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Abstract
Generalized demodulation (GD) has the potential to process non-stationary vibration signals
since it can demodulate a signal with a curved time–frequency (TF) ridge into a signal, with a
TF ridge parallel to a time axis with an improved time-frequency representation (TFR) energy
concentration level. However, current GD methods require iteration operations and cannot
simultaneously deal with vibrations from multiple components of rolling bearings. This paper
proposes a method based on the GD framework, which can simultaneously demodulate multiple
components of interest using the Hadamard product between matrices. A synchronous extractor
is also constructed to post-process TFRs of generalized demodulated signals to further improve
the TF aggregation. Unlike the conventional synchronous extraction transform, the synchronous
extractor in this paper can be directly applied to TF ridges parallel to the time axis without the
estimation of instantaneous frequencies (IFs). Then, the post-processed TF ridges are backward
demodulated to restore the actual IF. The proposed synchronous fault feature extraction method
in the GD framework also allows for the signal reconstruction. Both simulated and experimental
signals are applied to validate the effectiveness of the proposed method for rolling bearing fault
diagnosis.

Keywords: bearing fault diagnosis, time-frequency analysis, time-varying speed condition,
fault feature extraction, generalized demodulation
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1. Introduction

Bearings are vital components of rotating machinery systems
and their health condition plays an important role in ensur-
ing the safe operation of rotating machinery. In reality, most
rotating machinery often works under time-varying speed
conditions. Therefore, conventional fault diagnosis methods,
including spectrum analysis and envelope spectrum analysis,
are no longer effective due to the time-varying features of
vibration signals. Thus, the fault detection and diagnosis of
bearings under variable speed conditions has become a hot
topic of research [1, 2].

Time–frequency analysis (TFA) is a method that can be
used to show the time-varying characteristics of non-stationary
signals [3, 4]. However, the smearing and cross-term prob-
lems of traditional TFA methods, including short-time Fourier
transform (STFT), Wigner–Ville distribution (WVD), wavelet
transform (WT) and empirical mode decomposition (EMD),
greatly confine their applications for bearing fault diagnosis.
Specifically, WVD is a serious cross-term interference prob-
lem. Although plenty of research work has been carried out
by both national and international scholars on the suppres-
sion of cross terms, these methods are at the expense of
WVD TF aggregation [5–8]. EMD does not yet have a solid
theoretical foundation, and it suffers from problems, such
as under-envelope, over-envelope modal confusion, endpoint
effects, etc. In addition, the binary filtering characteristics of
EMD sieving also make it unable to process signals with a
wide range of continuous changes in instantaneous frequen-
cies (IFs) [9–12]. WT methods have excellent TF localization.
However, its ‘box’ TF atoms (such as Gabor basis functions,
Morlet basis functions, etc) are not suitable for vibration sig-
nals of time-varying speeds, especially for start-stop signals of
equipment [13]. Li et al proposed a method for bearing fault
diagnosis based on improved multiscale permutation entropy
and least squares support vector machine (SVM) [14].

In order to solve the TF ambiguity problem caused by the
influence of TF resolution in the traditional TFA method, Yu
et al proposed a sychroextracting transform (SET), which can
enhance the TF aggregation and sharpen the TF ridges of
nonstationary vibration signals [15, 16]. Shi et al construc-
ted an adaptive demodulation factor to achieve the generalized
demodulation (GD) synchronously by angle matching and
found the most suitable window length and angle by the rela-
tionship between different window lengths, angles and spec-
tral kurtosis values [17]. Li et al used the empiricalWT (EWT)
to decompose the bearing fault signal to enhance the TF char-
acteristics of the signal [18]. Wang et al proposed the iterative
use of the matching demodulation transform to improve the
accuracy of the extracted IFs [19]. Shi et al proposed a fractal
dimension and GD-based fault diagnosis method of bearing
under variable speed conditions, which avoids the resampling
process when processing nonstationary signals [20].

In addition to the TFA methods reviewed above, GD-
based TFA methods provide another way of processing bear-
ing vibration signal under time-varying speed conditions since
the GD can demodulate the time-varying frequency of the sig-
nal to a constant frequency parallel to the time axis, showing

