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Advancing Bridge Construction Monitoring: AI-Based 
Building Information Modeling for Intelligent Structural 
Damage Recognition
Honglei Yang and Min Xia

Deputy Manager Office, Road & brdige Southern China Engineering Co. Ltd., Zhongshan, China

ABSTRACT
Building Information Modeling (BIM) has emerged as 
a transformative technology in the construction industry, revolu-
tionizing various aspects of the field. The integration of Artificial 
Intelligence (AI) techniques with BIM holds significant promise 
and is gaining momentum in interdisciplinary applications. In 
China, the construction industry has witnessed notable advance-
ments through the convergence of BIM, AI, and cloud data. 
However, the current state of intelligent construction technology 
in China reveals certain limitations that hinder its comprehensive 
development. This study addresses these challenges by focusing 
on the design of intelligent recognition algorithms for monitor-
ing structural damage during bridge construction. Previous 
research has primarily employed classical neural network algo-
rithms, but these approaches have exhibited certain limitations. 
This paper proposes innovative improvement measures to over-
come these limitations and demonstrates their effectiveness 
through practical arithmetic examples. Furthermore, to enhance 
the intelligence level of the BIM system, this study integrates the 
improved neural network recognition algorithm into the BIM 
framework. The integration enables the BIM system to recognize 
and assess bridge structure damage efficiently and accurately. 
The outcomes of this research provide valuable insights into 
advancing the field of intelligent construction technology, parti-
cularly in the context of bridge construction monitoring.
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Introduction

The “Fourteenth Five-Year Plan” proposes a new direction for the integration of 
new infrastructure and digital development, and under the traction of this 
direction, China’s construction industry will further transform and upgrade to 
the goal of “intelligent building.” Therefore, at the current stage of construction 
intelligent construction management, it is necessary to combine the new devel-
opment goals, absorb some new thinking, introduce some new technologies, use 

CONTACT Min Xia XiaMim5688@126.com Deputy Manager Office, Road & Brdige Southern China 
Engineering Co. Ltd., Zhongshan 528403, China
This article has been republished with a minor change. This change does not impact on the academic content of the article.

APPLIED ARTIFICIAL INTELLIGENCE                    
2023, VOL. 37, NO. 1, e2224995 (2142 pages) 
https://doi.org/10.1080/08839514.2023.2224995

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) 
or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2023.2224995&domain=pdf&date_stamp=2023-06-15


some new methods, scientifically and rationally develop some effective con-
struction intelligent construction management strategies, solve the current 
problems in construction management, and lay a solid foundation for the 
transformation and upgrading in the new period (Jiang and Chen 2021). 
Specific analysis is as follows.

There is now a relative scarcity of system functions and a relative lag in the 
idea of system planning in intelligent building construction management. 
Intelligent construction management is used more in building construction, 
but its overall usefulness is uncertain (Li et al. 2021). The lack of a system 
planning concept is one of the reasons, particularly in the process of intelligent 
construction management of structures. On the one hand, each unit involved 
in the construction project has a different construction management concept, 
and the indicators between management practice and management assessment 
are not uniform, making digital management easily formal; on the other hand, 
poor integration of construction management technology in independent 
professional management has resulted in the phenomenon of low utility of 
digital management (Wan et al. 2022). Thus, in general, the current stage of 
the construction management concept needs to be updated to the level of 
systematic management.

The data management center of the terminal equipment at the construction site 
must be coupled with the data management center of the intelligent construction 
management of the building. Among these, inadequate data collection will occur 
owing to insufficient setup of the number of terminal equipment (Yafeng and 
Hsiang 2021). The communication connection system’s degree of association is 
poor, and certain data are input manually, which might lead to data entry errors 
and blunders. The data center’s data management lacks comparison analysis of 
each specific management data, which may result in faulty data computation 
outcomes. According to current experience, the failure to properly perform the 
duties and roles of construction management technology is the primary cause for 
its limited deployment (Kensek 2014). There is a lack of synergistic application 
from the notion of integrating systematic application and supportive application, 
particularly in the application process of multiple technologies.

BIM is the creation of 3D models based on engineering project information 
data, the simulation of actual building information using digital information, 
and the realization of building information exchange and transmission by 
combining building data and information models (Jiang, Wang, and Wu  
2018). With the advancement of research and promotion, BIM has become 
extensively employed in collaborative design, collision detection, construction 
simulation, 3D rendering, and operation and maintenance management. Yet, 
because traditional human data processing methods are inefficient and inac-
curate, the potential of engineering data cannot be fully exploited. As a result, 
the acceptable and effective use of BIM data is a key problem in its growth. 
With the growth of new technologies such as artificial intelligence, cross- 
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border resource integration to achieve integrated development will be the 
construction industry’s new development path. Integration of BIM technology 
with artificial intelligence may considerably increase data processing ability 
and efficiency, allowing BIM data to be widely utilized (Stadel et al. 2011). The 
use of BIM and related information technology can expand data sources, fully 
explore the hidden value in data, integrate the construction industry’s industry 
chain resources, build an information model based on industry characteristics, 
and gradually realize information integration, sharing, and collaboration of 
the entire industry chain, causing engineering construction to gradually move 
toward wisdom.

