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ABSTRACT 
 
A system of linear equations that is currently widely used to describe convective heat transfer does 
not seem to be able to explain some experimental facts. One of the reasons for this may lie in using 
Newton’s and Fourier’s linear laws when deriving energy and Navier-Stokes equations. Replacing 
linear equations with nonlinear ones, as well as using an expression for surface heat flux density 
that is based on laws of physics instead of expressions called ‘cooling laws,’ would allow to solve a 
wider range of problems, and also would better agree with the experimental data. The use of 
proposed non-linear system of equations would also permit engineers in chemical, textile, defense, 
power, and other industries to design more economical and smaller-sized heat exchange devices. 
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1. INTRODUCTION 
 
At present, theory of convective heat transfer 
uses a system of linear equations (Navier-
Stokes, continuity, energy, and an expression 

called ‘Newton’s law of cooling’ in English-
language literature, or ‘Newton-Richmann’s law’ 
in Russian-language literature). The results of 
engineering calculations using these equations 
are often not consistent with the experimental 
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data and principles of thermodynamics, even in 
the simplest cases of heat transfer. This is why 
engineers who design and make heat-exchange 
devices do not trust theoretical calculations, and 
require experiments instead. If it is impossible for 
some reason, they overestimate calculated heat 
transfer surface by 30-50%. 
 
This established practice leads us to believe that 
currently used system of linear equations may be 
not completely accurate. The purpose of this 
paper is to show that it is possible to modify this 
system to make the results of calculations better 
and more accurate. 
 

2. LINEAR MODELS OF CONVECTIVE 
HEAT TRANSFER AND SELECTED 
SOLUTIONS 

 
Linear models of convective heat transfer proved 
to be convenient in terms of calculations. 
However, their validity is usually limited to a 
small change in important heat transfer 
parameters, and, for various reasons, they turn 
out to be not the most accurate. This is also true 
for convective heat transfer equations.  
 
In the simplest case, when heated fluid is 
incompressible and mass forces are absent, the 
system of linear equations for the convective 
heat transfer can be written in a form of eq. (1-4):  
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Here �⃖  – velocity vector; �  – time; �  – fluid 
density; � – pressure; � – coefficient of dynamic 
viscosity; ∇  and ∆  – Hamilton and Laplace 
operators; �  – fluid’s thermal conduction 
coefficient; �  – fluid’s specific heat capacity at 
constant volume; �  – heat flux density (heat 
transfer); � – heat transfer coefficient (heat loss 
coefficient); � – fluid temperature (in International 
System of Units (SI)). 
 
At present time, the system of equations (1-4) is 
widely used for solving various heat transfer 
problems, regardless of fluid flow mode or heat 
transfer channel size. Some researchers [1] 
believe that because these solutions agree so 

well with the experimental data, it doesn’t make 
sense to doubt general applicability of the system 
equations. However, there are some 
experimental facts that cannot be explained 
within the framework of this theory. For example, 
when fluid flow mode in channels changes from 
laminar to turbulent, its velocity profile becomes 
more filled, i.e. tends to be more homogeneous. 
As a result, fluid flow through the channel cross-
section increases, and the same happens with 
temperature profile at the channel cross-section. 
But existence of different velocity and 
temperature profiles does not follow from Navier-
Stokes linear and energy equations [2].  
 
Also, in the system of equations (1-4) fluid 
temperature � is interpreted in different ways. In 
the energy equation (4) temperature is defined 
as a local value that changes in space and time. 
But in the expression (3) temperature may mean 
all kind of different things. Heat transfer 
textbooks [3-5] define � as a "temperature of a 
liquid or gaseous medium surrounding an 
object". Scientific literature elaborates that it can 
be fluid temperature far from the channel wall, 
constant fluid temperature at the channel cross-
section [6], or an average fluid temperature at the 
channel cross-section [7]. Some even say that 
each problem should have its own definition of �: 
it can be average temperature at channel cross-
section, average fluid mass temperature, or 
constant fluid temperature at the channel cross-
section at the inlet of a heated area of the 
channel. The choice would depend on the nature 
of the problem, and it would be made only for 
calculations’ convenience [7].  
 
Expression (3) in English-language scientific and 
technical literature is called ‘Newton's law of 
cooling’, and in Russian-language literature it is 
called ‘Newton-Richmann's law of cooling’. But 
neither Newton, nor Richmann did not use this 
expression, because at that time they did not yet 
distinguish between temperature and heat 
quantity. It was Joseph Fourier who first 
suggested a concept of surface heat flux density 
in convective heat transfer and its connection 
with temperature difference [8]. But his 
expression (as well as the expression (3)) lacks 
an important parameter – medium velocity. So, it 
looks like the expression (3) not only should not 
be called Newton’s (or Newton-Richmann’s) law 
of cooling, but also is not consistent with the first 
law of thermodynamics [9].  
 