that GD has the potential to process non-stationary vibration
signals [21, 22]. Shi et al have proposed the generalized step-
wise demodulation transform by uniquely utilizing the prop-
erties that can effectively enhance the TF readability [23].
Zhao et al used the Vold–Kalman filtering method to extract
the time-varying non-stationary bearing and gear fault fea-
ture components from the envelope spectrum of the original
signal [24]. Liu et al have redefined the energy factor of GD
to effectively improve the capability of noise against when
processing vibration signals with time-varying frequencies
[25]. Li et al proposed a method to construct GD phase
functions based on peak engagement multiplier trend lines
to achieve iterative GD for diagnosing the rolling bearing
faults under variable speeds without tachometers [26]. Liu
et al proposed a hybrid method that integrates GD and artifi-
cial neural networks, and the method was shown to improve
the accuracy of fault determination [27]. Pi et al obtained
the phase function of the multi-component signal compon-
ents by combining the multiscale line frequency modulation
with the sparse signal decomposition method. GD and spec-
tral analysis of the signal were then performed to obtain
the gear fault characteristic frequency (FCF) [28]. Liu et al
proposed a novel flexible iterative GD filtering method to
reveal the fault-related frequencies, where the demodulated
frequency values are not subject to the speed fluctuation
profiles [29].

However, most aforementioned GD-based methods rely on
prior knowledge of each signal component of interest and
require an iterative process to process multi-component sig-
nals, whichmaymake the algorithm largely dependent on each
IF estimation and also complicate the algorithms. For post-
processing methods, such as SET, the realization requires the
estimation of the IF at each time instant, thereby leading to a
large computational cost. Little work has been performed on
synchronous GD of multi-component signals. Therefore, this
paper proposes to synchronously demodulate vibration signals
with multi-component components of interest by constructing
a demodulation factor matrix without the iterative operation
being involved. The synchronous extractor is then construc-
ted for the generalized demodulated signal components, and
the TF aggregation of the vibration signal analysis is further
enhanced.

The rest of this paper is organized as follows. Section 2
describes the proposed method in detail, including the mat-
rix construction of demodulation factors, pre-determination
of fault characteristic coefficients, construction of the extrac-
tion matrix and signal reconstruction of the proposed method.
Section 3 illustrates the effectiveness of the method using sim-
ulated signals. Section 4 verifies the effectiveness of the pro-
posed method through experimental signals, and Section 5
gives the conclusion.

2. Proposed synchronous fault feature extraction
method in a GD framework

The proposed method is composed of the following mod-
ules: the matrix of demodulation factor, pre-determination of
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Figure 1. (a) TFR of the signal and demodulated signal, (b) TFR of the original signal segment and forward demodulated signal segment,
and their spectra and (c) TFR of the original signal segment and the backward demodulated signal segment and their spectra (FD: forward
demodulation, BD: backward demodulation), (the level of darkness reflects the energy level).

fault characteristic coefficients, construction of the extraction
matrix. For GD, how to demodulate multiple components dir-
ectly is a problem. In this paper, the theory ofmulti-component
synchronous GD by constructing a matrix of demodulation
factors is proposed, which can obtain the frequency–amplitude
(F–A) diagram from the matrix that is obtained by solving the
Hadamard product of the signal and the demodulation factor
matrix. The extraction matrix is used to extract thecomponents
of interest after demodulation. The three modules are illus-
trated in the following section.

2.1. The matrix of demodulation factor

GD is a useful tool that can help to achieve separation of non-
stationary signals with multi-components. GD is based on the
generalized Fourier transform (GFT), and a crucial part of GD
is the construction of the demodulation factor. Considering an
analytical signal x(t), the GFT is expressed as,

XG ( f) =

∞̂

−∞

x(t) · e−2πi( ft+x0.(t))dt, (1)

where x0 (t) is a real-valued demodulator that depends on time
only. It can also be considered as the standard Fourier trans-
form (FT) of x(t) · e−2πix0.(t). Observing equation (1), when
XG (f)≡ δ ( f − f0), it can be written as,

xd (t) = e2πi[ f0t+x0(t)]. (2)

Observing equation (2), a particular time-varying non-
stationary component of the analytic signal can be converted
into a linear time-parallel stationary component if its conver-
sion factor satisfies the following equation:

f(t) = f0 +
dx0(t)
dt

, (3)

where f(t) denotes the IF of a signal component. The TF ridges
can be gained by the traditional peak search method based on
time frequency representation (TFR). The property of GD of
mapping signals with time-varying trajectories to a linear path
of arbitrary constant frequency parallel to the time axis can
help to avoid frequency overlap, hence facilitating filtering
operations and the separation of signal components. In sum-
mary, one of the important characteristics of GD is that, after
the demodulation, the TF ridge of the demodulated signal is
located at a constant frequency f0 and the energy of the signal
x(t)would be concentrated on the constant frequency f0 on the
TFR, as can be seen in figure 1.

Once a basic demodulation factor has been determined, the
demodulation factor matrix can be constructed as follows:

D=



d0(t)
n0 · d0(t)
n1 · d0(t)
n2 · d0(t)

...
nN · d0(t)


, (4)
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where d0(t) is the basic demodulation factor determined by
the IF of the signal component of interest, and nn(n = 1,
2, 3,…N) represents the coefficient of the basic demodula-
tion factor. Hence, expanding the original signal x(t) into
a matrix of nn× l, in which l is the length of the signal
analyzed.

