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Research on Intermittent Hypoxia Training in Sports Based 
on Graph Neural Network
Guolong Lia, Haixia Lib, and Jiyong Lva

aCollege of National Traditional Sports, Harbin Sport University, Harbin, China; bCollege of Winter 
Olympics, Harbin Sport University, Harbin, China

ABSTRACT
To enhance the efficacy of intermittent hypoxia training in 
sports, this study presents an intelligent training model that 
utilizes a graph neural network. The model incorporates the 
particle filter method to establish a real-time processing system 
for physiological signals generated during intermittent hypoxia 
training, enabling frequency tracking and network sorting. 
Additionally, an ARMA model is utilized to facilitate real-time 
carrier frequency estimation and time-hopping detection of 
physiological signals. An enhanced frequency tracking method 
is proposed based on the Graph Neural Network (GNN) and 
ARMA model to improve the accuracy of frequency tracking 
while minimizing algorithm complexity. The experimental 
results indicate that the fusion of the GNN and the proposed 
intermittent hypoxia training model can effectively enhance the 
effects of intermittent hypoxia training in sports.
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Introduction

It is well known that severe hypoxia can cause tissue damage to the human 
body, and athletes endure the stimulation of hypoxia all the time to varying 
degrees during intense training and competition. On the contrary, appropriate 
hypoxic stimulation can make the body adapt to hypoxia, improve its toler
ance to hypoxia, and protect body tissues from damage. Intermittent normo
baric hypoxia training is a new high-altitude imitation training method 
gradually developed in Russia, the United Kingdom, the United States and 
other countries in the past ten years (Osipov et al. 2019). It mainly uses 
hypoxic breathing gas generator to make athletes inhale gas lower than normal 
oxygen partial pressure to cause moderate hypoxia in the body, which leads to 
a series of anti-hypoxic physiological adaptations that are conducive to 
improving aerobic metabolism to achieve the purpose of altitude training. 
The characteristic of this training method is that under the condition of plain 
training, the corresponding environment of hypoxic stimulation in plateau 
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training is artificially created (it can simulate hypoxic environment at a height 
of 1000–6000 meters). It does not require a specific plateau training base, but 
also eliminates the round-trip migration from plain to plateau to plain, which 
not only saves costs and time, but also maximizes the development of athletes’ 
functional potential (Henriques-Neto et al.). Its advantages are: convenient, 
time-saving, economical, safe and effective. In addition, intermittent hypoxia 
training, as an auxiliary training method, is interspersed with regular training, 
which can comprehensively improve the body’s metabolic capacity. After 
training, athletes rest in a normal air pressure environment, which is also 
conducive to recovery after training (Kravchuk et al. 2020).

As a stress, hypoxia has a certain degree of influence on various systems of 
the human body. The endocrine system, as one of the two most important 
regulatory systems in the body, plays an important regulatory function 
together with the nervous system in the process of resisting stress. 
Therefore, the change law of endocrine system indicators in hypoxic environ
ment has become the focus of research. Testosterone and cortisol are two very 
important hormones in the endocrine system, and have a certain relationship 
with athletes’ athletic ability and post-exercise recovery, so they are often used 
to assess athletes’ functional status (McCord et al. 2020). Research on high 
altitude hypoxia has been carried out earlier, and related research has also been 
carried out on the effect of high altitude hypoxia on testosterone and cortisol, 
but the effect of intermittent hypoxia on it is still less studied. Regarding the 
physiological mechanism of testosterone changes caused by high altitude 
hypoxia, most scholars believe that the decrease in serum testosterone caused 
by high altitude hypoxia exercise is not central (Politko 2018). Testosterone is 
an aerobic metabolism when it is synthesized in the mitochondria of Leydig 
cells. Insufficient oxygen supply in hypoxic environment will inevitably affect 
the synthesis of testosterone. From this point of view, altitude training is more 
likely to cause a decrease in testosterone. Under the condition of intermittent 
hypoxic stimulation, there are few researches on the changes of endocrine 
system indicators such as testosterone and the reasons for such changes 
(Chang 2021).