It also seems that theoretical researchers believe 
that the expression (3) is an "experimental fact," 
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and experimental researchers use it as a 
theoretical fact. However, experiments do not 
substantiate linear dependence (3), and it 
doesn’t follow from some other, more general 
laws of physics [9]. 
 
Due to the complexity of solving differential 
equations in partial derivatives, a linear system 
can be solved for a small number of specific 
problems under some simplifying assumptions, 
dismissing the fact that, while solving Navier-
Stokes and energy equations, researchers are 
trying to determine heat transfer coefficient, 
which is not a physical value. 
 
Analytical solutions that aim to determine velocity 
and temperature fields (and also heat transfer 
coefficient) are called ‘precise’. For example, 
there are known precise solutions to the problem 
of heat transfer in laminar fluid flow in pipes. This 
problem was first solved by Leo Graetz in 1883 
and 1885. Not knowing about his works, Wilhelm 
Nusselt solved this problem once again in 1910 
[7,6, and 10]. Graetz and Nusselt made the 
following assumptions: in an absolutely smooth 
cylindrical pipe with a radius ��  flows an 
incompressible fluid in a laminar mode. Average 
fluid temperature at the inlet of the heated pipe �� 
and wall temperature of the pipe  ��  are kept 
constant throughout the entire fluid heating area, 
and fluid velocity along the channel cross-section 
is subject to the Poiseuille distribution law 
(parabolic velocity profile). The aim of this study 
was to determine fluid temperature distribution 
�(�,�) along the radius of � and the length of the 
pipe  � , and to determine how heat transfer 
coefficient �(�) changes along the pipe length.  
 
Graetz and Nusselt obtained a solution for the 
modified equation (4) by using separation of 
variables. As usual in such cases, it was a 
product of two functions, each of them depending 
on only one variable. Some difficulties in 
determining temperature were related to the 
necessity of superimposing certain conditions 
when calculating functions in the form of the 
infinite series. 
 
Graetz and Nusselt concluded that in the fluid 
layers at small values of the dimensionless 
quantity of the pipe (near the beginning of the 
pipe’s heated section) fluid temperature at the 
pipe axis changes only slightly along the pipe 
radius and pipe length. Only near the pipe wall 
large temperature changes took place, both 
along pipe radius � and pipe length �. The area 
of low values of the dimensionless quantity of the 

pipe is believed to be a zone of formation of a 
thermal boundary layer, where temperature 
change occurs. Temperature distribution in the 
fluid flow core (which decreases along the growth 
of the dimensionless quantity of the pipe) 
remains almost homogeneous and almost equal 
to the temperature at the pipe inlet. A section of a 
pipe with all these characteristics got a name 
‘thermal inlet pipe section,’ ‘inlet pipe section,’ or 
‘thermal stabilization pipe section.’ 
 
At some distance from the pipe inlet thermal 
boundary layers begin to merge, and heat 
transfer starts to take place at the whole cross-
section of the pipe. Starting from a certain value 
of the dimensionless quantity of the pipe, fluid 
temperature profiles become similar, i.e. 
temperature at different pipe cross-sections 
differs only in absolute value, and the law of 
temperature change along the radius remains the 
same. In the first (inlet) section of the pipe, where 
fluid temperature profile is forming, Nusselt 
number decreases, and in the second section, 
where fluid temperature profiles become similar, 
Nusselt number stops changing. 
 
For the purpose of determining heat transfer 
coefficient it is usually assumed that near the 
fluid surface (in the boundary layer) heat is 
transferred by thermal conduction. But we 
believe that this assumption may not be 
completely accurate, because Fourier’s heat 
conduction law is only valid under condition of a 
constant heat conduction coefficient over the 
entire cross-section of the channel and constant 
temperature gradient [11]. However, usually fluid 
temperature gradient varies from zero at the 
channel axis to very high values at the channel 
wall, calling into question the common 
assumption described above.  
 