Here, we present an algorithm, called the Hadamard
product, for two matrices of the same order A= (ai,j), B=
(bi,j), if ci,j = ai,j× bi,j, the matrix C= (ci,j) is considered to
be the Hadamard product of A and B. It can be defined as,

C= A⊙B=


a11b11 a12b12 · · · a1nb1n
a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn

 , (5)

which can help to achieve synchronous generalization of the
two matrices,

S= X⊙D=



x(t)
x(t)
x(t)
x(t)
...

x(t)


⊙



d0(t)
n0 · d0(t)
n1 · d0(t)
n2 · d0(t)

...
nN · d0(t)


, (6)

where ⊙ is the Hadamard product and S is the matrix of
the demodulated signals. Each row in matrix S represents the
corresponding demodulation results obtained with different
demodulation coefficients.

2.2. Pre-determination of demodulation coefficients

In order to use equation (6) to synchronously demodulate the
signal components of interest, the demodulation coefficients
nn should be pre-determined first. Denote the STFT-resulting
TFR of all the demodulated signals stored in matrix S in
equation (6) as SSM×N(M and N represent the size of the mat-
rix). Since the GD can improve the energy concentration of
the signal when the frequency of the demodulation factor best
matches the actual one of the signal components, the mean of
the TF amplitudes of the frequency where this demodulated
signal component is located should be theoretically much lar-
ger than the ones of the signal component demodulated by
other demodulation factors. Taking the mean of TF amplitudes
of all frequencies of the matrix SS, a new matrix A containing
the mean of TF amplitudes of each row in SS can be expressed
as,

A= [a1 a2 a3 · · · an] , (7)

where an (n = 1, 2, 3, …) means the mean of TF amplitude
of the row in SS. Figure 1 shows the F–A graph of an experi-
mental signal.

Figure 2. F–A diagram of the signals.

In figure 2, the frequencies of the peaks are denoted by ωk
(k = 1, 2, 3, …). The demodulation coefficients can be prede-
termined by the ratios of the higher frequencies (ω2 and ω3) to
the frequency (ω1) of the first peak. The ratios of frequencies
corresponding to these peaks are 5.40 (=269.8/50.05), 10.87
(=544.4/50.05) and 16.29 (=815.4/50.05). It can be seen
that 10.87 and 16.29 are double and triple 5.40, respectively.
Therefore, it can be predetermined that its basic demodula-
tion coefficient is 5.40, and the other two are two and three
times the basic demodulation coefficient, respectively. With
the pre-determined demodulation coefficients, the demodula-
tion matrix that is used to extract the TF ridges of interest can
be obtained and also paves the way for the extraction matrix
construction.

2.3. Construction of the extraction matrix

GD can demodulate a signal component with curved IF into
a signal with a horizontal frequency line. On the one hand,
the TF ridges of generalized demodulated signals can be fur-
ther sharpened. On the other hand, the overlap problemmay be
generated when processing multi-component signals. Hence,
a clearer TFR of the demodulated signals is desirable, which
can be obtained by extracting the TF ridges at the targeted fre-
quencies of the TFR.

The extraction operator construction can start from STFT
and its definition is as follows:

G(t,ω) =

∞̂

−∞

g(u− t)s(u)e−jωudu, (8)

where s(u) is an analyzed signal and g(u− t) denotes the
moving window. Let gω (u) = g(u− t) · e jwu, according to
Parseval’s theorem, equation (8) can be written as,
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G(t,ω) =
ˆ ∞

−∞
s(u)(gω (u))

∗du

=
1
2π

ˆ ∞

−∞
S(ζ) ·

[
e j(ω−ζ)t ·Gω (ω− ζ)

]∗
dζ

= e−jωt · 1
2π

ˆ ∞

−∞
S(ζ) ·Gω (ω− ζ) · e−jζtdζ (9)

where S(ζ) and (gω (u))
∗are the FTs of s(u) and gω (u), sep-

arately. The superscript ∗ indicates that the complex conjug-
ate Gω (ω− ζ) is the FT of the window function. Since the
observed TF spectrum is of amplitude spectrum, adding a
phase move e−jωt to the STFT results G(t,ω) does not affect
the amplitude, let,

Ge (t,ω) =
1
2π

∞̂

−∞

S(ζ) ·Gh (ω− ζ) · e−jζtdζ

=

∞̂

−∞

g(u− t) · s(u) · e−jω(u−t)du. (10)

