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Abstract 
Deep neural networks for bearing fault diagnosis have become the focus of research in recent years with its excellent feature 
extraction capability. However, the problem of diagnosis under small samples still needs to be solved in industrial applications, 
because bearings rarely work in the fault state in practice, resulting in the scarcity of fault data. To solve this problem, this paper 
proposes a new diagnosis model, a time-frequency multi-scale attention network, which structure allows the original signal and its 
transformed spectrum to be used as the input in parallel. A multi-scale convolutional layer is also designed to extract information 
from the signal at different scales to enhance the feature extraction capability of the network. In addition, a hybrid attention 
mechanism is added to integrate the redundant features and realize the complementarity between features. The experimental results 
of seven bearing diagnosis cases from two bearings show that the proposed method can achieve high diagnostic accuracy under 
small samples, which proves the superiority of the proposed method. The time domain signal and frequency domain signal were 
respectively used as input to train the model. By comparing the accuracy with the time-frequency combined signal as input, the 
superiority of the time-frequency domain signal as input is proved. 
Keywords: Fault diagnosis; Hybrid attention mechanism Multi-scale convolution layer; Small samples 
 
 
1. Introduction 
 

Bearings are one of the important components in modern 
industrial equipment, widely used in various rotating 
machinery [1]. However, due to the long-term work of high 
speed, heavy load, and strong impact, bearings will cause wear, 
spalling, and other failures. If these failures are not handled 
well in time to restore the bearings to a healthy state, it will lead 
to the decline of the performance of mechanical equipment, and 
even lead to safety accidents, causing huge losses [2-4]. Based 
on such industrial needs, the field of mechanical fault diagnosis 
technology has achieved significant results in the past few 
decades. Fourier transform (FT), empirical mode 
decomposition (EMD), wavelet transform (WT), variational 
mode decomposition (VMD), and other signal processing 
methods have made a series of positive academic achievements 
and industrial applications when facing the problem of strong 

noise interference [5-8]. In recent years, with the development 
of artificial intelligence technologies such as machine learning 
(ML) and deep learning (DL), the intelligent fault diagnostic 
(IFD) methods of bearing failure have made great progress, 
which has become a popular means to solve the identification 
of bearing fault in the field of fault diagnosis [9-11]. However, 
in order to achieve the high ability of fault diagnosis, these 
traditional IFD methods often require a large number of labeled 
data that allows the models to be adequately trained.  

Data is the basis for the implementation of intelligent fault 
diagnosis methods. Broadly speaking, there are three kinds of 
data that can be collected: simulation data, laboratory data, and 
engineering monitoring data. Although simulation data and 
laboratory data provide us with sufficient fault data, it is 
difficult to directly reflect the complex characteristics of actual 
machines. Meanwhile, among the actual engineering 
applications, the data with valid labels are very difficult to 
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obtain and few in number[12]. Therefore, this paper will 
specifically investigate the problem of few samples from the 
perspective of engineering applications. 

Difficulties in obtaining the data lead to the fact that when 
facing the actual problems of industry, there is not enough 
labeled data to satisfy the data requirements of the model 
during training. Under the condition that only a few samples 
can be trained, the deep network cannot learn the most effective 
fault features, and it is easy to appear the phenomenon of over-
fitting. The generation of over-fitting will reduce the model’s 
generalization performance, resulting in a decrease in the 
accuracy of fault pattern recognition, and bringing great 
challenges for IFD methods. 

The problem of fault diagnosis under small samples has 
attracted the attention of many researchers in recent years, and 
some methods have been proposed. These methods can be 
divided into two main categories according to different 
optimization objects: data-based methods (DBMs) and model-
based methods (MBMs).  

DBMs focus on reducing the scarcity of information under 
small samples to improve the model’s generalization 
performance during the learning process, such as data 
augmentation (DA) and transfer learning (TL). Hu et al 
proposed a DA algorithm utilizing a resampling technique to 
simulate data under different rotating speeds and working 
loads, which can be regarded as a solution for both few-shot 
learnings as well as enhancing models’ generalization ability 
[13]. Pei et al proposed an enhanced few-shot Wasserstein 
auto-encoder (fs-WAE) motivated by optimal transport (OT) 
cost, promoting the diversity and authenticity of the generated 
samples [14]. Zhang et al proposed a deep learning-based 
synthetic over-sampling method, in which generative 
adversarial networks (GAN) was used to generate additional 
realistic fake samples and expand the available dataset 
afterward [15]. Zhou et al proposed another GAN-based 
method to synthesize fault instances, and an auxiliary loss of 
triplet form was introduced into the original loss function to 
enhance the quality of generated samples [16]. 

