · · · , pn(k), u1(k), u2(k),
· · · , um(k))} is an almost periodic solution of system (1.2).

From the properties of an almost periodic sequence, there exists an integer valued sequence
{δp}, δp → +∞ as p→ +∞, such that

bi(k + δp)→ bi(k), ail(k + δp)→ ail(k), cil(k + δp)→ cil(k), dil(k + δp)→ dil(k),

rj(k+ δp)→ rj(k), ejl(k+ δp)→ ejl(k), fjl(k+ δp)→ fjl(k), gjl(k+ δp)→ gjl(k), as p→ +∞.
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It is easy to know that xi(k + δp)→ pi(k), yj(k + δp)→ uj(k) as p→∞, then we have

pi(k + 1) = lim
p→∞

xi(k + 1 + δp)

= lim
p→∞

xi(k + δp) exp

[
bi(k + δp)−

n∑
l=1

ail(k + δp)x
αil
l (k + δp)

−
n∑
l=1

cil(k + δp)x
αii
i (k + δp)x

αil
l (k + δp)−

m∑
l=1

dil(k + δp)y
βil
l (k + δp)

]

= pi(k) exp

[
bi(k)−

n∑
l=1

ail(k)p
αil
l (k)−

n∑
l=1

cil(k)pαii
i (k)p

αil
l (k)−

m∑
l=1

dil(k)u
βil
l (k)

]
,

uj(k + 1) = lim
p→∞

yj(k + 1 + δp)

= lim
p→∞

yj(k + δp) exp

[
− rj(k + δp)−

n∑
l=1

ejl(k + δp)x
δjl
l (k + δp)

−
m∑
l=1

fjl(k + δp)y
ηjj
j (k + δp)y

ηjl
l (k + δp)−

m∑
l=1

gjl(k + δp)y
ηjl
l (k + δp)

]

= uj(k) exp

[
− rj(k)−

n∑
l=1

ejl(k)p
δjl
l (k)−

m∑
l=1

fjl(k)u
ηjj
j (k)u

ηjl
l (k)−

m∑
l=1

gjl(k)u
ηjl
l (k)

]
,

This prove that p(k) = {(p1(k), p2(k), · · · , pn(k), u1(k), u2(k), · · · , um(k))} satisfied system (1.2),
and p(k) is a positive almost periodic solution of system (1.2).

Now, we show that there is only one positive almost periodic solution of system (1.2). For any two
positive almost periodic solutions (p1(k), p2(k), · · · , pn(k), u1(k), u2(k), · · · , um(k)) and (z1(k), z2(k),
· · · , zn(k), w1(k), w2(k), · · · , wm(k)) of system (1.2), we claim that pi(k) = zi(k), uj(k) = wj(k)(i =
1, 2, · · · , n, j = 1, 2, · · · ,m) for all k ∈ Z+. Otherwise there must be at least one positive integer
K∗ ∈ Z+ such that pi(K∗) 6= zi(K

∗) or uj(K∗) 6= wj(K
∗) for a certain positive integer i or j, i.e.,

Ω1 = |pi(K∗)− zi(K∗)| > 0 or Ω2 = |uj(K∗)− wj(K∗)| > 0. So we can easily know that

Ω1 = | lim
p→+∞

pi(K
∗ + δp)− lim

p→+∞
zi(K

∗ + δp)| = lim
p→+∞

|pi(K∗ + δp)− zi(K∗ + δp)|

= limk→+∞ |pi(k)− zi(k)| > 0,
or

Ω2 = | lim
p→+∞

uj(K
∗ + δp)− lim

p→+∞
wj(K

∗ + δp)| = lim
p→+∞

|uj(K∗ + δp)− wj(K∗ + δp)|

= limk→+∞ |uj(k)− wj(k)| > 0,
which is a contradiction to (4.1) or (4.2). Thus pi(k) = zi(k), uj(k) = wj(k)(i = 1, 2, · · · , n, j =
1, 2, · · · ,m) hold for ∀k ∈ Z+. Therefore, system (1.2) admits a unique almost periodic solution
which is globally attractive. This completes the proof of Theorem 4.2. 2

Remark 4.3 If m = n = 1, the conditions of Theorem 4.2 can be simplified. Therefore, we have the
following results.