Constructing the single-component signal sh (t) = A · e−jωt,
its FT is Sh (ζ) = 2πA · δ (ω−ω0), where A denotes its amp-
litude and ω0 denotes the frequency of sh (t), by substituting
the signal sh (t) into equation (10), we can get its STFT expres-
sion:

Ge (t,ω) = A ·Gh (ω−ω0) · e−jω0t. (11)

In equation (11), according to Heisenberg’s inaccuracy
principle, the window function is chosen as a Gaussian win-
dow in order to get the best time and frequency resolution and
Gh (ω) is compact [12]. Due to

∣∣e−jω0t
∣∣= 1, |Ge (t,ω)| then

achieves its maximumvalue atω = ω0, where it has the highest
energy. Hence, the TF component that demodulates the sig-
nal to ω = ω0 can be considered to be extracted from the TF
domain.

The extraction operator is denoted as
´∞
−∞δ (ω−ω0 (t,ω))dω

and the extraction transformation can be expressed as,

TG0 (ω) =

∞̂

−∞

XG (ω) · δ (ω−ω0 (t,ω))dω. (12)

When ω = ω0 (t,ω),

TG (ω0) = XG (ω) · δ (ω−ω0 (t,ω)) . (13)

Hence, this extraction operator can be defined as,

δ (ω−ω0 (t,ω)) =

{
1 ω = ω0

0 ω ̸= ω0
. (14)

From equations (13) and (14) we know that in the TF
domain, it can be expressed as,

TG (ω) =

{
XG (ω) ω = ω0

0 ω ̸= ω0
. (15)

This extraction operator can effectively extract only the TF
component XG (ω0) in TFR.

From the above derivation, it is known that the extraction
operator can extract the signal component at a constant fre-
quency, and the demodulated frequency positions of all signal
components associated with the FCF and its harmonics can
be determined from the F–A diagram. Hence, it is possible to
extract the signal components in the matrix SS corresponding
to the target frequencies determined by the F–A diagram by
constructing the extraction operator matrix:

O=

 a a a
a a a
a a a


M×N

,

{
a= 1 ωm = ωk(t,ω)
a= 0 ωm ̸= ωk(t,ω)

, (16)

whereO is the extractionmatrix,m is themth row of thematrix
and ωk (k = 1, 2, 3, …) represents frequencies corresponding
to the peaks in the F–A diagram.

By calculating the Hadamard product of the matrix SS and
O, the demodulated signal components of interest can be suc-
cessfully extracted:

S0 = SS⊙O=


ss11 ss12 · · · ss1N
ss21 ss22 · · · ss2N
...

...
. . .

...
ssM1 ssM2 · · · ssMN


M×N

⊙


a a · · · a
a
...

a · · ·
...

. . .

a
...

a a · · · a


M×N

×
{
a= 1 ωm = ωk(t,ω)
a= 0 ωm ̸= ωk(t,ω)

, (17)

where ssm,n represents the element of the matrix SS and ωk
is the frequencies of the peaks determined by the F–A graph.
Equation (17) refers to the signal matrix that only contains
each component of interest after demodulation.

Hence, the inverse GD can be performed on the basis of
the matrix S0 to obtain the TF components with the ori-
ginal frequency distribution trend and enhanced aggregation.
Consequently, the accuracy of the fault characterization factor
can be further improved.
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Figure 3. TFR of the simulated signal: (a) TFR of the original signal; (b) TFR of the processed signal.

2.4. Time domain reconstruction

Since the TF energy is redistributed only in the frequency path,
the proposed method can also satisfy the time domain of the
signal reconstruction, which is proved as follows:

x(u) =
1

g(0)

ˆ ∞

−∞
x(t)g(t− u)δ (t− u)dt

=
1

2πg(0)

ˆ ∞

−∞

ˆ ∞

−∞
x(t)g(t− u)e−iω(t−u)dtdω

=
1

2πg(0)

ˆ ∞

−∞
Sgx (u,ω)dω

=
1

2πg(0)

ˆ ∞

−∞
Sgx (u,ω)dω

ˆ ∞

−∞
δ (η−ϖ x(u,ω))dh

=
1

2πg(0)

ˆ ∞

−∞

ˆ ∞

−∞
Sgx (u,ω)δ (η−ϖ x(u,ω))dηdω

=
1

2πg(0)

ˆ ∞

−∞
Tx

M[1] (u,η)dη

...