TL methods can generate additional beneficial knowledge 
by learning a source task similar to the target task and 
improving the model performance of the target task under a few 
samples. Chen et al proposed a hierarchy-guided transfer 
learning framework (HGTL) for fault recognition with few-
shot samples, which extracted and transferred fault knowledge 
between similar tasks via transfer learning techniques [17]. 
Zhang et al pretrained the model by source domain samples, 
obtained a good feature encoder and fixed them, then fine-
tuned the classifier module with a small amount of target 
domain data, which was a typical TL method [18]. Wu et al 
constructed a few-shot transfer learning method utilizing meta-
learning for few-shot samples diagnosis in variable conditions, 
which transferred the knowledge form artificial fault bearings 
to natural fault bearings [19]. 

The focus of this article is MBMs, the purpose is to 
optimize the network structure to improve the feature 
extraction ability of the model and improve the results of the 
fault diagnosis. Ren et al proposed a capsule auto-encoder 

model, which extracted multiple meaningful feature capsules 
and fusion them by the dynamic routing algorithm, and reduced 
the dependence on the number of samples [20]. Zhang et al 
developed a siamese neural network model based on deep 
convolutional neural networks with wide first-layer kernels 
(WDCNN), which can acquire better feature representation 
[21]. Ye et al proposed a novel U-Net with CapsNet (UN-CN) 
to , which reduced the loss of features in the pooling process 
and ensured the integrity of the features to realize better results 
of fault diagnosis [22]. An et al proposed a few-shot fault 
diagnosis method for rolling bearing using local descriptors, 
which made full use of the lowly discriminative descriptors to 
improve the distinguishing ability [23]. In order to extract more 
effective and discriminative features, Lv et al introduced 
Squeeze-and-Excitation Networks (SENet) as an attention 
module which can enhance effective features and weaken 
invalid features [24]. Wang et al proposed a one-dimensional 
CNN with an attention mechanism (AM), which made CNN 
pay more attention to the interesting part of the fault signals to 
extract discriminative features [25]. Chen et al proposed a 
Transformer-based network with shifted windows, which used 
self-attention calculation in each non-overlapping window to 
improve the recognition accuracy of the model [26]. 

Although the above methods in the field of IFD under 
small samples have made a series of achievements, there are 
still some problems and challenges. On the one hand, the 
characteristics of the bearing failure have different scales. 
Some global features need to be detected from a larger scale 
perspective and some local changes require a small-scale 
perspective to find it in time. However, the deep neural network 
(DNN) represented by CNN always uses the same size 
convolution kernels for operation in each layer, which is 
inappropriate for the multi-scale features contained in the 
signal. The use of single-size kernels in each layer cannot 
extract the comprehensive fault features and affects the 
diagnostic performance of IFD models. On the other hand, the 
time domain is one of the angles of observing signals. The 
frequency domain can sufficiently express the periodic 
characteristics of rotating components such as bearings. 
Extracting appropriate features from a single signal domain is 
more difficult than the multi-signal domain, which has a greater 
challenge to the learning ability of the model. 

To solve the above-mentioned problem, this study 
proposed a new time-frequency multi-scale attention network 
(TFMSAN) for bearing fault diagnosis under small samples. 
TFMSAN utilizes the time domain representation and 
frequency representation of the signal as the input, increasing 
the comprehensiveness of the signal. This kind of input makes 
the feature extraction ability of the model improve because the 
model can easier to learn effective features when the input is 
more comprehensive. In order to extract the multi-scale 
features from the input, a multi-scale parallel architecture is 
designed in the TFMSAN, which can perform the  
convolutional operation with different sizes of kernels at the 
same time. In addition, a hybrid attention framework (hybrid 
AM) has been constructed to integrate the multi-scale 
redundant features of the time and frequency domain in this 
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study. A hybrid AM includes both intra-domain and inter-
domain attention mechanisms. The AM of features intra-
domains and features between domains are added to the 
TFMSAN simultaneously, realizing the effective 
complementarity between different domains and ensuring the 
generalization ability of the TFMSAN. In general, the 
contributions of this paper are as follows: 
1)An TFMSAN is proposed for handling the IFD problem 
under small samples. 
2)Time domain and frequency domain representation of signals 
are utilized as the model’s input to ensure the completeness of 
the information.  
3)A multi-scale parallel architecture is designed to extract 
different scale features from signals. 
4)A hybrid attention framework (AM) is constructed to 
integrate the redundant features and realize the 
complementarity between features. 