Corollary 4.4 Let m = n = 1, assume that (H1)-(H4) and

(H5) λ1 = max

{∣∣∣∣1−α11

(
au11(M1)α11+2cu11(M1)2α11

)∣∣∣∣, ∣∣∣∣1−α11

(
al11(m1)α11+2cl11(m1)2α11

)∣∣∣∣
}

+β11d
u
11(N1)β11 < 1,

γ1 = max

{∣∣∣∣1− η11(gu11(N1)η11 + 2fu11(N1)2η11
)∣∣∣∣, ∣∣∣∣1− η11(gl11(n1)η11 + 2fu11(n1)2η11

)∣∣∣∣
}
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+eu11(M1)δ11 < 1,

hold. Then system (1.2) admits a unique almost periodic solution which is globally attractive.

5 Numerical Simulations

In this section, we give the following examples to check the feasibility of our results.
Example 5.1 Consider the discrete Gilpin-Ayala type competition-predator system:



x(k + 1) = x(k) exp

{
1.2− 0.02 sin(

√
2k)− (0.25 + 0.01 sin(

√
3k))x

1
2 (k)

−(0.025 + 0.002 cos(
√

5k))x2(k)− (0.02 + 0.001 cos(
√

2k))y(k)

}
,

y(k + 1) = y(k) exp

{
− 0.1 + 0.025 sin(

√
3k) + (1.2 + 0.003 cos(

√
2k))x(k)

−(0.18 + 0.015 sin(
√

2k))y2(k)− (0.025 + 0.002 cos(
√

5k))y(k)

}
.

(5.1)

A computation shows that

λ1 ≈ 0.0632 < 1, γ1 ≈ 0.0962 < 1.

Hence, there exists a unique globally attractive almost periodic solution of system (5.1). Our numerical
simulations support our results (see Figs. 1 and 2).

Fig. 1. Dynamic behavior of the first component x(k) of the solution (x(k), y(k)) to system
(5.1) with the initial conditions (1.01,1.07), (1.07,1.15) and (1.08,1.23) for k ∈ [1, 60], respectively.
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Fig. 2. Dynamic behavior of the second component y(k) of the solution (x(k), y(k)) to
system (5.1) with the initial conditions (1.01,1.07), (1.07,1.15) and (1.08,1.23) for k ∈ [1, 60],
respectively.

Example 5.2 Consider the discrete Lotka-Volterra type competition-predator system:



x(k + 1) = x(k) exp

{
1.3− 0.025 sin(

√
3k)− (0.221 + 0.013 sin(

√
2k))x(k)

−(0.02 + 0.001 cos(
√

5k))y(k)

}
,

y(k + 1) = y(k) exp

{
− 0.15 + 0.02 sin(

√
2k) + (1.25 + 0.003 cos(

√
3k))x(k)

−(0.186 + 0.012 sin(
√

5k))y(k)

}
.

(5.2)

A computation shows that

λ1 ≈ 0.0026 < 1, γ1 ≈ 0.0128 < 1.

Hence, there exists a unique globally attractive almost periodic solution of system (5.2). Our
numerical simulations support our results (see Figs. 3 and 4).
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Fig. 3. Dynamic behavior of the first component x(k) of the solution (x(k), y(k)) to system
(5.2) with the initial conditions (1.06,5.7), (0.95,7.1) and (0.87,4.3) for k ∈ [1, 60], respectively.

Fig. 4. Dynamic behavior of the second component y(k) of the solution (x(k), y(k))
to system (5.2) with the initial conditions (1.06,5.7), (0.95,7.1) and (0.87,4.3) for k ∈ [1, 60],
respectively.

6 Concluding Remarks

In this paper, a discrete multispecies Gilpin-Ayala
type competition-predator system is considered.
By applying the difference inequality, some
sufficient conditions are established to ensure
the permanence of system (1.2). Then, we
show that system (1.2) is globally attractive under
some appropriate conditions. Assuming that the
coefficients in the system are almost periodic

sequences, we obtain the sufficient conditions for
the existence of a unique almost periodic solution
which is globally attractive by using the properties
of almost periodic sequence. By comparative
analysis, we find that when the coefficients in
system (1.2) are almost periodic, the existence of
a unique almost periodic solution of system (1.2)
is determined by the global attractivity of system
(1.2), which implies that there is no additional
condition to add.
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Furthermore, for the almost periodic discrete
multispecies Gilpin-Ayala type competition-
predator system (1.2) with time delays or
feedback controls, we would like to mention here
the question of whether the existence of a unique
almost periodic solution is determined by the
global attractivity of the system or not. It is, in
fact, a very challenging problem, and we leave it
for our future work.
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