=
1

2πg(0)

ˆ ∞

−∞
Tx

M[N−1] (u,η)dη

=
1

2πg(0)

ˆ ∞

−∞
Tx

M[N−1] (u,η)
ˆ ∞

−∞
δ (η−ϖ x(u,η))dωdη

=
1

2πg(0)

ˆ ∞

−∞

ˆ ∞

−∞
Tx

M[N−1] (u,η)δ (η−ϖ x(u,η))dηdω

=
1

2πg(0)

ˆ ∞

−∞
Tx

M[N] (u,ω)dω, (18)

where g(0) is the constant determined after the selection
of the window function. For multi-component signals where
the frequency components can be completely separated, the
reconstruction in time domain for each component of the

multi-component signal can be done by the TF ridge recon-
struction alone, written as,

xk (u) = (2πg(0))−1
ˆ

|ω−φ ′
k (u)|<ds

Tx
M[N] (u,ω)dω, (19)

where ds is the reconstruction bandwidth, which can be set
to the frequency resolution ∆ω and its multiplier, indicating
the number of TF points used to reconstruct the signal during
reconstruction. φ ′

k is the IF of the kth component, which can
be obtained using the ridge search algorithm.

To verify the effectiveness of the above method, the simu-
lation signal without noise is defined as follows:

x(t) = sin

2π

15ˆ

0

f(t)dt

 , (20)

where f denotes the IF, defined as,

f = 10sin(0.5πt)+ 22. (21)

The sampling frequency is 600 Hz and the signal lasts 15 s.
Figure 3(a) shows the TFR of the signal and figure 3(b) shows
the TFR after being processed by the method. The TF energy
of the signal is concentrated in a smaller frequency range, and
the TF aggregation is further improved. The obtained TFR is
estimated for the IF, and then the time-domain signal recon-
struction is performed based on the estimated component of
the target frequency, and the results are shown in figure 4. The
effectiveness of the algorithm can be verified by the mean rel-
ative error (MRE), which is defined as,

MRE=
1
Lx

ˆ
x(u)−χ(u)

x(u)
du, (22)

where Lx denotes the length of the simulation signal and χ(u)
is the reconstruction signal. Equation (22) can be used to
quantify the accuracy of the signal reconstruction. A smaller
MRE means a higher accuracy of the reconstructed signals.

6
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Figure 4. Time domain reconstruction.

TheMRE of the reconstructed signal and the original signal
was calculated to be 4.2%, which indicates that the proposed
method can achieve the signal reconstruction.

3. Simulation study

In this section, the feasibility of the algorithm is verified
bymono-component and multi-component simulation signals,
respectively.

In order to verify the effectiveness of the proposed method,
a simulation signal is constructed. A simulation signal model
of the fault bearing vibration is constructed as follows:

x(t) = x1 (t)+ x2 (t)+ η (t) , (23)

where x1 (t) denotes the component associated with the fault
feature. It can be defined as,

x1 (t) = [1+αcos(2πx2 (t))]
M∑

m=1

Ame
−β(t−tm) sin(ωr (t− tm))

× u(t− tm) , (24)

where [1+αcos(2πx2 (t))] indicates the resonance phe-
nomenon demodulated by the speed signal x2 (t), α = 0.11
is the modulation amplitude, M is the signal length and Am
denotes the amplitude of the mth impulse response. β = 800
denotes the coefficient related to damping,ωr indicates the res-
onant frequency being stimulated, u(t) is a unit step function
and tm denotes the time of occurrence of themth pulse, defined
as,

t1 = (1+µ1) [1/x2 (0)]

tm = (1+µm) [1/x2 (0)+ 1/x2 (t1)+ . . .+ 1/x2 (tm−1)] ,

m= 2,3,. . .,M,

(25)

whereµm indicates the slip rate, which varies between 0.01 and
0.02 [28], x2 (t) indicates the component related to the rota-
tional speed of the rotary axis, η (t) indicates Gaussian white
noise and x2 (t) is defined as,

x2 (t) = A1 cos(2πφ)+A2 cos(4πφ)+A3 cos(6πφ) , (26)

where Ai=1,2,3 denotes the amplitude and takes the values of
1.6, 1.2 and 1, accordingly. The instantaneous rotational fre-
quency of the simulated signal is defined as φ̇ = 2.49t2 + 5t+
35. The FCF is set to 3.7. The sampling frequency is 20 kHz
and the sampling time is 5.1 s. For the simulation signal x(t),
X(τ, f) is the STFT–resulting TFR of x(t), which is expressed
as follows:

X(τ, f) =

∞̂

−∞

x(t)h(t− τ)e−j2πftdt, (27)

where h(t)is the window function. Let SP(τ, f) = |X(τ, f)|2,
which can be considered as the energy of the signal at time
t, frequency f. The peak search method used in this paper is
defined as follows:

f(m,k) = argmaxSP(m,k),k= 1,2, . . .,
N
2
+ 1, (28)

f(m,k)> αf(m− 1,k), (29)

f(m,k)< βf(m− 1,k), (30)

where α and β are obtained from traditional experience. If
equations (29) and (30) are not satisfied, set the maximum
energy at that point to zero and repeat equations (29) and (30).