The background and the principle of the proposed method 
are introduced in detail in Section 2, and then the structural 
framework of the proposed method is elaborated in Section 3. 
The experimental layout and the analysis of the results are 
described in section 4, while section 5 summarizes the results 
and the outlook for the future. 

2. Background 

2.1Convolution layer 
The convolution neural network (CNN) was first 

proposed by LeCun et al in 1989 [27]. CNN is widely used in 
the fields of computer vision (CV) and natural language 
processing (NLP), because of its three characteristics of sparse 
interactions, parameter sharing, and equivariant 
representations, which greatly improve the network’s ability to 
extract deep features [28]. Because the structure of CNN can 
automatically mine the deep abstract features of input data, it 
is also used in IFD recently. The convolution layer is the core 
part of the CNN, and gradual convolution can be performed 
between the input and the kernel. Assuming a 2D input I and a 
2D kernel K, the process of convolution can be expressed as:  

     (1) 

Figure 1 shows the differences in convolution operations 
for different sizes of kernels. It can be seen that large 
convolution kernels have a larger sensory range and can 
capture features at lager scales, while small size kernels can 
find subtle features. 

 
Figure 1 Convolution operations 

2.2Attention Mechanism 
Attention Mechanism has been formally proposed since 

2014 [29], it has made great progress in the field of artificial 
intelligence, especially the field of NLP. The AM allows neural 
networks to pay more attention to the relevant information in 
the input and reduce the attention to unrelated information. 
Because of this advantage, AM also attracted the attention of 
many scholars in the field of fault diagnosis [30]. There are 
three core concepts in AM: Query, Key, and Value. An 
attention function can be described as mapping a query and a 
set of key-value pairs to an output, where the query, keys, 
values, and output are all vectors. The output is computed as a 
weighted sum of the values, where the weight assigned to each 
value is computed by a compatibility function of the query with 
the corresponding key [31]. In actual use, researchers usually 
do not calculate the compatibility of each query and key, but 
consolidate multiple queries in a matrix for calculation. AM 
can be expressed as formula 2, where Q is a matrix composed 
of some query, K means keys matrix, V means values matrix, 
and  is a scale factor. In this formula, the compatibility 
between the query and the key is to be calculated in the form 
of dot product. 

 

               (2) 

Unlike the lack of representation of information by a 
single AM, the multi-headed AM introduces multiple attention 
functions, enabling the model to discover interested 
information from multiple perspectives and obtain an extensive 
representation of information. Self-attention [32] is the variant 
of the AM, which autonomously generates the query, key, and 
value without relying on external information, allowing the 
model to notice correlations between different parts of the 
whole input. Self-attention is widely used in this study, to mine 
efficient fault features. 

 
Figure 2 Attention mechanism and its variants 

3. The proposed method 

3.1Time-Frequency Multi-Scale Framework 
The time domain signal provides an intuitive representation 

of the measurement results of the physical quantity, which 
accurately reflects the change in the physical quantity over 
time. The frequency domain provides an additional perspective 
to observe the signal and describes the frequency structure of 
the signal in detail. The frequency domain representation of a 
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signal can be obtained from the time domain representation 
by Fourier transform, as shown in equation 2.  

                          (3) 

It is necessary to link characteristics of the time domain 
and frequency domain and give a trade-off when analyzing the 
signal. Compared to using the time domain or frequency 
domain alone, using them together as an analysis object 
provides a more comprehensive and fuller understanding of the 
signal. This study constructed a time-frequency parallel 
architecture that uses the original time domain signal and the 
spectrum obtained by Fast Fourier Transform (FTT) as the 
network’s input. The architecture can provide comprehensive 
time-frequency information to the network, making the 
network extract the sensitive fault features easier during the 
training process, although the features may be redundant. 