Conventional construction procedures have two-dimensional drawings, the 
information of each building component is simply conveyed in the form of 
lines on the drawings, and converting two-dimensional drawings into three- 
dimensional building entities takes the technicians’ creativity. When the 
drawings are developed, they must be collision checked to identify flaws and 
omissions. The typical method of working is to compare them manually, 
which is not only inefficient but also time-consuming and difficult (Rivera 
et al. 2019). At the same time, numerous elements such as the environment 
and human people in the building process frequently interfere with engineer-
ing projects, making it impossible to manage the construction progress and 
cost, and the quality and efficiency of construction cannot be guaranteed. 
Furthermore, the traditional operation and maintenance management mode’s 
main problem is that the status information of each part of the project 
operation process cannot be controlled in time, especially when the pipeline, 
fire protection, and other systems fail, accurate positioning and timely proces-
sing cannot be carried out, and economic losses and even casualties can easily 
occur. As a result, traditional construction technology has been unable to 
satisfy the demands of engineering projects in terms of quality, time, and 
cost, impeding the construction industry’s green, efficient, and sustainable 
development (Zhao et al. 2022). The use of BIM technology throughout the life 
cycle of engineering projects, including collision detection, virtual construc-
tion, information transfer, 3D rendering, and other functions, can improve 
construction efficiency, shorten construction time, save money, and lay the 
groundwork for collaborative design, construction, operation, and 
maintenance.

The inability to fully use the value of engineering data is a key issue in the 
deployment of BIM technology. The connection between the independent and 
dependent variables in practical engineering is frequently nonlinear. 
Traditional AI techniques like inference, genetic algorithms, forbidden search 
algorithms, and shallow neural network techniques have mature theoretical 
bases as well as application scenarios that can analyze and process data and 
solve problems like multi-objective optimization, search, rule checking, and 
prediction (Hong, Yongpeng, and Ying 2019). As a result, classical artificial 
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intelligence technology combined with BIM has been applied in a variety of 
engineering applications. Traditional AI approaches, on the other hand, typi-
cally demand constraints on the independent variables in the application, and 
the value of data with huge oscillations and deep hidden linkages cannot be 
efficiently mined. There are also issues with picture identification and proces-
sing. The ongoing advancement of deep neural network technology may 
provide a viable answer to the aforementioned issues. Scholars are now 
combining BIM technology with deep neural network technology to tackle 
engineering prediction and picture recognition difficulties (Lei et al. 2020).

BIM technology, with its powerful information integration and multi- 
dimensional visualization, can help bridge projects from planning, design, 
construction to later operation and maintenance (Noeldgen, Zillessen, and 
Muellers 2014). The major emphasis of this paper is the investigation of 
intelligent bridge construction monitoring system based on artificial intelli-
gence BIM. At the moment, certain professionals and researchers have utilized 
BIM technology to bridge engineering with positive outcomes. This paper 
combines the limitations of the classical neural network algorithm in bridge 
structural defect identification with artificial intelligence technology, proposes 
corresponding improvement measures, and shows using arithmetic examples 
how the improved neural network algorithm can improve the efficiency and 
accuracy of bridge structural damage identification. Furthermore, this study 
explores the technology for developing an intelligent structural damage diag-
nosis system for bridges using BIM and a neural network algorithm.

Related Works

Intelligent Building Construction Process

The term “intelligent building” refers to a building as a platform that is based 
on the comprehensive use of various types of intelligent information, integrat-
ing architecture, systems, management, and optimization of the combination, 
with a comprehensive intelligence ability embodied as perception, transmis-
sion, memory, reasoning, judgment, and decision-making, forming an inte-
grated body with people, buildings, and the environment in coordination with 
each other, to provide people with a better environment (Lu et al. 2014). 
Intelligent building is the product of the level of modern science and technol-
ogy, which plays a vital role in the development of the construction industry. 
Currently, information technology provides the impetus for the development 
of intelligent buildings (Atazadeh et al. 2017). Yet, because to cost, technology, 
and other constraints, the total development of intelligent buildings is cur-
rently at a very modest level. With the advancement of old-neighborhood 
repair projects, the role of intelligent buildings is becoming more important, 

e2224995-2124 H. YANG AND M. XIA



and intelligent buildings will become the dominant direction of the construc-
tion industry’s growth.