Intermittent Hypoxic Training (IHT) is to let athletes intermittently inhale 
gas lower than the normal partial pressure of oxygen with the help of a hypoxic 
instrument on the plain, causing moderate hypoxia in the body, resulting in 
a series of benefits that are beneficial to improve aerobic Anti-hypoxia phy
siological and biochemical adaptation of metabolic capacity to achieve the 
purpose of high altitude training (Silva and Clemente 2017). In sports practice, 
intermittent hypoxia training, as an auxiliary training method, interspersed 
with routine training, can maximize the development of athletes’ functional 
potential, and has a positive effect on the overall improvement of the body’s 
metabolic capacity and extreme functional ability (Ariani 2021). Or used for 
routine sports training, to promote the recovery of athletes’ fatigue, and 
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sometimes as an adaptive training in the early stage of altitude training. 
therefore. Intermittent hypoxia training has been widely used in sports prac
tice in Russia, the United States, Japan, Canada, France, Germany, the United 
Kingdom, Spain, Australia, Brazil, Finland, Poland and other countries. 
Intermittent hypoxia training has achieved certain results in sports practice, 
and has been generally recognized by experts in disciplines such as training 
science and sports bioscience. More and more countries have invested a lot of 
money to apply intermittent hypoxia training to different levels.

Professional athletes in different sports (Z. L. Kozina et al. 2017). Sports 
events mostly focus on endurance events such as running, skiing, and cycling. 
In recent years, this method has also been applied in mountaineering training, 
pilots and astronauts’ hypoxia tolerance training. Research data show that 
intermittent hypoxic training can effectively improve exercise level and ath
letic performance (Titova et al. 2018). Intermittent hypoxia training method is 
one of the methods of simulating altitude training, and its application is the 
enrichment and development of altitude training methods. Altitude training 
has attracted attention from all walks of life with its unique training method 
and remarkable training effect. Many athletes also make altitude training an 
integral part of their training program. Nowadays, the intermittent hypoxia 
training method has been widely used all over the world, and has achieved 
good practical results (Chernykh, Mulik, and Okun 2019).

Physical fitness enhancement during exercise training is the body’s adaptive 
response to sustained exercise load. Tissue hypoxia induced by heavy exercise, 
as a basic stimulus, can induce and guide the adaptive exchange of tissues. The 
greater the load intensity, the greater its adaptive effect, but excessive load will 
cause cell damage, resulting in decreased immune function, prone to excessive 
fatigue and sports injuries. High altitude training takes advantage of the special 
environment of high altitude hypoxia. In addition to the exercise training load, 
hypoxic hypoxia load is imposed, thereby increasing the physiological func
tion burden of the athlete’s respiratory and circulatory systems, that is, 
increasing the body’s load intensity. Therefore, it has a good effect on improv
ing and improving heart and lung function and improving exercise ability 
(Kostiantyn et al. 2017). However, the limitation of plateau geographical 
conditions and the many problems caused by it have become obstacles to 
plateau training. Intermittent hypoxia training is under the condition of 
plains, with the help of special equipment, athletes are allowed to enter the 
mixed gas of low oxygen partial pressure, so as to accept the hypoxic hypoxia 
load similar to the plateau. Use it as a training tool interspersed with regular 
training. The mode of exercise training in the plateau hypoxic environment 
was changed to the mode of plain training plus a simulated plateau hypoxia 
load (Sarafyniuk et al. 2019).

Athletes in high altitude training need to receive two aspects of hypoxic 
stimulation, one is the hypoxic stimulation caused by exercise load (Artiuh 
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et al. 2019); Studies have shown that changes in oxygen partial pressure at an 
altitude of 1760 m begin to affect the human body. In order to achieve greater 
stress, fully obtain adaptive responses, and make the changes in red blood cells 
and hemoglobin more significant, athletes should train in areas above 1760 m 
above sea level. However, the higher the altitude, the lower the training load 
(Strykalenko et al. 2019).

When receiving exercise load, the sensory nerves (muscles, tendons) send 
out impulses, which are regulated by the cerebral cortex, resulting in the 
formation of compensatory ability, which is mainly manifested as increased 
blood supply to skeletal muscles (Fachrezzy et al. 2021). The enhancement of 
respiration and blood circulation caused by this compensatory effect is much 
higher than the increase of pulmonary ventilation and circulating blood 
volume through chemoreceptors (Kons, Franchini, and Detanico 2018). If 
the hypoxic stimulation formed by the low oxygen partial pressure increases 
the minute ventilation by 2–3 times and the circulating blood volume by 1.5 
times, then the minute ventilation can be increased by 20 times and the 
circulating blood volume by 7–10 times (Kozina et al. 2019).