Signals collected from mechanical equipment are usually 
complex and varied, consisting of a large number of different 
components and noise. The fault information of equipment is 
included in the multi-scale components, which makes it 
difficult to mine the appropriate fault feature with a single 
scale of convolution kernels. In this paper, a multi-scale kernel 
convolution network was established to obtain feature 
extraction results at multiple scales, by using simultaneous 
convolution operation between kernels of different sizes and 
the input signals. The multi-scale convolution process can be  
expressed as: 

      (4) 

where x is the input of the multi-scale convolution (MSConv) 
layer,  is the m-th kernel, and M is the number of types of 

kernels with different sizes. In the MSConv layer, the input x 
convolutes with M kernels at first, and the results of 
convolution are concatenated into a whole tensor as the output 
of the MSConv layer. 

In general, this paper proposed a Time-Frequency Multi-
Scale Framework, namely TFMSF, which included time-
frequency parallel architecture and MSConv layer, as shown 
in Figure 3. First, the original signal is transformed by FFT to 
obtain its spectrum, and then the time domain signal and 
spectrum are used as the input of the MSConv layer. There are 
three modules in MSConv: convolutional operations of 
different scales, batch normalization (BN) layer, and 
maximum pooling layer. Features from different domains and 
different scales, extracted by the MSConv layer, are combined 
into a feature vector finally in TFMSF. This framework can 
be used to extract the multi-scale information of the time 
domain and frequency domain from the original fault signal to 
ensure the completeness of the information and enhance the 
network’s ability to extract the fault information under small 
samples. 

3.2Time-Frequency Multi-Scale Attention Network 
Although the network under the guidance of the TFMSF 

can mine multi-scale features of faults more comprehensively, 
the extracted features are often redundant because the 
information contained in the time and frequency domains is 
duplicated. In addition, when the mechanical equipment 
failure, some generated characteristics are discontinuous and 
periodic, not always present in signals. For example, when 
there is a single point defect in the outer ring of the bearing, 
the ball will pass the defect and produce impact vibration per 
turn. The traditional CNN pays the same attention to the data

 
Figure 3 Time-Frequency Multi-Scale Framework 
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at different moments and lacks the ability to capture fault 
information segments, leading to the extraction of some 
features that are not related to the fault. The proposed 
TFMSAN introduced a hybrid attention mechanism, 
containing multiple self-attention modules. These self-
attention modules can be divided into two categories in 
TFMSAN depending on the domain to which the input features 
belong. Intra-domain attention modules (Intra-AM) are used to 
achieve the localization of fault features in the time dimension, 
capturing the fault segments in the signal effectively, 
improving the extraction ability of discriminative features, and 
ignoring useless segments. Inter-domain attention modules 
(Inter-AM) are used to capture the intrinsic correlation 
between time-domain features and frequency-domain features, 
reducing the redundancy of features, achieving secondary 
selection and fusion of time-frequency multi-scale features, 
and improving the performance of features, as shown in Figure 
4. 

The original signal and its spectrum are first fed into the 
MSConv layer to obtain multi-scale features, after which intra-
AM is used to mine the fault-sensitive features. After that, the 
obtained time-domain features and frequency-domain features 
are jointly used as the input of inter-AM to achieve fusion and 
enhancement in order to improve the generalization ability of 
the network. Finally, a classifier module made of two linear 
full connection layers identifies the fault classes based on the 
extracted multi-scale features. The classification error is 
calculated using the common cross-entropy loss function as 
shown in Equation 5, and the network is trained by updating 
the parameters with back-propagation techniques. 

             (5) 

4. Experiment 
In this section, seven bearing diagnostic experimental 

scenarios from two bearings are used to demonstrate the 
performance of the proposed TFMSAN. 

4.1Experiment setting 

4.1.1Parameters of the proposed TFMSAN 
In TFMSAN, the convolutional layers are divided into 

three types according to the size of kernels,5×1, 9×1, and 16×
1, respectively, and the number of convolution kernels is set to 
32×1. To ensure that the same size output is obtained at 
different convolution scales, the step size in the convolution 
process is set to 1 and the padding is set to 2, 4, and 8, 
respectively. The number of head, embedded dimension of  
intra-AM is set to 2, 32, while the corresponding terms of the 
inter-AM is set to 4, 32. The classifier consists of two linearly 
connected layers with input size and output size of (1920, 300), 
(300, 4). The leaky rectified linear unit (LeakyReLU) 
activation was adopted for the whole network, and batch 
normalization was used for normalization. The full structural  
parameters of the network are shown in Table 1. 
 