Instead of heat transfer coefficient, Graetz and 
Nusselt introduced dimensionless Nusselt 
number into calculations. They showed that at 
� → 0 Nusselt number tends to infinity: ��  → ∞. 
Then the function rapidly decreases, and, 
starting from a certain value of the argument, and 
remains almost constant. At  � →  ∞ ��  ≅ 3,66. 
Based on this, they concluded that the maximum 
value of the heat transfer coefficient (at the 
length of the pipe tending to infinity) remains 
constant, and depends only on the fluid heat 
transfer coefficient � and pipe’s diameter �. 
 
It seems that limiting Nusselt number that was 
obtained in solving this problem (non-zero value 
of the heat transfer coefficient with pipe length 
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tending to infinity) is not consistent with the 
common assumption described above. If we 
assume that surface heat flux density is 
 

� =  
��

���
 , 

 

then in a case of an infinitely long pipe  � →
 ∞, heat transfer surface area � must also tend to 

infinity: � →  ∞ . Source power 
��

��
 determines wall 

temperature. If wall temperature does not change 
along the length of the pipe, power would also be 
constant. Correspondingly, if  � →  ∞ , surface 
heat flux density should tend to zero: � →  0.  
 

It follows from the expression (3) that the above 
is possible only when channel wall temperature 
and fluid temperature in channel are the same, 
i.e. in thermal equilibrium, or when heat transfer 
coefficient is zero. It also follows from the 
solution of the expression (3) that  � ≠ 0 . In 
thermal equilibrium the temperatures are the 
same, and temperature difference in expression 
(3) becomes zero, although heat transfer 
coefficient does not become zero. Then using 
heat transfer coefficient as a heat transfer 
characteristics stops making any sense, because 
it doesn’t seem to play any role in heat transfer. 
 

Thermal equilibrium is the most chaotic state of 
the system, and it can be expected to happen for 
sure in an infinitely long pipe. Then temperature 
across the pipe’s cross-section will be the same 
as the pipe wall temperature, and self-similar 
flow established in the system should collapse as 
the length of the channel increases. After the 
inlet section and a section of thermal stability 
there should be another section – a transitional 
one, preceding the thermal equilibrium.  
 

Then Graetz and Nusselt’s assumption that fluid 
flow is a developed laminar flow along the whole 
flow area, from fluid entering the pipe to � →  ∞, 
would probably need clarifying. It follows from the 
mathematical formulation of the problem that at 
the inlet of the pipe fluid flow is laminar, and it 
remains laminar at any length of the pipe, 
including  � →  ∞ . This assumption would be 
unlikely reflecting reality even in the absence of 
heat transfer, because when laminar flow is 
formed, it only stays in the pipe section of a 
certain length due to the loss of flow stability. In 
the laminar (layered) flow impulse transfer in the 
crosswise direction to the wall is carried out only 
molecularly, since fluctuations arising in the 
boundary layer are damped by friction forces. 
When boundary layer (or channel length, or 
Reynolds number) grows, friction forces are not 

capable to damp flow disturbances anymore. 
Then a macroscopic transfer is added to the 
molecular impulse transfer to the wall, vortexes 
appear, and the flow becomes transient from 
laminar to turbulent.  
 

Also, Graetz and Nusselt’s assumption that heat 
transfer does not affect hydrodynamics of the 
flow becomes questionable as well. Finally, it 
becomes difficult not to question: is the 
expression (3) valid at all for determining heat 
transfer coefficient? 
 

Petukhov and Case solved a problem of a fluid 
heated in a pipe under a condition of constant 
heat flow density ( � = �����) using analytical 
method [7,12]. They made simplifying 
assumptions, similar to the ones in the above 
mentioned problem with constant wall 
temperature. They assumed that flow and heat 
transfer are stable, fluid’s physical properties are 
constant, fluid temperature at the pipe inlet is 
constant and homogeneous at a cross-section of 
the pipe, velocity profile in the entire flow is 
parabolic (laminar flow), and fluid’s heat 
conduction in the in the axial direction does not 
affect heat transfer. Solution for this problem 
showed that, just like in the previous problem, 
there are two flow sections: thermal initial section 
and stabilized heat transfer section. In the first 
section Nusselt number tends from infinity at the 
pipe inlet to some asymptotic value at  � →
 ∞: ��  ≅ 4,36 . Looks like, heat transfer 
coefficient changes along the channel length 
from infinity at � → 0 to some constant at � → ∞. 
It is clear that this solution is not consistent with 
the principles of thermodynamics – in an infinitely 
long channel a thermal equilibrium should have 
been established between heated fluid and pipe 
walls. Also, this solution is inconsistent with the 
experiments [13]. 
 