It can be seen that the compensatory response of hypoxic load caused by 
low oxygen partial pressure is largely displayed in hematopoietic organs, heart 
and brain tissue. And the hypoxia induced by the exercise training load makes 
the adaptive larvae especially in the muscle tissue. This shows that the exercise 
training load is the main contradiction in enabling athletes to obtain neural 
and muscle adaptations. High altitude training creates objective conditions for 
the formation of hypoxic adaptability due to the hypoxic hypoxic load unique 
to high altitude, but the accompanying side effect is that the load and intensity 
of exercise training are reduced, which makes the plain training center. The 
acquired nerves and muscles are less adaptable and risk losing the best 
competitive state. Intermittent hypoxia training is a combination of regular 
exercise training under plain conditions and hypoxic hypoxia load training, 
that is, hypoxic hypoxia load training and regular training aimed at improving 
motor skills are alternated, usually arranged in After the exercise load is over. 
In this way, because the two loads are performed asynchronously, the contra
diction of mutual restriction is avoided, the corresponding exercise training 
load is guaranteed, and the sports performance is improved (Zalyapin et al.  
2019).

This paper makes several key advances in the field of intermittent 
hypoxia training in sports. Firstly, it proposes an intelligent training 
model based on a graph neural network, which can enhance the efficacy 
of intermittent hypoxia training. Secondly, the model incorporates the 
particle filter method, enabling real-time processing of physiological 
signals generated during training, which facilitates frequency tracking 
and network sorting. Thirdly, the model utilizes the ARMA model for 
real-time carrier frequency estimation and time-hopping detection of 
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physiological signals. Fourthly, the paper proposes an improved fre
quency tracking method based on the ARMA model, which balances 
the tradeoff between tracking accuracy and algorithm complexity. 
Finally, the experimental results demonstrate that the proposed model 
can effectively enhance the effects of intermittent hypoxia training in 
sports.

This paper is organized into three main sections, namely, Real-time 
Processing of Physiological Signals of Intermittent Hypoxia Training Based 
on ARMA, Simulation Analysis, and Conclusion.

The second section, Real-time Processing of Physiological Signals of 
Intermittent Hypoxia Training Based on ARMA, discusses the development 
of a real-time processing system for physiological signals generated during 
intermittent hypoxia training, incorporating the ARMA model. This section 
describes the particle filter method used in the model for frequency tracking 
and network sorting of physiological signals.

The third section, Simulation Analysis, presents the experimental setup and 
results of the proposed intermittent hypoxia training model, incorporating the 
graph neural network and the ARMA model. The section presents the experi
mental results and a detailed analysis of the performance of the proposed 
model, along with a comparison with existing models.

The final section, Conclusion, provides a summary of the key contributions 
of the paper, discusses the limitations of the study, and suggests directions for 
future research. The conclusion emphasizes the significance of the proposed 
model for enhancing the efficacy of intermittent hypoxia training in sports and 
highlights the potential for further research in this area.

Real-Time Processing of Physiological Signals of Intermittent Hypoxia 
Training Based on ARMA

In order to construct a real-time processing system of physiological signals for 
intermittent hypoxia training, and to realize frequency tracking and network 
sorting, the particle filter method was introduced into the model. First, the 
frequency is estimated by the adaptive update of the particles. Then, the source 
signal waveform is recovered to estimate the carrier frequency of the signal, 
and the time-domain ARMA model is established by using the estimated value 
of the carrier frequency, and the hopping moment is detected in real time by 
using the model. In this paper, a sparse Bayesian learning-based method for 
frequency tracking of physiological signals in multi-intermittent hypoxia 
training is proposed, and a Bayesian sparse representation model is established 
to estimate the frequency in the frequency dwell time and detect the hopping 
time, so as to realize the frequency tracking. The real-time processing algo
rithm based on particle filtering and sparse Bayesian learning can effectively 
improve the accuracy of frequency tracking and time-hopping detection of 
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physiological signals in intermittent hypoxia training, and complete signal 
DOA estimation, but the algorithm is too complicated and the amount of 
calculation is too large.

In view of the above problems, considering the frequency tracking accuracy 
and algorithm complexity, an improved frequency tracking method based on 
ARMA model is proposed in this paper.

Mathematical Model

If it is assumed that N source signals are received by an M-element uniform 
linear array, the antenna spacing is d, and the receiver sampling periods are Ts, 
and φn ¼ 2πfnTs;ϕn ¼ 2πfnd cos θn=c, the mixed signal data received at 
time t is: 

xt ¼
XN

n¼1
anρnej t� 1ð Þφn þ vt ¼ Asst þ vt (1) 

If K sampling point signals are received in the frequency dwell time period, the 
received signal can be expressed as: 

x1:K ¼

1 � � � 1
..
. . .
. ..
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Frequency Tracking Algorithm Based on ARMA

It can be seen that the N + 1 order ARMA model can be expressed as: 
XN

i¼0
cixtþi ¼

XN

i¼0
civtþi (3) 