During the training process, 3 (or 5) samples of each fault 
type are randomly selected as the training set, and the 
remaining samples are used as the test set to satisfy the 
hypothesis of the IFD problem under small samples. Training 
is performed using a stochastic gradient descent (SGD) 

Input time domain samples frequency domain samples 

MS 
Conv 

Conv1D Conv1D 
Stride 1 1 1 Stride 1 1 1 
Kernel 
num 32 32 32 Kernel 

num 32 32 32 
Kernel 

size 5 9 16 Kernel 
size 5 9 16 

Batch Normalization Batch Normalization 
LeakyReLU 

(negative slope=0.5) 
LeakyReLU 

(negative slope=0.5) 
Max pooling 

(kernel size = 4) 
Max pooling 

(kernel size=4) 
Conv1D Conv1D 

Stride 2 2 2 Stride 2 2 2 
Kernel 
num 32 32 32 Kernel 

num 32 32 32 
Kernel 

size 5 9 16 Kernel 
size 5 9 16 

Batch Normalization Batch Normalization 
LeakyReLU 

(negative slope=0.5) 
LeakyReLU 

(negative slope=0.5) 
Max pooling 

(kernel size=4) 
Max pooling 

(kernel size=4) 
Intra-
AM 

Num of heads:2, 
Embedded dimension: 32 

Num of heads:2, 
Embedded dimension: 32 

MS 
Conv 

Conv1D Conv1D 
Stride 4 4 4 Stride 4 4 4 
Kernel 
num 32 32 32 Kernel 

num 32 32 32 
Kernel 

size 5 9 16 Kernel 
size 5 9 16 

Batch Normalization Batch Normalization 
LeakyReLU 

(negative slope=0.5) 
LeakyReLU 

(negative slope=0.5) 
Max pooling 

(kernel size=4) 
Max pooling 

(kernel size=4) 
Conv1D Conv1D 

Stride 8 8 8 Stride 8 8 8 
Kernel 
num 32 32 32 Kernel 

num 32 32 32 
Kernel 

size 5 9 16 Kernel 
size 5 9 16 

Batch Normalization Batch Normalization 
LeakyReLU 

(negative slope=0.5) 
LeakyReLU 

(negative slope=0.5) 
Max pooling 

(kernel size=4) 
Max pooling 

(kernel size=4) 
Inter-
AM Num of heads:4, Embedded dimension: 32 

Flatten 
layer Flatten() 

Classifier 

LeakyReLU(negative slope=0.3) 
Linear(size of input sample=1920, size of output 

sample=300) 
LeakyReLU(negative slope=0.3) 

Linear(size of input sample=300, size of output sample=4) 
Result Output 
Table 1 The structural parameters of the TFMSAN 

*Conv1D (in channels, out channels, kernel size) means a 1D convolution 
layer with the number of channels in the input equals in channels, the number 
of channels produced by the convolution equals out channels, and the size of 
the convolving kernel equals kernel size. 

( ) ( )log 1 log 1loss y y y y= - + - -é ùë û
 
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optimizer with 1000 epochs per experiment. The initial 
learning rate (LR) is set to 0.001, and to ensure the 
convergence of the model, the learning rate decreases 
exponentially as the training progresses, as shown in the 
Equation 6: 

                (6) 

Where 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑙𝑟 is the initial learning rate, the epoch is the 
completed training epochs. β and γ are two parameters that 
control the rate of LR’s change and are empirically set to 0.01 
and -0.75.

 
Figure 4 Time-Frequency Multi-Scale Attention Network 

 
To validate the superiority of the proposed TFMSAN, the k-
nearest neighbors (KNN)， support vector machine (SVM), 
random forest (RF), convolution neural network (CNN), and 
wide kernel CNN (WKCNN) were selected for comparison. 
Among them, KNN, SVM, and RF use the mature versions 
from the scikit-learn module. 

The CNN uses a convolutional structure similar to that of 
the TFMSAN, containing four convolution layers, but using 
only the original signal as the input. WKCNN utilizes a wider 
convolutional kernel to extract one-dimensional signal features 
more efficiently [33]. All these comparison methods were fine-
tuned to achieve the best experimental results on the data set 
used in this paper. 