With the development of science and technology in China, artificial 
intelligence technology has been widely used in people’s lives, especially 
in the construction industry has achieved good results (Pezeshki and Ivari  
2018). Yet, there is still an issue of low level of construction technology in 
constructing intelligent construction, which is tremendously unfriendly to 
increasing the overall quality of the structure. Some construction units use 
old construction procedures to decrease construction costs; nevertheless, 
these traditional construction approaches can no longer match the 
demands of the current construction sector, and various quality problems 
can develop. Meanwhile, certain construction design schemes are incapable 
of meeting the construction needs of intelligent buildings and frequently 
fail to develop an effective integration of intelligent theory and practice (Hu 
et al. 2018). In addition, the managers neither develop a perfect construc-
tion plan nor establish a scientific management system. These problems not 
only hinder the development of intelligent construction technology in 
buildings, but also affect the economic and social benefits of construction 
units.

At the present stage, many construction units in China lack the sense of 
innovation and rely excessively on foreign technology when applying building 
intelligent construction technology. However, there are obvious differences in 
the construction environment at home and abroad, and the standard require-
ments of construction technology are not the same (Zhao, Gao, and Ni 2022). 
In this scenario, over-reliance on foreign construction technology makes it 
impossible to verify the quality of intelligent building construction, stifling 
China’s construction industry’s progress. Nevertheless, China’s building 
industry’s key rules are not yet flawless. Construction firms sometimes lack 
legal backing, which causes obstacles in implementing intelligent construction 
management in structures. With the advent of the information era, individuals 
have been subjected to enormous pressures such as “information explosion,” 
“chaotic information space,” and “data overload,” all of which have both good 
and bad aspects. These forces have both positive and bad aspects to them. It is 
quite tough to separate meaningful and helpful information from a big volume 
of data (Wu et al. 2019). Such issues are now affecting the market positioning 
of intelligent building initiatives. The project investment project in intelligent 
building construction management must be founded on the premise of market 
demand. Yet, a vast volume of information may quickly disrupt decision 
makers’ judgment, which is particularly damaging to the development of 
intelligent buildings. Only developers, designers, builders, and managers com-
pletely comprehend artificial intelligence technology in the intelligent building 
construction process in order to successfully raise the level of intelligent 
building construction management. In practice, however, the staff ’s lack of 
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understanding of building intelligent construction management, as well as the 
developers’ failure to actively introduce building intelligent construction 
management talents, have seriously hampered the smooth implementation 
of building intelligent construction.

Intelligent building project construction management covers additional 
layers, particularly construction management and construction acceptance. 
In recent years, the occurrence of inadequate quality in China’s construction 
projects has been common, necessitating the need for structures to be remo-
deled and rebuilt, which usually raises the construction cost of construction 
projects (Isikdag, Zlatanova, and Underwood 2013). The key influencing 
element is that there is no timely quality and safety monitoring work in 
intelligent construction, and the essential staff lack a feeling of duty and 
mission, causing intelligent construction management to fail to move ahead 
toward the intended objective. At the same time, the application effect of new 
technologies in intelligent construction management is weak, which would 
limit construction project management efficiency. Even if China’s intelligent 
advanced technology receives the necessary development conditions, many 
construction project managers have one-sided cognition of intelligent engi-
neering, and the constructors are unable to correctly recognize the necessity of 
intelligent engineering management, causing the constructors to fail to imple-
ment the construction work on time, further limiting the intelligent building 
engineering construction process. Construction employees themselves have 
weak intelligent technology operating ability, are unable to apply current 
advanced technology correctly, and fail to develop their quality and ability 
on time, all of which diminish the intelligent construction management safety 
index (Zhang et al. 2020).

Building construction management, to truly implement intelligent manage-
ment, but also rely on intelligent programming system, so intelligent security 
management mode is very necessary, otherwise there will be intelligent secur-
ity management risks, unable to adjust the construction management of 
building intelligence in a timely manner.

First of all, we should form a security protection subsystem, protect the 
building intelligent construction information in all aspects, improve the 
security protection system according to the security facilities, especially the 
firewall and information authentication, and set the necessary key for it. For 
the management of information equipment for wireless networks, improve the 
structure of the security protection subsystem to avoid the security manage-
ment of non-trust networks (Li and Cao 2020).

Secondly, the formation of security protection, the construction of intelli-
gent building management system, the relevant personnel to select the security 
management software with comprehensive performance, regular review of the 
security index of intelligent engineering, the security protection network 
system for multiple module division, once the problem is found, the timely 
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dynamic adjustment of the operation of the security protection system, and 
the information security management data to the general manager.

Finally, it is to carry out network security protection, intelligent building 
construction management, relying on the advantages of advanced technology, 
the relevant personnel should develop network operation protocols, reason-
able regulation of security protection measures, the implementation of net-
work security supervision from the root, to improve the security protection 
effect of intelligent construction management.