The following formula is the conjugate form of the ARMA model: 
XN

i¼0
cix�tþN� i ¼

XN

i¼0
civ�tþN� i (4) 

Among them, c0; c1; � � � ; cN is the coefficient of the following equation of order 
N whose root is ejφn n ¼ 1; 2; � � � ;Nð Þ: 

f αð Þ ¼
YN

n¼1
α � ejφn
� �

¼ cNαN þ � � � þ c1αþ c0 ¼ 0; cN ¼ 1 (5) 

The above time-domain ARMA model is associated with N + 1 conse
cutive observation samples during the frequency dwell time. Once the 
frequency hopping occurs, the samples at the time before and after the 
time hopping will deviate from the constructed model. Therefore, 
hoppinging moments can be successfully detected by evaluating the 
prediction error with the model at each moment. Figure 1 shows the 
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principle flow chart of real-time carrier frequency estimation and time- 
hopping detection of physiological signals in intermittent hypoxia train
ing using the ARMA model.

In order to use this method to solve the problem of frequency tracking of 
physiological signals in intermittent hypoxia training, the ARMA model is first 
established, so the coefficients of the model are calculated first. At time 
th th � 3N=2þ 1ð Þ, the coefficients of the model can be obtained from the 
observed data by the following formula: 

ĉth ¼ � ~Xl: th� Nð Þ~x Nþ1ð Þth ¼ � R th� Nð Þ

X

� �� 1
r th� Nð Þ

Xx (6) 

Among them, 

R th� Nð Þ

X ¼
Xth� N

i¼1
XH

i Xi þ
Xth� N

i¼1
�XH

i
�Xi (7) 

Figure 1. Flow chart of frequency tracking of physiological signals in intermittent hypoxia training 
based on ARMA.
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r th� Nð Þ

Xx ¼
Xth� N

i¼1
XH

i xiþN þ
Xth� N

i¼1
�XH

i �x�i (8) 

Xi ¼ xi; xiþ1; � � � ; xiþN� 1½ � (9) 

�Xi ¼ x�iþN; x
�
iþN� 1; � � � ; x

�
iþ1

� �
(10) 

Among them, the reason to satisfy the current moment th � 3N=2þ 1 is to 
make the matrix R tx� N� 1ð Þ

X full rank, that is, ctt� 1� 1 can be obtained.
Using the ARMA model and the received data, the signal prediction at the 

current time th is: 

x̂th ¼ �
XN� 1

i¼0
cixth� Nþi (11) 

When frequency hopping occurs, the prediction error will increase greatly. 
According to the size of the prediction error, time hopping detection can be 
realized. The standard of hypothesis test is: 

jjxth � x̂th jj
2
2 <>

H1
γ

H0

(12) 

The value of γ is determined by the noise variance and the model coefficients, 
but the noise variance is unknown. Therefore, in practical applications, γ is 
estimated using the received signal observations. If the starting time of the 
frequency dwell time is assumed to be t = 1, then γ can be estimated by the 
following equation: 

γ ¼ μ
1

th � N � 1

Xth� 1

t¼Nþ1
jjxt � x̂tjj

2
2

� �

(13) 

If no frequency hopping occurs, the estimated model coefficient ĉ0; ĉ1; � � � ; ĉN 
is brought into equation (5) to get: 

f̂ αð Þ ¼ αN þ ĉN� 1αN� 1 þ � � � þ ĉ1αþ ĉ0 ¼ 0 (14) 

By taking αn ¼ ejφn ;φn ¼ 2πfnTs into the above formula, the estimated carrier 
frequency is obtained as: 

f̂N ¼ 1=2πTs angle α̂nð Þ; n ¼ 1; � � � ;N (15) 

The ARMA model is used to predict the signal at the current time based 
on the received data. Equation (11) shows the predicted signal at time th 
based on the N previous observations of the signal. However, when 
frequency hopping occurs, the prediction error increases significantly. 
Therefore, to detect the occurrence of frequency hopping, the prediction 
error is compared with a threshold value γ using the hypothesis test 
shown in equation (12).
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The value of γ is determined by the noise variance and the model 
coefficients, but the noise variance is usually unknown in practical 
applications. Therefore, in equation (13), γ is estimated using the 
received signal observations. If no frequency hopping occurs, the esti
mated model coefficients are used to determine the carrier frequency of 
the signal, as shown in equation (14). This formula calculates the 
estimated carrier frequency by taking the complex exponential of the 
estimated coefficients and then calculating the angle of the resulting 
complex number. The estimated carrier frequency is then obtained by 
dividing this angle by 2π times the sampling period Ts, as shown in 
equation (15).