4.1.2Dataset description 
The data sets used in this study were collected from two 

different bearing failure simulation experimental benches to 
validate the proposed method. The data set used in this paper 
includes four data types, namely, bearing data under the 
condition of health and bearing data under the condition of 
inner ring failure, outer ring failure, and ball failure. The first 
data set is from the Case Western Reserve University(CWRU) 
Bearing Data Center. As shown in Figure 5(a), the bearing test 
bench includes a two-horsepower motor, a torque sensor, a 
power meter, and an electronic control system. The bearing 
type under test is 6205-2RS JEM SKF. Faults of bearing 

include inner ring failures，  outer ring failures, and ball 
failures, which are single point artificial failures machined at  

 
(a) CWRU bearing test bench 

 
(b) SQ bearing test bench 

Figure 5 The construction of bearing test benches  

( )_ 1lr initial lr epoch gb= × × +

Page 6 of 11AUTHOR SUBMITTED MANUSCRIPT - MST-117034.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



IOP Publishing Journal Title 
Journal XX (XXXX) XXXXXX  https://doi.org/XXXX/XXXX 
 

xxxx-xxxx/xx/xxxxxx 7 © xxxx IOP Publishing Ltd 
  
 

the corresponding locations respectively. The motor load 
includes 0-3 hp and the speed distribution is between 1720 and 
1797 rpm. The vibration signal used in this paper is collected 
from the drive-side bearing measurement point with a 
sampling frequency of 12 kHz, for more detailed information 
see [34]. 

The second data set is from the Spectra Quest (SQ)test 
bench, as shown in Figure 5(b). It consists of a single-phase 
asynchronous motor as the power output, a heavy load of 5kg, 
and the test bearing on the right side of the rig. The type of 
bearing under test is ER16K. Inner ring failures, outer ring 
failures, and rolling element failures were manufactured in the 
test bearing manually, the same as the first data set. The speed 
is divided into three types: 300, 600, and 900rpm and the 
sampling frequency is 51.2kHz. 

Table 2 Details of the experimental data 

Cases Test-rig 
Category of 

Training/Test 
samples 

Num of 
training 
samples 

Num of 
Test 

samples 
Load 
/HP 

Speed 
/RPM 

(Each Category) 

Case1 

 
CWRU 

Normal(N) 

Inner ring(I) 

Outer ring(O) 

Ball(B) 

3/5 

 
 

3/5 

0 1797 

Case2 1 1772 

Case3 2 1750 

Case4 3 1730 

Case5 

SQ 

 0 300 

Case6 

N(1203), 
I(876), 
O(876), 
B(876) 

0 600 

Case7 

N(1204), 
I(876), 
O(876), 
B(876) 

0 900 

In order to verify the effectiveness of the proposed 
method under small samples, data from two bearing 
experimental benches were divided into seven cases depending 
on the speed and load. Each situation includes normal data of 
bearings, inner ring fault data, outer ring fault data, and rolling 
element fault data. All of the data were divided by time 
windows of length 2560 and steps 400 in this study. In each 
case, 3 (or 5) samples of each fault type were randomly 
selected as the training set, and the remaining samples are used 
as the test set to simulate small sample scenarios. The details 
of the experimental data are shown in Table 2. 

4.2Experiment results 

4.2.1Performance of models under 3 training samples 
During the experiment, we tested 5 machine learning and 

deep learning algorithms such as RF, and CNN as controls, and 
finally obtained the experimental results of TFMSAN, and the 
comparison methods under seven cases are shown in Figure 6. 
To avoid inaccurate comparison results due to the specificity 
of the selected training samples, the final results show the 
mean and variance of 5 experiments. As can be seen from the 

figure, the proposed method achieves the best diagnostic 
results for these seven different bearing failure cases, which 
proves the effectiveness of the proposed method. In case 2 and 
case 3, there is no significant difference between SVM and the  

*Proposed method refers to TFMSAN 
Figure 6 The diagnostic results of the different methods 

using 3 training samples 

proposed method because they are both close to 100%, while 
in other cases the proposed method has a significantly better 
diagnostic effect than SVM, especially for SQ bearings. RF is 
the second-best performing method in cases 4, 5, 6, and 7 after 
the proposed method, presumably because the integration 
property in RF makes the model better resistant to overfitting, 
which can get better results under significant noise. The best 
diagnostic results were obtained in these cases, which also 
demonstrated the excellent interference resistance and 
generalization performance of the proposed method. CNN and 
WKCNN perform similarly in these cases, significantly lower 
than the proposed methods and traditional machine learning 
methods such as RF and SVM. We speculate that the reason 
for these phenomena is that CNN and WKCNN, based on deep 
neural networks and using raw signals as input to extract 
features, which lead to insufficient generalization of the 
learned features when it is difficult to obtain sufficient 
diagnostic knowledge in scenarios with small samples. 

