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Abstract
Processing techniques for particle-based optical flow measurement data such as 3D particle
tracking velocimetry (PTV) or the novel dense Lagrangian particle tracking method
‘Shake-the-Box’ (STB) can provide time-series of velocity and acceleration information
scattered in space. The following post-processing is key to the quality of space-filling velocity
and pressure field reconstruction from the scattered particle data. In this work we describe a
straight-forward extension of the recently developed data assimilation scheme FlowFit, which
applies physical constraints from the Navier–Stokes equations in order to simultaneously
determine velocity and pressure fields as solutions to an inverse problem. We propose the use of
additional artificial Lagrangian tracers (virtual particles), which are advected between the flow
fields at single time instants to achieve meaningful temporal coupling. This is the most natural
way of a temporal constraint in the Lagrangian data framework. FlowFit’s core method is not
altered in the current work, but rather its input in the form of Lagrangian tracks. This work
shows that the introduction of such particle memory to the reconstruction process significantly
improves the resulting flow fields. The method is validated in virtual experiments with two
independent DNS test cases. Several contributions are revised to explain the improvements,
including correlations of velocity and acceleration errors in the reconstructions and the flow
field regularization within the inverse problem.

(Some figures may appear in colour only in the online journal)

1. Introduction

Today, in applications of particle based optical flow measure-
ment techniques images, in the form of subsequently illumin-
ated tracer particle pictures, are captured from which velocity
information can be estimated by PIV evaluation methods [10]
or particle tracks can be inferred by tracking techniques such

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

as classical particle tracking velocimetry (PTV) [1, 2] or tomo-
graphic PTV [3–5] or by the novel dense Lagrangian particle
tracking method Shake-the-Box [6].

For all of the flow measurement techniques mentioned
above, an important goal is the ability to measure instantan-
eous velocity vector fields and corresponding velocity gradi-
ent tensor elements in 2D or better still in 3D, in order to
analyze the topologies and dynamics of the governing flow
structures (e.g. in turbulence). The regular grid oriented cross-
correlation based methods like 2D PIV [10] and later 3D tomo
PIV [11] displayed distinct advantages in comparison to clas-
sical PTV methods in terms of achievable spatial resolutions
of the desired velocity vector fields, and robustness against
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outliers in several developmental steps during the past few
decades [10]. Nevertheless, the robustness of the local cross-
correlation of subsequent particle image distributions brings
with it a disadvantage: a low-pass filtering effect caused by
the used correlation window size, which is a well-known issue
of PIV methods especially when aiming at measuring strong
shear flows.

Tomographic PTV on the other hand typically achieves
a better spatial resolution compared to classical PTV meth-
ods, as it combines the ability of MART based schemes [11]
for reconstructing quite dense 3D particle distributions with
the high quality of the latest particle tracking schemes. How-
ever, due to the tendency of MART to produce an increas-
ing amount of s.c. ‘ghost’ particles at higher particle image
densities, tomo-PTV is still restricted in terms of the recon-
structed particle position accuracy and achievable particle
image density to values of below approximately 0.05 ppp
(particles per pixel). The latest step forward towards higher
reconstruction accuracy and increased particle image dens-
ities, including an almost complete suppression of ‘ghost’
particles with much lower computational effort, is the Shake-
the-Box LPT technique [6], which combines the iterative
particle reconstruction technique [12] in an initial phase with
an inherent tracking, prediction and correction scheme. The
tracking and particle position prediction of STB uses 3rd
order B-splines for temporal filtering and the predicted particle
distribution of the next time step is corrected by an image
matching (‘shaking’) procedure using calibrated optical trans-
fer functions (OTFs) of the particle images [13] before any
reconstruction algorithm is applied, thereby making optimal
use of the physical properties of the imaged particles inside
the flow over many time-steps. Nevertheless, although the
found particle trajectories and related velocity and accelera-
tion information is well-defined regarding their individual pos-
itions in space, their scattered appearance and (mean) inter -
particle distances does not enable a simple and global spa-
tial filling calculation of the desired (time-resolved) 3D velo-
city gradient tensor [14] and pressure fields. For this purpose,
different spatial interpolation algorithms were proposed, such
as FlowFit [7, 15] and VIC+ [8, 16], which take instant-
aneous Lagrangian particle-track data (position, velocity and
acceleration) as input and exploit known physical properties
such as vanishing divergence and the Navier–Stokes equa-
tions for incompressible and uniform-density flows to recon-
struct accurate and space-filling velocity, acceleration and/or
pressure fields [17–19]. The working principle in both, VIC+
and FlowFit, is a very similar data assimilation approach.
A complete state space consisting of the velocity and pres-
sure fields (u,p) in FlowFit and consisting of velocity and
vorticity fields (u,ω) in VIC+ is fitted to measurements
of instantaneous particle velocity and acceleration under the
aforementioned constraints. These algorithms reach spatial
resolutions that exceed the classical Nyquist wave number
limit for the velocity interpolation problem alone, owing to
 the increased amount of data in the coupled reconstruction
[7]. Consequently, the data assimilation schemes can achieve
higher spatial resolutions than simpler interpolation or filter-
ing schemes, e.g. [20, 21], that make use of the constraint