Overall, the ARMA model is used to predict the signal at the current time, 
and the prediction error is used to detect the occurrence of frequency hopping. 
If frequency hopping occurs, the estimated carrier frequency cannot be calcu
lated, and additional steps must be taken to detect and track the new 
frequency.

Improved ARMA Frequency Tracking Algorithm

Due to the small number of samples and the existence of noise, the perfor
mance of using FFT alone to solve the frequency is not good, so the data 
received by multiple array elements is comprehensively used for frequency 
estimation. The specific methods are as follows:

M array elements are used to receive the mixed signal sample by sample, 
and it is assumed that each array element has received th signal samples and 
there is th � 3N=2þ 1. Moreover, the FFT transformation is performed on 
the M groups of signal samples respectively, the amplitude-frequency char
acteristic curve is drawn, and the corresponding frequency at the peak position 
is recorded. The peak position is selected according to the condition of 
A ið Þ>A iþ 1ð Þ A ið Þ>A i � 1ð Þ A ið Þ> 0:5 maxðAÞ to remove the influence 
of low-amplitude points caused by noise, where A is the amplitude vector 
obtained after FFT, and i is the position corresponding to the frequency.

We assume that the vector composed of the corresponding frequencies at 
the peak positions of M groups is F, and use the clustering algorithm to process 
F. When two frequency values Fi and Fj i�jð Þ satisfy the following formula, it is 
considered to be a class: 

Fi � Fj
�
�

�
� � ε (16) 

The class is determined according to the number of elements, and the cluster 
center is obtained by calculating the mean within the class. When the number 
of clusters is equal to the number of source signals, the clustering ends.
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After obtaining the estimated value F of the carrier frequency, αn ¼ ej2πFnTs 

is brought into the formula (14) to solve the model coefficients, and the signal 
prediction and time-hopping detection are carried out according to the for
mulas (11) and (12).

Since there is no need to estimate the model coefficients according to the 
received signal, the improved algorithm does not need the restriction of 
th � 3N=2þ 1. However, th >K is generally required to ensure that the fre
quency obtained by the FFT transformation of the K sampling point signals 
will not have a large error, and it generally has K > 4.

In summary, the improved ARMA model-based intermittent hypoxia train
ing physiological signal frequency tracking flowchart is shown in Figure 2. The 
specific implementation steps of the algorithm are as follows:

(1) The algorithm initializes the number of samples f = 0;
(2) The channel receives the signal sample by sample, t=t + 1. After receiv

ing K signal samples, that is, when f≥K, the algorithm performs FFT on 
the signal received by each channel, and records the number of peaks of 
the amplitude-frequency curve and the frequency at the peak;

(3) The algorithm performs clustering on the number of peaks obtained by 
the M channels, and obtains an estimate of the number N of source 
signals, which is used as the order of the model and the number of 
classes of the clustering;

(4) The algorithm performs central clustering on the frequencies at the 
peaks obtained by the M channels to obtain an estimate of the carrier 
frequency;

(5) The algorithm uses formula (14) to solve the ARMA model coefficient 
c according to the estimated value of the carrier frequency;

(6) The algorithm obtains the signal prediction value x̂th according to 
formula (11), and calculates the error xth � x̂th

2
2 between it and the real 

value xth ;
(7) The algorithm uses formula (13) to calculate v, and performs time- 

hopping detection according to formula (12). If the frequency hopping 
occurs, record the time hopping, and the algorithm returns to step (1), 
otherwise it returns to step (2) until all signal sample data are processed.

Particle Filter-Based Sorting Algorithm for Network Stations

The ϕn in the mixing matrix an is defined as the frequency azimuth 
product. Through the ARMA model and the particle filter method, the 
carrier frequency and the frequency azimuth product can be estimated 
in real time, and the real-time DOA estimation of the network station 
can be realized.
ϕn can be further expressed as: 
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ϕn ¼ 2πfnd cos θn=c ¼ 2πfn cos θn=fs (17) 

Therefore, Q N-dimensional frequency orientation product particles can be 
initialized as: 

Φ :; nð Þ ¼
2πfn

fs
randðQ; 1Þ; n ¼ 1; . . . ;N (18) 

The particles are updated every time a new set of data is received. First, 
generate new particles as follows: 

eΦ ¼ Φþ normrnd 0; σ2
ϕ

� �
(19) 

Then, the acceptance probability of each particle is calculated as follows: 

Figure 2. Flow chart of improved ARMA intermittent hypoxia training physiological signal 
frequency tracking.
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μ ¼ minð�; 1Þ (20) 