The simulated signal is shown in figure 5(a), and its TFR is
shown in figure 5(b).

From figure 5(b), some signal components are over-
whelmed by noise, which makes it difficult to accurately
extract them. The TF ridges extracted directly from figure 5(b)
by the peak search method are shown in figure 6.

In figure 6(a), the second and third harmonics of the IF
of the simulation signal are adversely influenced by noise,
which makes it difficult to accurately extract all the IF curves
of interest from the TFR. Then, the most accurate IF curve
extracted (low-frequency one in this case) is used as the
basic demodulator to construct the demodulator factor mat-
rix defined by equation (4) to demodulate the signal to obtain
the F–A diagram, as shown in figure 6(b). The most accurate
IF curve can be determined by the sum of the absolute values
of frequencies of adjacent time instants, which corresponds to
the onewith theminimal summation sincemechanical systems
generally do not experience sudden changes [30].

According to figure 6(b), the ratio of the two peaks
with higher frequency to the frequency corresponding to
the first peak can be determined as 2 (=99.61/49.8) and
3.12 (=155.3/49.8). The demodulation coefficients are then
pre-determined for the next synchronous demodulation and
extraction.
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Figure 5. Simulated signal and its TFR: (a) time domain representation of the simulated signal; (b) TFR of the simulated signal.

Figure 6. TF ridges of the simulated signal.

Figure 7. (a) TFR obtained by the traditional GD method without filtering, (b) TFR obtained by the traditional GD method with filtering
and (c) TFR obtained by the proposed method.

The simulation signal can be processed by the method pro-
posed in this paper. With a pre-determined demodulation coef-
ficient, only the IF and its second and third harmonics need to
be extracted. Figure 7(a) shows the TFR of the simulation sig-
nal obtained by the traditional GD method with iteration oper-
ations, in which the IFs of signal components are demodulated
to constant frequencies. However, the spectrum overlap prob-
lem appears. Figure 7(b) shows the TFR obtained by the tra-
ditional GD method with filtering. As observed, even though

the overlapping and interference phenomena are relieved, its
TF aggregation still has the space to be enhanced. Figure 7(c)
is the TFR of the proposed method, and compared with the
figures 7(a) and (b), the proposed method can directly extract
the TF ridges of signal components of interest and meanwhile
enhance its TF aggregation. Figure 8 shows the IF and its har-
monic curves extracted from the TFR obtained by the proposed
method, which is much more accurate compared with the one
in figure 6(a). The comparisons show that the proposedmethod
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Figure 8. IF and its harmonic curves of the TFR obtained by the proposed synchronous GD.

can enhance the TF ridges of interest and the IFs can then be
accurately extracted from the enhanced TFR.

Numerically, comparing the MREs of the extracted IFs in
figures 6(a) and 8, it is improved from 6.7% to 0.94 %, verify-
ing that the proposed method can effectively enhance the TF
ridges and accurately extract the IF and its harmonics.

From the above discussion, it can be seen that compared
with the traditional GD method, the accuracy of the extracted
TF ridges is significantly improved (MRE is improved from
6.7% to 0.94%), which in turn reflects the improvement in the
TF aggregation achieved by the proposed method.

4. Experimental validation

In order to further verify the effectiveness of the proposed
method in real applications, it is applied to the IF extraction of
experimental signals with variable speed and fault diagnosis.

4.1. Outer race fault detection

The experiment was conducted on the MKF-PK5M fault sim-
ulator in the lab at the University of Ottawa, with the setup
shown in figure 9(a). Two ER10K bearings are installed to
support the shaft and the load is 5.03 kg. The left bearing has
an outer race fault, and the rest of the detailed parameters are
shown in table 1. The sampling frequency is 24 kHz and the
test lasts for 7 s, in which the shaft speed increases linearly
from 18 to 39 Hz.

Similar to the simulated signal, figure 10(a) shows the sig-
nal of the experimental platform and figure 10(b) shows the
TFR obtained by the STFT. Figure 11 shows the FCF and
its harmonics extracted from figure 10(b) by the peak search
method. As can be observed in figure 11, the harmonics of FCF
cannot be accurately extracted from the TFR in figure 10(b)
due to noise interference.

The signal is then processed by the method proposed in this
paper. The signal is first processed to find the demodulation

coefficients, as shown in figure 12. The TFR of the synchron-
ous GD of the signal components corresponding to the peaks
is shown in figure 13. The TF ridges in figure 13 are then
backward demodulated to obtain the final TFR in figure 14(b).
Figure 14(a) shows the TFR of the signal generated by the tra-
ditional GD method with iteration and filtering operations. By
comparing figures 14(a) and (b), it can be seen that the pro-
posed method can enhance and sharpen the TF ridges.