4.2.2Performance of models under 5 training samples 
The diagnostic results of methods on seven different cases 

under the condition that training with 5 samples are shown in 
Figure 7. From the figure, we can find that in case 2 and case 
3, KNN, RF, and SVM achieve similar results with the 
proposed method, which are all very close to 100%. In other 
cases, the proposed method achieves the best diagnostic 
results. Especially, in cases 4, 5, 6 and 7, the performance of 
the comparison methods declined more obviously, while the 
proposed method still achieved good diagnostic accuracy, 
which exceeded 90% in all cases, reflecting the excellent 
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feature extraction ability of the proposed method in different 
conditions. 

*Proposed method refers to TFMSAN 
Figure 7 The diagnostic results of the different  methods 

using 5 training samples 

Through the experimental results of the previous two 
different training samples, we can prove the superiority of 
TFMSAN. For this phenomenon, we believe it is because the 
input signals in the time domain and frequency domain are 
respectively input into the MSConv layer to obtain multi-scale 
features. Then, effective fault features can be mined through 
the intra-domain attention mechanism, and the time domain 
and frequency domain features are combined and the features 
are fused and enhanced through the inter-domain attention 
mechanism so that the classification can be made according to 
the multi-scale features. Thus, the proposed method has the 
highest accuracy. 

4.2.3Performance of using time and frequency domain signals 
as input signals respectively 

 
Figure 8 The diagnostic results for different input signals 

using 3 training samples 

Table 3 Results of 3 different input signals under 3 training 
samples (%) 

*Increase1=Time-frequency domain -Time domain 

 Increase2= Time-frequency domain - Frequency domain 

Table 3 and Figure 8 show the experimental results of 
using the time domain signal, the frequency domain signal, and 
the combined time and frequency domain signal as the input 
signal respectively under 3 training samples. From the results, 
it can be seen that using time-frequency combined signals as 
input has an average improvement of 5.0826% in accuracy 
compared to using only time-domain signals as input, and at 
the same time, it has an average improvement of 2.9313% in 
accuracy compared to using only frequency-domain signals as 
input. This can prove that using time-frequency combined 
signals as input can provide multi-dimensional features for 
fault diagnosis, thereby improving the model's feature 
extraction ability under small sample conditions. According to 
this, we can get that time-frequency signals have good Local 
properties and adaptability to different scales, and can 
simultaneously characterize the time-domain characteristics 
and frequency-domain characteristics of signals. 

4.2.4 Performance of the model with and without hybrid 
Attention Mechanism. 

 
Figure 9 The diagnostic results for performance of hybrid 

AM 

0

0,2

0,4

0,6

0,8

1

Case1 Case2 Case3 Case4 Case5 Case6 Case7

A
C

C
U

R
A

C
Y

CASES

 time domain signals as input
 frequency domain signals as input
 time and frequency domain signal as the input

 
Cases 

Time 
domain 

Frequency 
domain 

Time-
frequency 

domain 

Increase
1 

Increase
2 

Case1 91.7224 95.3618 97.3566 5.6342 1.9948 
Case2 91.3842 98.3671 98.6770 7.2828 0.2999 
Case3 94.1253 98.9136 99.2682 5.1429 0.3546 
Case4 86.8847 87.8963 88.9000 2.0153 1.0037 
Case5 90.6755 90.2734 88.5027 -2.1728 -1.7707 
Case6 85.4123 81.5346 88.9437 3.5314 7.4091 
Case7 86.2348 84.8491 90.2140 3.9792 5.3649 
Mean    5.0826 2.9313 
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Table 4 Results with and without hybrid AM (%) 

 

 
Figure 10 The diagnostic results of using time domain 

signals as input 

 
Figure 11 The diagnostic results of using frequency 

domain signals as input 

Table 4 and Figure 9 show the experimental results with and 
without the addition of hybrid AM under the conditions of 3 
training samples and 5 training samples. From them, we can 
get that adding AM can effectively improve the fault 
diagnosis results of the model. The average improvement is 
5.8594% under three training samples and 3.5844% under 
five training samples. Such results demonstrate that AM can 
effectively improve the performance of the extracted features 
and enhance the generalization of the model under small 
samples. 