� ¼
γþ tr ePAR h0ð Þ

x
� �� �

γþ tr PAR hAð Þ
x

� �� �

 !� ðMthþβÞ

(21) 

The normalized weights of the new particles are calculated as: 

w qð Þ thð Þ ¼
g Φ qð Þjx1:Th

� �

PQ
q¼1 g Φ qð Þjx1Ih

� � (22) 

g ϕ1:Njx1Ihð Þ ¼ γþ tr PAR
thð Þ
X

� �� �� Mhþβð Þ

(23) 

The frequency bearing product can be estimated using the following equation: 

bΦ ¼
XQ

q¼1
w qð Þ thð ÞΦ qð Þ (24) 

The final DOA estimate is: 

θ̂n ¼ arccos
cϕ̂n

2πfnd

 !

(25) 

Overall, this passage describes a method for estimating the real-time DOA of 
a network station using physiological signals from intermittent hypoxia train
ing. We introduce a mixing matrix and a parameter ϕn, and propose a method 
for estimating the frequency orientation product using the particle filter 
method. The final DOA estimate is calculated using the estimated frequency- 
bearing product and known parameters.

Simulation Analysis

In scientific research, it is crucial to establish the reliability and validity of the 
data acquired through various methods and techniques. This means the data 
must be accurate, consistent, and free from biases or errors. Similarly, any 
proposed action or method must be rigorously tested and evaluated to deter
mine its potential benefits and drawbacks. This ensures that the proposed 
method is effective and suitable for achieving the intended objectives without 
causing unintended consequences or negative impacts. To achieve this, the 
suggested procedures must agree, which means that the methods used for 
acquiring data and testing the proposed course of action must be consistent 
and in agreement with each other. This ensures that the data acquired is 
accurate and reliable and the results obtained from testing the proposed course 
of action are trustworthy and valid.
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The ARMA model is used in this paper for frequency tracking and time- 
hopping detection of physiological signals during intermittent hypoxia train
ing. The ARMA model is a widely used statistical model that can capture both 
the autocorrelation and moving average properties of a time series. It has been 
used in various applications such as financial forecasting, speech recognition, 
and signal processing.

In the context of hypoxia forecasting in sports training, the ARMA model is 
particularly suitable because it can accurately estimate the carrier frequency of 
the physiological signals in real-time. This is important because during 
hypoxic training, the carrier frequency of the physiological signals may change 
due to frequency hopping, which can lead to inaccuracies in frequency track
ing. The ARMA model-based approach proposed in this paper can help 
mitigate the effects of frequency hopping and provide accurate estimates of 
the carrier frequency.

Moreover, the ARMA model is computationally efficient and can be easily 
implemented in real-time processing systems. This is essential for the practical 
application of the proposed approach, as real-time processing of physiological 
signals is necessary to provide timely feedback to athletes during training. 
Therefore, the use of the ARMA model in this paper is justified due to its 
ability to accurately estimate the carrier frequency of physiological signals 
during intermittent hypoxia training and its suitability for real-time proces
sing systems.

The GNN was used in this paper because it is well-suited for model
ing complex relationships between different physiological signals during 
intermittent hypoxia training. GNNs are a type of neural network 
designed to operate on graphs, which are mathematical structures that 
can represent relationships between entities or nodes. In the context of 
hypoxia forecasting in sports training, physiological signals such as 
oxygen saturation, heart rate, and respiration rate can be considered 
as nodes in a graph, with edges representing the relationships between 
them. By using a GNN to model these relationships, the model can 
capture complex interactions and dependencies between different phy
siological signals that may not be apparent using traditional machine 
learning approaches.

Furthermore, GNNs have been shown to be effective in a wide range of 
applications, including natural language processing, computer vision, and 
social network analysis. By applying GNNs to the problem of hypoxia fore
casting in sports training, the paper extends the use of this powerful machine 
learning technique to a new domain, which can potentially lead to improved 
training outcomes for athletes. Overall, the use of GNNs in this paper is 
a novel approach to modeling the complex relationships between different 
physiological signals during intermittent hypoxia training, which can help 
optimize the training regimen and improve the performance of athletes.
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The physiological signal of intermittent hypoxia training adopts asyn
chronous networking, the number of signals is N = 2, the receiving end is 
a multi-channel uniform linear array, and the signal arrival angles are 50�
and 80�, respectively. The signal sampling frequency is 50MHz. We 
assume that each signal hoppings in frequency only once during the 
observation time, and the first signal has frequencies 18MHz and 4MHz 
for 48 and 24 samples, respectively. The frequencies of the second signal 
are 10MHz and 24MHz, which last for 24 and 48 sampling points, 
respectively. The frequency variation of the source signal is shown in 
Figure 3. The weight factor μ ¼ 5;K ¼ 5; FFT has 512 points, and the 
central clustering threshold ε is 1,000,000.