BIM Technology Status

The construction industry is facing serious problems such as inefficiency, high 
risk, and labor shortage. The annual number of deaths in China’s construction 
industry is increasing year by year, with 1,752 deaths due to construction 
accidents nationwide in the first half of 2018, up 1.4% year on year, and the 
number of accidental deaths in the construction industry is even higher 
(Cheng et al. 2017). The proportion of workers over 45 years old in China’s 
construction industry is increasing year by year, and nowadays young people 
are increasingly unlikely to choose to become a construction worker. Under 
such a severe development situation, intelligent construction technology will 
definitely replace the traditional construction method as an efficient and 
quality-assured construction method. Nowadays, smart construction is 
divided into four parts: smart design, smart processing, smart logistics, and 
smart construction. Smart construction integrates these four components to 
give a collaborative platform for demand and supply. The purpose of smart 
construction is to make the building process more responsive to demand, 
more efficient, safer, and greener.

The development of intelligent construction technology in China is not 
perfect, and many technical means are quoted from foreign core technology, 
using foreign innovative construction technology to accelerate the develop-
ment of domestic intelligent construction (Xu et al. 2021). This state of 
development has led to the lack of theoretical support for domestic intelligent 
construction technology. Therefore, the development of core key technologies 
for intelligent construction, as well as the development and application of 
intelligent construction-related technologies, and the development of new 
forms of technology are the main goals of China at this stage.

BIM is mainly used in the process of intelligent construction of buildings to 
inform the building process by means of information data, so as to achieve 
intelligence (Yu, Peng, and Zeng 2018). In the building construction process, 
the building information is collected and then a building database is estab-
lished to meet the requirements of modern construction through intelligent 
calculation and analysis. BIM technology makes the building construction 
process more scientific and reasonable, reduces the waste of materials and 
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the use of manpower in the building construction process, and improves the 
efficacy and capability of building construction. Building intelligence makes 
up for and improves the shortcomings and deficiencies in the building con-
struction process through technologies such as big data and cloud computing 
(Kensek 2014). In the process of building construction, the use of BIM 
technology makes the construction intelligent, thus reducing the difficulty of 
construction workers to see the design drawings, which can be presented 
through three-dimensional visualization, so that workers can clearly and 
intuitively understand the internal structure of the whole building and opti-
mize the whole construction process, which can not only improve the quality 
of the project but also reduce the construction time of the project.

In recent years, there are many kinds of BIM software in the market, with 
different functions, and construction units require BIM to be applied to actual 
projects in the construction process, but in the actual use of BIM technology is 
mostly used in the design and bidding stage, and there are relatively few BIM 
application software in the construction stage, mostly using other software to 
analyze and adjust the application to the construction site (Liu and Jiang  
2021). Now most of the BIM software only meet a certain aspect or a few 
aspects of the application, comprehensive and high BIM software is less, can be 
from the design stage all the way through to the operation and maintenance 
stage of the integrated BIM software is lacking. With the development of the 
application of BIM technology, data exchange difficulties have become 
a common situation, China does not widely use the international IFC 
(Industrial Foundation Class Standard) data standards, at this stage, China’s 
research on foreign standards is also very little, combined with the actual 
construction projects in China, the expansion of data standards to supplement 
the work is still not in place (Fu and Liu 2020). China’s BIM data standardiza-
tion still needs to be summarized in more detail. Most of the BIM practitioners 
now only have the ability to use one or two kinds of BIM software, but this 
does not meet the actual needs of the construction unit to customize the 
overall BIM application program (Bastos Porsani et al. 2021). The construc-
tion industry now lacks professional BIM talents who master the practical 
background of construction profession.

The proposal and development of a technology often comes from practical 
needs [29]. In the field of civil and construction engineering, the demand for 
refined construction, information management, and multi-disciplinary colla-
boration has given rise to BIM technology (Shiau et al. 2013). Likewise, BIM- 
based AI methods come from the construction industry’s requirements for 
saving labor, optimizing solutions, achieving accurate predictions, and achiev-
ing optimal benefits. Inference techniques and expert systems can replace 
some of the work of experts and improve the efficiency of decision making 
and judgment; DM techniques are used to process large amounts of data and 
discover the knowledge and patterns in them; neural networks have the 
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adaptability and accuracy that traditional statistical methods do not have; EA 
and other multi-objective optimization algorithms are used to optimize plan-
ning and design solutions (Lu and Lee 2017). Based on BIM and AI technol-
ogies, application platforms of various architectures have been developed to 
achieve functions involving various aspects of design, construction, and opera-
tion and maintenance, which broaden the application areas of BIM and 
provide convenience to participants in all phases of the building’s whole life 
cycle. Some of the research results have been verified by practical engineering 
and have achieved more satisfactory results.