Fig. 1 shows the curves of changes in heat 
transfer local coefficients along a pipe length: 
ordinate axis reflects heat transfer coefficient, 
abscissa axis shows energy surface density 
(� � �⁄ )). As it follows from Fig. 1, at the inlet of 
the pipe (at  � → 0 ), heat transfer coefficients 
tend to infinity, and then decrease with the 
increase in pipe length. By looking at curves it’s 
easy to conclude that each of them tends to 
some asymptotic value. Unfortunately, the length 
of the pipe under study was pretty small (a little 
more than one meter), and it was not possible to 
know whether heat transfer coefficients really 
have an asymptotic value, like Fig. 1 shows. 
However, it was possible to try to describe the 
trend line mathematically.  
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Fig. 1. Change of � along the channel length [13] 
 
Using Microsoft Excel 2010, we decided that the 
closest to the experimental data trend line can be 
best described by an exponential function, similar 
to 
 

� =  � �(
� �

�
)�  �,� 

 
where � � is a constant. From this dependence it 
follows that if a pipe is infinitely long (� → ∞), 
heat transfer coefficient tends to zero. According 
to the precise solutions, under these conditions 
heat transfer coefficient tends to being a 
constant, but according to experimental data, it 
tends to zero. Also, changes in wall temperature 
along heat transfer surface are not confirmed by 
experiments. And, according to precise solutions, 
in a stabilized flow wall temperature should 
change linearly with growing pipe length, but 
experimental curve looks more like logarithmic or 
exponential function. 
 

3. ON NONLINEAR APPROXIMATION 
 
It seems that in order to eliminate discrepancies 
between experimental data and theoretical 
solutions, linear system of equations (1-4)      
should be modified and presented as (5-8)              
[14]: 
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Here � – cross-section of a channel where fluid 
flows; Π – channel perimeter; < � >  – average 
temperature at a channel cross-section; �,�,� – 
some constants. 
  
System of equations (5-8) allows calculating 
laminar transient and turbulent flows, and, at 
least qualitatively, correctly describes changes in 
velocity and temperature profiles during the 
transition from laminar to turbulent flow. If � = 0, 
Navier-Stokes and energy linear equations 
become a special case of nonlinear expressions 
(5) and (8). 
 
Here we would like to introduce our approach to 
solving this problem. Our paper [2] shows why 
and how Navier-Stokes equation should be 
modified, and what should follow from it. Papers 
[9] and [11] reason why and how to use 
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expression (7) instead of expression (3). Below 
we would like to show how to obtain a non-linear 
energy equation (8).  
 
In deriving linear energy equation (4) it was 
assumed that heat is transferred from a channel 
wall to a moving fluid by thermal conduction 
(according to Fourier’s law). Fourier’s law is valid 
for small temperature gradients, provided that 
they are constant. When heat is transferred from 
the channel wall to the moving fluid, temperature 
gradient changes from zero on the channel axis 
to the very high values at the wall, and Fourier’s 
law near the channel wall becomes invalid. 
Besides, the amount of energy received depends 
on the source temperature: the higher is the 
temperature, the more heat energy is transferred 
to the heat-receiving system. It means that the 
heat flow surface density � depends not only on 
the temperature gradient, but also on the 
numerical value of the temperature. It would 
seem that surface heat flux density equation 
should include both temperature and 
temperature gradient, because when describing 
something mathematically, functions are always 
represented by independent arguments only. But 
temperature and temperature gradient are not 
independent arguments. So, heat flow surface 
density dependence should be presented either 
as a function of temperature, or a function of 
temperature gradient. Note that Fourier’s law 
 

� =  � ∇� 
 

is valid when 
��

�∇�
=  � = �����. 

 
In order to take into consideration an effect of 
both temperature and temperature gradient on 
heat transfer, let’s assume that a partial 
derivative of the heat flow density along the 
temperature gradient is not a constant value (as 
it is accepted in the linear theory), but represents 
an exponential function like (9), in which �  and � 
are some constants: 
 

��

�∇�
= �∇��                                                  (9) 

 
Using expression (9) for heat flux surface 
density, it was obtained in [11] that �  is not a 
linear, but a power function (10): 
 

� =  
�

�� �
∇��� �                                                     (10) 

 
Theoretically, when deriving Navier-Stokes 
nonlinear equation, it follows that constant � can 

vary from −1 to zero. Value � =  −1 corresponds 
to a well-developed turbulent flow. At � = 0 the 
flow is laminar (has parabolic velocity profile). It 
seems that during heat transfer � should change 
within the same limits too, and then the 
expression (10) would not contradict Fourier’s 
law. When there’s no flow velocity in medium 
and  � = 0 , expression (10) becomes 
indistinguishable from Fourier’s law of heat 
conduction.  
 