If the simulation experiment is repeated three times under the same con
ditions, the number of experiments to correctly detect the time hopping is 
seven, and the time hopping detection probability is defined as: 

p ¼
k
L

(26) 

If SNR ¼ 20dB; L ¼ 500 is set, the time hopping detection probability 
obtained by using the improved algorithm in Section 1.3 changes with the 
number of channels as shown in Figure 4(a).

It can be seen from Figure 4(a) that the time hopping detection probability 
increases with the increase of the number of channels.

The number of channels M is 10, and the SNR is 5–25 dB. If L = 500, the 
curve of the time-hopping detection probability of the improved algorithm 
with the signal-to-noise ratio is shown in Figure 4(b).

Figure 3. Schematic diagram of frequency variation of source signal.
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The following compares the time-hopping detection probability of the 
improved algorithm and the original ARMA algorithm under low signal- 
to-noise ratio. Taking the SNR as 5:20, the curve of the detection 
probability of the two algorithms with the signal-to-noise ratio is 
shown in Figure 5. It can be seen that the time-hopping detection 
probability of the improved algorithm in this chapter is better than the 
original algorithm.

If it is assumed that the number of channels M is 8 and the SNR is 15 dB, the 
frequency tracking simulation diagram obtained by using the improved algo
rithm in Section 1.3 is shown in Figure 6. Since K = 5, no frequency estimation 
is performed for the 4 sampling points at the initial time, and their values are 
all set to zero.

In order to evaluate the performance of carrier frequency estimation, 
the relative error er of carrier frequency estimation is defined as: 

(a) The curve of the time hopping detection probability as a change of the number of channels 

(b) The curve of time hopping detection probability as a change of signal-to-noise ratio 

Figure 4. Time hopping detection probability graph.
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er ¼
1
nf

Xnf

i¼1

fi � ~f i

�
�

�
�

fi
(27) 

Among them, nf is the total number of estimated carrier frequency 
points, fi is the actual value of the carrier frequency, and ~fi is the 
estimated value.

We set M to be 8, and calculate the error value of the carrier frequency 
estimate corresponding to the th-th signal sample. The received signal can be 

Figure 5. The curve of the time-hop detection probability as a change of the signal-to-noise ratio.

Figure 6. Frequency tracking scatter plot.
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divided into three segments according to the time hopping, and each segment 
lasts for 24 points. In order to observe the error curve more intuitively, the 
mean value of the three-segment signal estimation error at each sampling 
point in the 24 sampling points is calculated, and in order to exclude the 
influence of frequency hopping on the carrier frequency estimation, the value 
of th is 23. Figures 7(a,b) are the relative error curves of carrier frequency 
estimation obtained by the improved algorithm and the original ARMA 
algorithm when the SNR is 10dB and 15dB, respectively. Using SBL, a sparse 
representation model of physiological signals for intermittent hypoxia training 
is established. Through the adaptive iterative solution of sparse vectors, the 
carrier frequency and time hopping of signals can be estimated with high 
accuracy.

As can be seen from the figure, when the number of received signal 
samples is small, the error of using the algorithm in this chapter to 
estimate the signal frequency is larger, and the frequency estimation 
accuracy of the ARMA and SBL algorithms is better. However, with the 
increase of the number of received samples, the accuracy of the FFT 
calculation frequency is greatly improved, and the improved algorithm is 
gradually better than the ARMA algorithm. When enough samples are 
received, the frequency estimation accuracy of the improved algorithm is 
obviously better than that of the ARMA algorithm. Among these three 
algorithms, SBL has the highest carrier frequency estimation accuracy, but 
its algorithm complexity is also the largest.

Below we briefly analyze the amount of computation required for each 
algorithm to estimate the carrier frequency of a sample point. The ARMA 
algorithm only needs formula (15) and formula (16) to complete the 
carrier frequency estimation. The algorithm in this chapter needs to per
form M times of 512-point FFT and peak amplitude operations, as well as 
the clustering calculation of N cluster centers.The adaptive iterative solu
tion of the sparse vector. Among them, each iteration needs to update the 
mean matrix, covariance matrix, noise variance matrix and sparse vector 
until the target vector satisfies the preset conditions. In order to ensure 
the sparsity of the signal, P is set to be large in the SBL algorithm, 
resulting in a large number of matrix dimensions processed in each 
iterative operation. Moreover, in order to estimate the carrier frequency 
more accurately, the number of iterations of the sparse vector is also 
more, so the SBL algorithm has the largest amount of calculation and 
the longest time-consuming among the three algorithms.