Algorithm Design

Neural Network-Based Bridge Structure Damage Identification

The nonlinear processors in the model are called neurons, which are equiva-
lent to the nerve cells of a human neural network. Both of them work in 
a similar way and can effectively simulate highly nonlinear input and output 
index relationships. Therefore, by training the neural network model several 
times, it can complete a more accurate identification of the bridge structure 
damage location, degree and even type, and the basic structure diagram of the 
model is shown in Figure 1.

The traditional BP neural network algorithm requires constant forward and 
backward error propagation during the training process, but the algorithm is 
not selective for the sample set and will select operations one by one to satisfy 
the mapping relationships. The newly calculated mapping relationship matrix 
is different from the previous one, and the network will fall back again for 
calculation and adjustment. If the number of sample sets is too large and the 
number of neurons is on the high side, it will inevitably lead to a reduction in 
the learning convergence speed. The essence of the BP neural network 

Figure 1. Structure diagram of artificial neuron.
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algorithm is an algorithm that uses the sum of squared errors as the objective 
function and the gradient method to find the value. If the objective function is 
not a positive definite function, it is likely to produce a local minimum and 
generate wrong results.

To address the above problem, this paper introduces the additional momen-
tum term, the core idea of which is to accelerate the search speed if the current 
gradient descent is in the same direction as the previous gradient present 
descent during the gradient descent search, and to decelerate the search if the 
opposite is true. Specifically, it is based on the back-propagation method, 
adding the newly introduced additional quantity to the original entitled 
change quantity, and finally generating new weights. The formula for the 
weights with additional momentum can be written as: 

Δw kþ 1ð Þ ¼ 1 � mcð ÞηÑf w kð Þð Þ þmc w kð Þ � w k � 1ð Þð Þ (1) 

This equation prevents the case where the amount of change in the weights at 
the last adjustment is zero, prompting the network to disengage from the local 
minima of the error surface. However, the convergence rate of the model 
training speed is reduced when applying this method.

In addition, this paper introduces the leverberg-Marquardt (LM) accelera-
tion algorithm, which is similar to the Newtonian optimization algorithm and 
can accelerate the convergence speed due to the advantage of second-order 
convergence speed and no need to calculate the Hesse matrix. The error sum 
of squares can be set as: 

E ¼
1
2

X

u
εuð Þ

2
¼

1
2
k εk2 (2) 

where u denotes the uth sample data, ε denotes a vector with εn as an element, 
and εn is the error between the actual output and the desired output.

Let the connection weights be at wk and move to the next weight wkþ1, and if 
the move wkþ1 � wk is small, then ε can be expanded through the Yaylor 
series as: 

ε wkþ1� �
¼ ε wk� �

þ J wkþ1 � wk� �
(3) 

where the elements of J are: 

ðJÞui ¼ @εu=@wi (4) 

So, the error Equation (3) can be rewritten as: 

E ¼
1
2
k ε wk� �

þ J wkþ1 � wk� �
k2 (5) 

Inverse problems such as structural damage identification can be essentially 
summarized as pattern recognition and pattern matching problems. As 
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mentioned in the previous section, neural networks have a strong ability to 
solve problems such as pattern classification, and can establish reasonable 
input-output nonlinear mapping relationships based on multiple learning, 
which are applicable to bridge structure damage recognition under different 
working conditions.

Before using neural network for damage recognition, it is necessary to 
obtain sufficient amount of damage sample data to complete the learning 
and training process of neural network. The quantity and quality of samples 
determine the learning effect and efficiency of neural network learning to 
a certain extent, but the exact quantity of sample data needs to be determined 
according to the specific actual situation. The steps to obtain the sample 
database are shown in Figure 2.

To ensure optimal network performance, it is crucial to carefully select 
a suitable network topology for both training and testing. This entails deter-
mining the appropriate configuration for various components, including the 
number of neurons in the input layer, hidden layers, and output layer. Each of 
these parameters should be chosen based on the specific format and size of the 
sample data.

Figure 2. General steps for forming sample data.
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The selection of a suitable algorithm is essential to prevent issues such as 
non-convergence of results and becoming trapped in local minima during the 
training process. The algorithm choice plays a vital role in the efficiency and 
effectiveness of training the neural network. By selecting an appropriate 
algorithm, the training process can be optimized, leading to improved perfor-
mance and accuracy.

Once the training is complete, it is important to evaluate the network’s 
ability to interpolate and extrapolate by inputting patterns that have not 
appeared in the training samples. This step enables assessment of the net-
work’s generalization capability, determining how well it can recognize and 
process unseen data.

During the recognition phase, the trained neural network model 
receives the measured data as input. Through basic parameter adjust-
ments and data analysis, the neural network model processes the infor-
mation and completes the recognition of the location and extent of 
structural damage. This final step utilizes the knowledge and patterns 
learned during the training process, allowing the neural network to 
provide accurate assessments of the damage location and degree based 
on the input data.