Figure 15 shows the IF and its harmonic curves of the TFR
obtained by the proposed method. As can be seen in figure 15,
there are few deviations between the extracted IF curves and
the true frequency curves.

The MRE of the extracted IFs is calculated to be 1.1%. The
fault characteristic coefficient can finally be determined by the
ratio of the second lowest IF to the lowest IF, which is 3.08,
almost equal to the actual fault characteristic coefficient 3.05.
It can then be concluded that there is an outer race fault on the
bearing, indicating that the proposed method can be used to
extract the fault features of the bearing.

Comparing the MREs of the extracted IFs in figures 11
and 15, it is improved from 9.7% to 1.1%, verifying that the
proposed method can effectively enhance the TF ridges and
then facilitate the accurate extraction of IF ridges.

4.2. Inner race fault detection

For bearing inner race fault diagnosis, data of two differ-
ents cases downloaded from [31] are analysed. Two exper-
iments with different shaft rotating frequency changing pat-
terns have been conducted on the experimental setup shown in
figure 9(b). Two ER16K bearings are installed to support the
shaft and the load. The bearing with the inner raceway failure
is located on the left side. The gearbox is connected by a belt.

A load mass of 5.03 kg was installed on a 25.4 mm steel
shaft. The data was fed to an NI data acquisition module (NI
USB-6212 BNC) and recorded by a computer using LabVIEW
software [6]. The specific bearing parameters are shown in
table 2.
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Figure 9. Experimental setup of (a) bearing outer race fault and (b) bearing inner race fault.

Table 1. Parameters of the bearings for the experiment.

Parameter
Bearing
type Fault type

Pitch diameter
(mm)

Ball diameter
(mm)

Number
of balls FCF

Value ER10K Outer race
fault

33.50 7.94 8 3.052 f

Figure 10. Outer experimental signal and its TFR: (a) time domain representation of the experimental signal; (b) TFR of the experimental
signal.

Figure 11. TF ridges of the experimental signal.
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Figure 12. F–A diagram of the outer experimental signal.

Figure 13. TFR after synchronous GD.

Figure 14. (a) TFR obtained by the traditional GD method with filtering; (b) TFR obtained by the proposed method.

Case 1
For the first case, the sampling frequency is 200 kHz and the
test lasts for 4 s, in which the shaft rotational speed frequency
is increased from 15.1 to 24.3 Hz and then decreased again to
18.7 Hz.

Similar to the simulated signal, figure 16(a) shows the sig-
nal of the experimental platform and figure 16(b) shows the

TFR obtained by STFT. Figure 17 shows the ridges extrac-
ted from figure 16(b) by the peak search method. As can be
observed in figure 17, the FCF cannot be accurately extracted
from the TFR in figure 16(b) due to the noise interference.

Therefore, the signal is processed by the method pro-
posed in this paper. Similar to the simulated signal, from
figure 18, the ratio of the peaks with higher frequency to the

11
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Figure 15. IF and its harmonic curves of the TFR obtained by the proposed synchronous GD (red solid lines denote the actual IFs and blue
solid lines denote the extracted IFs).

Table 2. Parameters of the bearings for the experiment.

Parameter
Bearing
type Fault type

Pitch
diameter(mm)

Ball
diameter(mm)

Number
of balls FCF

Value ER16K Inner race
fault

38.52 7.94 9 5.43 f

Figure 16. Experimental signal of bearing inner race fault in case 1 and its TFR: (a) time domain representation of the experimental signal;
(b) TFR of the experimental signal.

frequency corresponding to the first peak can be determined.
The demodulation coefficients are then pre-determined for
the next synchronous demodulation and extraction. Figure 19
shows the TFR of the synchronous GD of the signal compon-
ents corresponding to the peak in figure 18.

Figure 20(a) shows the TFR obtained by the traditional GD
method with filtering. However, TF ridges cannot accurately

show the changes of IFs, particularly for those of higher fre-
quencies. Figure 20(b) is the TFR of the signal after processing
by the proposed method and compared with figure 20(a), the
proposed method can directly extract the TF component of
interest and enhance its TF aggregation. Figure 21 shows the
IF and its harmonic curves extracted from the TFR obtained
by the proposed method, which matches the actual IFs well.
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Figure 17. TF ridges of the experimental signal in case 1.

Figure 18. F–A diagram of the inner experimental signal in case 1.

To quantitatively evaluate the accuracy of extracted IFs
from the TFR in figure 20(b), MRE is calculated to be 3.0%.
Similar to the outer race fault case, the fault characteristic coef-
ficient can also be calculated, which is 5.41, almost identical
to the actual value of 5.43. Thus, it can be concluded that the
proposed method can be used to extract the fault features of a
bearing with an inner race fault and then perform the bearing
fault diagnosis task.