The carrier frequency duration is extended from 24 sampling points to 32 
sampling points. Taking the first 32 data received as an example, the real-time 
DOA estimation algorithm for intermittent hypoxia training physiological 
signals based on particle filtering is used. When it is 20 dB, the DOA estima
tion value of the obtained signal is shown in Figure 8.
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Figure 9 is the structure diagram of the intermittent hypoxia training 
behavior recognition model based on 3D graph convolution. The input 
data is the joint point coordinates of the human skeleton sequence. After 
data preprocessing, it is input into the 3D spatiotemporal graph convolution 
network for feature extraction. Among them, the hole convolution method 
adopted by the 3D spatiotemporal graph convolution network has a total of 9 
layers, and is finally connected to the SoftMax classifier for action 
classification.

(a) Error curve of 10dB carrier frequency estimation 

(b) Error curve of 15dB carrier frequency estimation 

Figure 7. Error curve of carrier frequency estimation.
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The effect of the intermittent hypoxia training model in sports based on the 
graph neural network is verified, and the test results are obtained as shown in 
Table 1.

From the above research, it can be seen that the intermittent hypoxia 
training model proposed in this paper can effectively improve the effect of 
intermittent hypoxia training in sports with the fusion graph neural 
network.

Figure 8. Scatter plot of real-time DOA estimation of physiological signals of intermittent hypoxic 
training.

Figure 9. Structure diagram of behavior recognition model for intermittent hypoxia training based 
on 3D spatiotemporal graph convolutional network.
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Conclusion

As a stress, hypoxia has a certain degree of influence on various systems of the 
human body. As one of the two most important regulatory systems in the 
body, the endocrine system, together with the nervous system, plays an 
important regulatory function in the process of resisting stress. Therefore, 
the change law of endocrine system indicators in hypoxic environment has 
become the focus of research. Testosterone and cortisol are two very impor
tant hormones in the endocrine system, and have a certain relationship with 
athletes’ exercise ability and post-exercise recovery, so they are often used to 
evaluate athletes’ functional status. This paper combines the graph neural 
network to verify the effect of intermittent hypoxia training in sports training 
to improve the scientificity of sports training. The novelty presented in this 
paper is due to the particular application of using graph neural network 
(GNN) and ARMA model-based frequency tracking algorithm to improve 
the effectiveness of intermittent hypoxia training in sports. This approach is 
novel because it is specifically tailored to address the hypoxia forecasting 
problem in sports training, which involves predicting the physiological 
responses of athletes to intermittent hypoxic training.

The paper proposes an intelligent training model based on GNN, which is 
designed to capture the complex relationships between different physiological 
signals, such as oxygen saturation, heart rate, and respiration rate, during 
intermittent hypoxia training. This allows the model to provide accurate and 
real-time feedback to athletes during training, which can help optimize their 
training regimen and improve their performance.

Additionally, the paper introduces the ARMA model-based frequency 
tracking algorithm to accurately estimate the carrier frequency of the physio
logical signals during intermittent hypoxia training. This approach helps to 

Table 1. Validation of the effect of intermittent hypoxia training model in 
sports based on graph neural network.

Number Model checking Number Model checking

1 83.81 18 89.13
2 90.00 19 85.16
3 84.89 20 86.96
4 84.34 21 85.61
5 83.09 22 89.04
6 90.44 23 89.89
7 86.39 24 89.91
8 84.43 25 89.93
9 89.98 26 87.59
10 88.11 27 83.67
11 86.34 28 83.30
12 84.50 29 85.93
13 86.65 30 89.47
14 88.74 31 83.25
15 85.51 32 88.15
16 89.08 33 85.69
17 84.30 34 88.49
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mitigate the effects of frequency hopping, which can occur during hypoxic 
training and can lead to inaccuracies in frequency tracking.

Overall, the novelty presented in this paper is due to the unique application 
of GNN and ARMA model-based frequency tracking algorithm to address the 
hypoxia forecasting problem in sports training. By combining these 
approaches, the paper proposes an intelligent training model that can improve 
the effectiveness of intermittent hypoxia training in sports and provide ath
letes with real-time feedback to optimize their training regimen.

The experimental study shows that the intermittent hypoxia training model 
in sports based on graph neural network proposed in this paper can effectively 
improve the effect of intermittent hypoxia training.
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