Overall, the selection of a suitable network topology, algorithm, and evalua-
tion of the network’s performance on unseen data are all critical aspects of 
successfully utilizing a neural network model for structural damage recogni-
tion. These considerations contribute to ensuring the reliability and accuracy 
of the recognition process, ultimately aiding in making informed decisions 
regarding the condition and maintenance of structures.

BIM-Based Bridge Monitoring System

The system mainly consists of four parts: (1) Model operation module. It can 
view all kinds of basic information such as member identity information, type 
information, management information and member safety information of the 
main body of the project. In addition, in order to complete the bridge structure 
damage identification work, this module can automatically extract and convert 
the relevant information of the BIM model into the file format recognizable by 
the finite element software. (2) Information operation module. The content 
includes data input, viewing and visualization of relevant data for the later 
operation and maintenance of the bridge. (3) Neural network module. The 
module functions include both input of initial data of neural network and 
structural damage identification using neural network. The former requires 
inputting the dynamic feature values under each working condition into the 
system based on the analysis results obtained from the finite element analysis 
software, and the system automatically trains the neural network model based 
on the input data. The system automatically trains the neural network model 
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based on the input data. The latter will input the real-time monitoring data or 
finite element simulation data as parameters to the trained neural network 
model and then perform calculations. (4) Structural damage recognition result 
output module. This module provides the list output of damage recognition 
results and the visualization of model damage situation.

The system framework consists of three layers: data layer, data processing 
layer and user layer. The basic information data of the model, the bridge 
monitoring data and the calculation results from the finite element analysis 
software for different damage states together constitute the data layer. The 
main functions of the data processing layer are: processing the relevant data 
operation instructions generated by the user through the interface, such as 
uploading, downloading, modifying and generating curves and graphs; 
extracting the correlation information to complete the automatic conversion 
of the model; using the database to learn the neural network model from the 
initial analysis data input by the user, and linking the database to extract the 
measured data or test data of the model at the later stage of calculation, and 
The user layer, which mainly realizes the information of the bridge. The user 
layer mainly realizes the query, entry and change of bridge information, and 
visualizes the calculation results of the data processing layer through the BIM 
model. The intelligent and visualized structural damage identification is 
accomplished through the three-layer architecture.

The user converts the existing BIM model into a finite element analysis 
model through the system and simulates the analysis in the finite element 
software. After the finite element analysis is completed, the user enters various 
parameters including the number of identification units, the number of work-
ing conditions, and the type of damage degree when simulating the damage 
through the finite element analysis software MidasCivil according to the 
prompt, and the system automatically generates the sample library data form 
according to this training requirement. After filling out the form, the user 
confirms or adjusts the number of input neurons, the number of implied 
layers, the number of output layers and other parameters of the training neural 
network model according to the actual situation. In order to solve some defects 
of the neural network, this system introduces the above algorithm modifica-
tion measures to accelerate the whole training process. At the end of the 
training, the system will display the results of this training, and the user can 
save the results of this training as needed. In the testing phase of the data, after 
selecting the corresponding training model data and linking the real test data, 
the system will then output the results of structural damage recognition. The 
specific workflow is shown in Figure 3.

In order to meet the needs of storage, management, analysis and visualiza-
tion of project information, a relevant database needs to be established and 
embedded into the BIM software. This paper adopts SQL Server as the 
database management system and uses the rich classes and methods of 
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RevitAPI to realize the data import of bridge structure damage identification 
based on BIM.VS2015 can access the data in the database with the help of 
ADO.NET structure system, and the database contains system user, access 
object, data provider, server and database. The database is not always in the 
state of occupied links, which can improve the efficiency of system resources 
utilization.

The data input of the neural network module is determined by the number 
of samples under different conditions of the finite element simulation, and 
first the user needs to set the relevant parameters to generate the correct data 
table. The number of modal orders is based on the number of measured data 
or on the number of FEM analyses. The higher the value, the larger the 
number of samples and the higher the effectiveness of the model for training 
and identification. The damage degree category limits the damage degree of 
the structure to a limited range to prevent singularity or distortion of the 
analysis results. Controlling the number of recognition units within 
a reasonable number and selecting locations where the structure is more 
sensitive or important can improve the efficiency of model training or recog-
nition to achieve a reasonable balance between damage recognition accuracy 
and computational speed.

Experiments

Experiment Preparation

The hardware environment for this chapter is Windows 10 64-bit operating 
system, CPU is Intel Core i7-6700k, memory is 16 G, and GPU is NVIDIA 
GeForce GTX 1070 8 G. The software environment is Keras 2.1.0 deep 

Figure 3. System workflow.
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learning framework, Tensorflow 1.4.0 is used as the backend, and program-
ming Python 3.5 language was used, and the development environment was 
Visual Studio 2017.