Using only time domain or frequency domain signals as 
input, Figure 10 and Figure 11 show the experimental results 
with and without the addition of hybrid AM under the 
conditions of 3 training samples and 5 training samples. As 

can be seen from the two bar charts, no matter the time domain 
signal or frequency domain signal as input, the diagnostic 
accuracy of most models without mixed attention mechanism 
is lower than that of models with mixed attention mechanism. 
These results show that the hybrid AM can effectively improve 
the feature extraction performance for time domain, frequency 
domain, and time-frequency domain signals under appropriate 
conditions, so as to improve the fault diagnosis accuracy of the 
model under the condition of small samples. 

5. Conclusion 

In this paper, a new IFD model, TFMSAN, is proposed 
to solve the problem of poor generalization ability under small 
samples in real industrial environments. A neural network 
framework is constructed, namely TFMSF, to realize the 
parallel extraction of time- and frequency-domain multi-scale 
features to enhance the information extraction ability of the 
model. The framework uses multiple kernels of different sizes 
to build the MSConv layer to achieve different scales of 
convolution. In addition, two structurally identical branches in 
the framework are used to extract features in the time and 
frequency domains respectively. Meanwhile, a hybrid AM is 
introduced into the model to mine for more effective and 
focused features. Intra-AM and inter-AM are used for feature 
fusion of one domain and different domains, to integrate the 
redundant features and realize the complementarity between 
features. The experimental results prove the superiority of the 
proposed method, and the following three conclusions can be 
drawn. 

1) The comparison results with the five other methods 
prove the superiority of TFMSAN for extracting efficient fault 
features, and show the effectiveness of the proposed method 
for fault diagnosis with small samples. 

2) Experimental results in seven cases of bearing 
diagnosis experiments from two bearings demonstrate the 
reliability and generalization of the proposed method, as the 
proposed TFMSAN achieves the best or near best fault 
diagnosis accuracy in all these cases which is generally better 
than comparison methods. 

3)By comparing the diagnostic accuracy of time-domain 
signal and frequency-domain signal as input with the 

0
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0,8

1

Case1 Case2 Case3 Case4 Case5 Case6 Case7
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C
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sample size=3(with AM) sample size=3(without AM)

sample size=5(with AM) sample size=5(without AM)

0

0,2

0,4

0,6

0,8

1

Case1 Case2 Case3 Case4 Case5 Case6 Case7

A
C

C
U

R
A

C
Y

CASES

sample size=3(with AM) sample size=3(without AM)

sample size=5(with AM) sample size=5(without AM)

Cases 
3 samples 
(Without 

AM) 

3 
samples 
(With 
AM) 

increase 
5 samples 
(Without 

AM) 

5 samples 
(With 
AM) 

 
increase 

 

Case1 91.7461 97.3566 5.6105 94.4611 98.8966 4.4354 
Case2 97.6505 98.6770 1.0266 99.7647 99.7572 -0.0076 
Case3 99.3274 99.2682 -0.0592 99.9508 99.9093 -0.0415 
Case4 82.1059 88.9000 6.7940 89.1127 96.8295 7.7169 
Case5 75.1999 88.5027 13.302 88.3574 91.1689 2.8115 
Case6 83.9316 88.9437 5.0120 89.2533 95.3990 6.1457 
Case7 80.8851 90.2140 9.3289 91.9950 96.0255 4.0305 
mean   5.8594   3.5844 
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diagnostic results of time-frequency signal as input, it can be 
proved that the model can obtain more comprehensive and 
effective fault features when time-frequency signal is used as 
input. 

4) The comparison results of the model with AM and the 
model without AM show the role of the hybrid AM, which can 
significantly improve the efficient representation and 
generalization performance of features. 

In this study, it is assumed that all failure types have the 
same number of samples, but in the actual industry, the 
probability of occurrence of various failure types is not the 
same, resulting in an imbalance between the various types of 
samples. What’s more, the proposed method still requires 
complete categories of data, and it is still impossible to 
effectively diagnose data sets that lack a certain fault category 
which is common in industry applications. How to make full 
use of the unbalanced small sample data to ensure the validity 
of the model is the focus of the next study. 
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