Comparing the MREs of the extracted IFs in figures 17
and 21, the results are improved from 4.2% to 3.0 %, veri-
fying that the proposed method can effectively enhance the
TF ridges and accurately extract shaft IF, IFCF and their
harmonics.

Case 2
Using the same experimental setup for case 1, the vibration
signals under different speed-varying conditions are meas-
ured. The shaft rotational frequency in this case decreases from
25.3 to 14.8 Hz and then increases again to 19.4 Hz.

Figure 22(a) shows the signal of the experimental platform
and figure 22(b) shows the TFR obtained by STFT. Figure 23
shows the ridges extracted fromfigure 22(b) by the peak search
method. As can be observed in figure 23, the FCF cannot be
accurately extracted from the TFR in figure 22(b) due to the
noise interference.

Therefore, the signal is processed by the method proposed
in this paper. Similar to the simulated signal, the F–A diagram

13
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Figure 19. TF diagram after synchronous GD in case 1.

Figure 20. (a) TFR obtained by the traditional GD method with filtering in case 1; (b) TFR obtained by the proposed method in case 1.

Figure 21. IF and its harmonic curves of the TFR obtained by the proposed synchronous GD in case 1 (red solid lines denote the actual IFs
and blue solid lines denote the extracted IFs).
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Figure 22. Experimental signal of bearing inner race fault in case 2 and its TFR: (a) time domain representation of the experimental signal;
(b) TFR of the experimental signal.

Figure 23. TF ridges of the experimental signal.

is obtained, as displayed in figure 24. The demodulation coef-
ficients are then pre-determined for the next synchronous
demodulation and extraction. Figure 25 shows the TFR of the
synchronous GD of the signal components corresponding to
the peaks labeled in figure 24.

Figure 26(a) shows the TFR obtained by the traditional GD
method with filtering. However, TF ridges cannot accurately
show the changing pattern of IF ridges. Figure 26(b) is the TFR
of the signal processed by the proposed method. Compared
with figure 26(a), the proposed method can accurately extract
the TF components of interest and enhance their TF aggrega-
tion. Figure 27 shows the IFs extracted from the TFR obtained
by the proposed method, which matches the actual IFs
well.

To quantitatively evaluate the accuracy of extracted IFs
from the TFR in figure 26(b), MRE is calculated to be 2.3%.
Similar to the outer race fault case and the inner fault detec-
tion case 1, the fault characteristic coefficient can also be cal-
culated, which is 5.45, almost identical to the actual value
of 5.43. Thus, it can be concluded that the proposed method
can be used to extract the fault features of a bearing with an
inner race fault and then perform the bearing fault diagnosis
task.

In conclusion, the MRE of all extracted IFs shown in
figure 27 is 2.3%, which is greatly improved (the MRE of all
extracted IFs in figure 23 is 7.2%), indicating that the proposed
method can enhance the TF ridges and accurately extract IF
ridges.
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Figure 24. F–A diagram of the inner experimental signal in case 2.

Figure 25. TF diagram after synchronous GD in case 2.

Figure 26. (a) TFR obtained by the traditional GD method with filtering in case 2; (b) TFR obtained by the proposed method in case 2.
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Figure 27. IF and its harmonic curves of the TFR obtained by the
proposed synchronous GD in case 2 (red solid lines denote the
actual IFs and blue solid lines denote the extracted IFs).

5. Conclusion

This paper proposes a method for feature enhancement that
can be applied to bearing fault diagnosis under time-varying
speeds without the use of a tachometer, pre-filtering and itera-
tion operations. The proposed method first develops a strategy
to realize the synchronous GD for multi-component signals
using the Hadamard product between matrices. To further
improve the TFR readability, a synchronous extractor inde-
pendent of the estimation of IFs is proposed to further sharpen
the TF ridges to obtain the post-processed TF ridges. The
improved TFR with actual IFs is then achieved by backward
demodulating the post-processed TF ridges.

The main advantages of this work are summarized as fol-
lows: (a) synchronous GD of multi-component vibration sig-
nals via constructing a demodulator matrix; (b) construction
of the synchronous extractor independent of the IF estimation
for TFR readability improvement; (c) accuracy improvement
of fault characteristic coefficients led by the improved and
sharpened TFR. The effectiveness of the proposed method has
been tested using both simulated and experimental data from
rolling bearings.

Data availability statement

Data of bearing inner race fault are dowmloaded from
this link: https://www.sciencedirect.com/science/article/pii/
S2352340918314124. Data of bearing outer race fault are col-
lected in the corresponding author’s previous lab and available
upon reasonable request from authors.
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