To conduct a comprehensive analysis, five different damage conditions 
were chosen as representative samples in this study, which serve as the control 
sections. These samples are located at specific positions within the structure, 
namely, side span 1/4 L, side span 1/2, top of the pier, mid-span 1/4 L, and 
mid-span 1/2. To simplify reference, these locations are designated as A, B, C, 
D, and E, respectively.

The primary focus of identification lies in the overall cross-sectional stiff-
ness damage type of the structural unit. To achieve this, a systematic approach 
was adopted. Specifically, damage conditions were selected at 10% intervals 
within the damage level range of 10% to 50%. This allowed for a thorough 
exploration of the various degrees of damage. The distribution of samples for 
different damage cases is illustrated in Figure 4, serving as a guide for arran-
ging the data.

To establish a comprehensive damage sample library, finite element 
analysis was employed to obtain frequency information for all damage 
conditions. The first ten orders of frequency were extracted as significant 
parameters for characterization. By capturing these frequencies, a detailed 
representation of the structural response under different damage scenarios 
was achieved.

Figure 4. Distribution of bridge structure damage dataset.
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Table 1 provides a concise summary of the self-oscillation frequencies 
exhibited by the structure under specific damage conditions. This table 
serves as a valuable reference, presenting essential data that showcases the 
structural behavior in response to different degrees of damage. By exam-
ining the frequency variations, researchers can gain insights into the 
unique characteristics and patterns associated with each damage 
condition.

The learning rate for the neural network training is taken as 0.0001 and the 
momentum coefficient is fully set to 0.99. Stochastic gradient descent is used as 
the optimizer. Figure 5 shows the loss curves on the training and validation sets, 
and it can be seen that the model converges after approximately 60 iterations.

Table 1. First 10th order self-oscillation frequency of the structure under partial damage conditions (Hz).
Order Damage10% Damage20% Damage30% Damage40% Damage50%

1 0.676731 0.676613 0.676510 0.676373 0.676191
2 1.125434 1.125052 1.124719 1.124277 1.123700
3 1.992544 1.991280 1.990160 1.988639 1.986598
4 2.569577 2.568049 2.566703 2.564887 2.562472
5 3.458108 3.456375 3.454848 3.452789 3.450050
6 4.319442 4.319267 4.319110 4.318895 4.318604
7 4.457569 4.455445 4.453540 4.450917 4.447329
8 5.376948 5.370691 5.365119 5.357507 5.347218
9 5.700947 5.698506 5.696413 5.693668 5.690153
10 5.018453 5.984823 5.954613 5.913835 5.860353

Figure 5. Loss variation of neural network training process.
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Bridge Structure Damage Identification Effect

To verify the effectiveness of damage identification at different locations 
(A, B, C, D, E), Figure 6 shows the comparison of the prediction error before 
and after the improvement of the neural network algorithm on the test set. 
Regardless of the location of the bridge structure, the prediction error of the 
improved neural network shows a significant improvement compared to that 
before the improvement.

The damage at different locations can be characterized by an array of 5 
neurons, i.e. A (10000), B (01000), C (00100), D (00010), E (00001). The 
degree of damage is characterized by a value between 0 and 1.

After the completion of training the neural network models using a set of 
sample data consisting of 10 datasets (A−10%, B−10%, C−10%, D−10%, E 
−10%, A−80%, B−80%, C−80%, D−80%, E−80%), these datasets were inputted 
into both the classical neural network algorithm and the improved neural 
network algorithm. The computational results obtained from these experi-
ments are presented in Tables 2, Figures 7, and 8.

Table 2 provides a comprehensive overview of the recognition accu-
racy achieved by the two neural network models. It includes the average 
error rates for the recognition of 10% and 80% damage levels in the 
bridge structures. The classical neural network algorithm yielded an 
average error rate of 0.77% for recognizing a 10% damage level, while 
for an 80% damage level, the average error rate increased to 1.66%. On 

Figure 6. Prediction performance of neural network before and after improvement.
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the other hand, the improved neural network algorithm demonstrated 
superior performance, with an average error rate of 0.56% for recogniz-
ing 10% damage and 1.21% for recognizing 80% damage. These results 
clearly illustrate the enhanced accuracy achieved by utilizing the 
improved neural network algorithm for the recognition of damages in 
bridge structures.