Now, let's obtain elementary volume ��  in a 
shape of a fluid cylinder moving in a cylindrical 
pipe. According to the first law of 
thermodynamics, in order to change a 
temperature of a cylinder with a mass �  by a 
value ��, it would be necessary to bring energy 
in the quantity of ��  to it. Mass �  can be written 
out as ��� . Then a change in the internal energy 
of the cylinder with a specific heat capacity � at 
constant volume will be 
 

�� =  � ∙� ∙�� ∙ �� 
 
To find temperature change during ��, �� should 
be divided and multiplied by ��. Then the amount 
of heat, which must be brought up to the volume 
��  in time ��, should be equal to 
 

��  =  � ∙� ∙
��

��
∙�� ∙��                            (11) 

 
If we divide expression (11) by ��  and ��, we’ll 
get expression (12): 

 
��

�� ∙��
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��

��
                                      (12) 

 
The amount of heat �� , entering the allocated 
volume ��  through its side surface � for the time 
��, can be determined using an expression (13): 

 
�� = �� ∙� ∙��                                         (13) 

 
From the expression (13) it would be easy to find 

the value of 
��

�� ∙��
 : 
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�� ∙��
=  

��

��
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(14) 

 
Let's put � from the expression (10) in the 
expression (14), as well as the size of the 
cylinder’s side surface and its volume, then we’ll 
get the expression (15): 
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��

�� ∙��
=  

�

�� �
∙∆��� �                                    (15) 

Then what remains is to equate the right parts of 
expressions (12) and (15), having preliminarily 
written out a complete (substantive) derivative of 
temperature. Then we’ll get to the energy 
equation (8): 
 

 ��

��
+  �⃖∇� =  

�

� �
 ∙

�

�� �
∆��� �                        (8) 

 
Equation (8) differs from the usually used in 
calculations linear equation (4). It turns into well-
known (4) only if � = 0 . It follows from the 
expression (8) that temperature profile in 
channels changes from laminar to turbulent flow, 
and it becomes more filled. But it is not possible 
to draw these kinds of conclusions from linear 
energy equation (4).  
 

An important advantage of using the system of 
equations (5-8) in comparison with (1-4) is the 
possibility to solve problems without using so-
called "auxiliary quantity" – heat transfer 
coefficient. For example, if it is necessary to 
solve engineering problem of heating a fluid from 
temperature < �� >  to < � >  under a condition of 
a constant heat flow surface density, it can be 
done in a very simple way. For example, let’s 
assume that the heating is done in a straight 
circular cylindrical pipe. In this case, we can write 
out expression (7) as an expression (16): 
  

� =  
�

Π
���

�� ��

��
=  

�

�
���

�� ��

��
                    (16) 

 

If density, fluid heat capacity coefficient, and an 
average fluid velocity at a channel cross-section 
are constant and do not change during the 
heating process, the equation (16) can be easily 
integrated. But if thermophysical properties of the 
fluid depend on temperature, these temperature 
dependencies should be first entered into 
equation (16), and only then integrated. 

 
Let's separate the variables and integrate 
equation (16) under boundary condition � = 0,  

 
 < � > = < �� >  . Then we get a solution (17): 

 

< � > − < �� > =  
�

�∙�∙�
(

�∙�

�
)                       

(17) 

 
Average fluid temperature along the channel 
changes linearly (which is confirmed by 
experimental data [13,14,15]), and depends not 
only on the surface heat flux density, but on the 

complex  
�∙�

�
. This means that the same final 

temperature can be obtained by varying surface 
heat flux density, fluid velocity, diameter of the 

pipe, and length of the pipe. Note that the ratio 
�

�
 

can be interpreted as a time during which fluid 

stays in channel. And, as a whole, complex 
�∙�

�
 at 

dimensionality [J/m
2
] represents surface energy 

density (energy supplied to one square meter of 
heating surface).  
 

4. CONCLUSION 
 
Using a linear system of equations to depict 
convective heat transfer in channels does not 
allow properly describing the entire variety of 
experimentally observed facts. It seems that the 
reason for it may be the use of linear models 
(laws) in deriving Navier-Stokes equations and 
energy equations. Replacing linear equations 
with nonlinear, as well as use of a physically 
justified expression for surface heat flux density 
instead of expressions called ‘cooling laws,’ 
would allow solving wider range of problems, and 
their solutions would be better aligned with the 
experimental data. 
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