In addition to Table 2, Figures 7 and 8 provide visual representations of 
the computational results obtained from the experiments. These figures 
offer a graphical representation of the accuracy rates achieved by the two 
algorithms for recognizing 10% and 80% damage levels. Figure 7 illustrates 
the recognition accuracy achieved by the classical neural network algo-
rithm, showcasing the corresponding average error rates for different data-
sets. Similarly, Figure 8 depicts the recognition accuracy obtained from the 
improved neural network algorithm for the same datasets. These visual 

Table 2. Comparison of identification results of neural networks for 10% damage.
Method Location Actual Output Average error

Traditional NN A 0.107 0.005 0.013 0.001 0.016 0.77%
B 0.009 0.092 0.011 0.017 0.004
C 0.00 0.005 0.091 0.019 0.006
D 0.009 0.015 0.005 0.106 0.012
E 0.015 0.001 0.004 0.012 0.108

Improved NN A 0.091 0.005 0.012 0.012 0.001 0.56%
B 0.001 0.107 0.013 0.011 0.006
C 0.000 0.005 0.101 0.007 0.012
D 0.014 0.001 0.014 0.105 0.011
E 0.013 0.002 0.014 0.007 0.104

Figure 7. Comparison of the identification results of traditional NN for 50% impairment.
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representations further highlight the significant improvement in recogni-
tion accuracy offered by the improved neural network algorithm compared 
to the classical approach.

The results of the recognition experiments highlight the notable differences 
in average recognition errors between the two models. With an equal amount 
of training time, the classical neural network algorithm achieves an average 
recognition error of 0.77% for identifying a 10% damage degree in a specific 
region, whereas the improved neural network algorithm achieves 
a significantly lower average recognition error of 0.56% for the same damage 
degree. Similarly, when it comes to identifying an 80% damage degree in 
a region, the classical algorithm yields an average recognition error of 1.66%, 
whereas the improved algorithm achieves a lower average recognition error 
of 1.21%.

These results clearly demonstrate that both algorithms exhibit improved 
accuracy in identifying the location and extent of overall damage in bridge 
sections compared to traditional methods. However, it is important to note 
that the improved neural network algorithm outperforms the classical algo-
rithm in terms of accuracy for damage identification in continuous rigid 
bridge structures.

By leveraging the improved algorithm, engineers and researchers can 
enhance their ability to precisely identify and assess the extent of damage in 
continuous rigid bridge structures. This advancement is particularly signifi-
cant, as it contributes to the overall safety and structural integrity of bridge 
infrastructure. Accurate identification of damage enables proactive 

Figure 8. Comparison of identification results of improved NN for 50% impairment.
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maintenance and timely repair, reducing the risk of structural failures and 
ensuring the longevity and reliability of bridges.

Furthermore, the improved algorithm’s effectiveness in enhancing damage 
identification accuracy paves the way for future advancements in bridge 
monitoring and inspection techniques. The ability to detect and analyze 
even subtle damages with greater precision allows for early intervention, 
leading to improved maintenance strategies and cost-effective resource 
allocation.

In summary, the recognition results demonstrate that both the classical 
neural network algorithm and the improved neural network algorithm exhibit 
improved accuracy in identifying the location and extent of damage in bridge 
sections. However, the improved algorithm offers a significant advantage in 
accurately identifying damage in continuous rigid bridge structures. These 
findings have practical implications for the field of bridge engineering, sup-
porting the development of more efficient and reliable bridge inspection and 
maintenance practices.

Conclusions

China has made significant advancements in intelligent construction technol-
ogy, resulting in the establishment of an initial intelligent construction equip-
ment industry system. The nation’s support for intelligent construction has been 
steadily increasing, positioning it as the frontrunner for future building con-
struction. This marks the beginning of a new revolution in the construction 
industry, coinciding with the information age, which serves as a platform for the 
rapid development of the sector.

Intelligent construction technologies amalgamate data from various stake-
holders, including design, construction, and management, thereby laying 
a strong foundation for transforming the construction industry and facilitat-
ing the advancement of intelligent construction technology.

In this research paper, a novel perspective on artificial intelligence, Building 
Information Modeling (BIM), is employed to design an algorithm model 
capable of identifying damages in bridge structures using neural networks. 
A significant disparity in recognition accuracy is observed between the classi-
cal neural network algorithm and the improved neural network algorithm for 
damage recognition in bridge structures.

When utilizing the classical neural network algorithm, the average error in 
recognizing a 10% damage level in a region is found to be 0.77%, while for an 80% 
damage level, it is 1.66%. However, the improved neural network algorithm 
showcases superior performance, exhibiting an average error of 0.56% for recog-
nizing 10% damage and 1.21% for recognizing 80% damage in a region. These 
results underscore the enhanced accuracy achieved by employing the improved 
neural network algorithm for damage recognition in bridge structures.
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To further advance bridge construction monitoring intelligent technology 
research, our future plans involve incorporating recurrent neural networks 
and knowledge graphs into our methodologies. These additions hold the 
potential to bolster the capabilities of bridge construction monitoring, leading 
to further advancements in intelligent technology.
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