Figure 1. Illustration of potential benefits when accounting for
physical constraints. The state space consists of velocity and
pressure, whereas the observation space is made of three cartesian
coordinates for each, velocity and acceleration, for all n particles.

of vanishing divergence only. This approach had already dis-
tinguished the aforementioned algorithms in the benchmark
cases of the 4th PIV challenge [22], where the DLR contri-
bution was evaluated with a predecessor of FlowFit. Figure 1
clarifies the difference between an interpolation approach
without constraints and a reconstruction approach with con-
straints: Consider s as ground truth for an instantaneous velo-
city and pressure field of an incompressible flow with con-
stant density. The green line represents the subset of this space
where the divergence of velocity is zero and the pressure Pois-
son equation holds. We know s to be an element of this subset
but can only approximate it with the help of particle move-
ment observations (velocity and acceleration at n particular
points in space) due to measurement errors (r) and the sparsity
of these observations. The lower row shows the potential dif-
ference between two reconstruction methods where only one
would enforce the aforementioned physical constraints. One
reconstruction (s′), e.g. a simple interpolation, lies outside of
the physically relevant subset. This is to be expected in the
face of measurement errors and undersampling if the phys-
ical constraints are not enforced because this approach has
more degrees of freedom to distance itself from the ground
truth compared to the method that enforces the physical con-
straints.

We want to stress that FlowFit reconstructs single time
instants. FlowFit’s input is a temporal snapshot of particles
tracks, i.e. a frozen point cloud of particles scattered in
3D space with known instantaneous velocities and acceler-
ations and their estimated uncertainties. The inverse non-
linear optimization problem is addressed by minimization of
a cost function that is composed of the deviations from the
incompressible Navier–Stokes equations ; see the appendix
for a brief recapitulation of the applied method or [7]
and [15].
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1.1. Temporal consistency

Two subsequent reconstructions that are a time shift τ apart
can in principle be compared by means of any CFD time
marching simulation method (e.g. direct numerical simula-
tion, large eddie simulation) with reconstructed field values
as initial conditions. As described above for FlowFit, sub-
sequently reconstructed fields are only coupled by the phys-
ical behavior of the Lagrangian tracers themselves, but the
fields u, p are reconstructed independently in a space-filling
manner for each time step. This implies that two subsequent
reconstructions simulated forward in time will not necessarily
show an identical time evolution, and are thus not temporally
consistent with each other. This temporal inconsistency is due
to a missing space-filling temporal constraint in addition to
the spatial constraints in FlowFit. Only field values close to
measured particles are temporally consistent in this sense.
Consequently, there is still potential for further increasing
precision by combining the information from subsequent time
instants, since the current procedure does not a priori impose
temporal consistency. One could argue that, to some extent
it is guaranteed, owing to the physical input of temporally
B-spline filtered Lagrangian particle-tracking data, but the
temporal dynamics of smaller scales in the reconstructions are
often particularly severely affected by spatial undersampling.
The latter is illustrated in figure 2. For the sake of simplicity
consider a stationary velocity field u(x, t) = u(x) seeded with
some tracers. The reconstructed velocity field urec(x,Dtrack(t))
is now obtained from sparse Lagrangian particle
data

Dtrack(t) = {Xk(t),Uk(t),Ak(t)}, k ∈ N, k< N,

denoting the position, velocity and acceleration of each of the
N particles. But after a time τ , the Lagrangian tracers have
traveled through the field, so their position, velocity and accel-
eration have changed to Dtrack(t+ τ). With missing temporal
constraint data the reconstructed fields do not necessarily coin-
cide, so in general

urec(x,Dtrack(t)) ̸= urec(x,Dtrack(t+ τ))

is obtained. By temporal variations of the input data, the time
derivative of the reconstructed velocity field d

dturec(x,Dtrack(t))
is non-zero, although the underlying field was known to be
stationary d

dtu(x) = 0. Consequently, in the more general case
of instationary fields, time derivatives of true and reconstruc-
ted fields do not coincide. This results in physically inconsist-
ent behavior of flow features if the fields of interest are spa-
tially undersampled, e.g. due to limited particle seeding and
high Reynolds numbers. If multiple particles randomly occur
in close proximity to high velocity gradients, the latter will
be reconstructed with higher accuracy than in a case with a
more unfavorable particle distribution or particle shift, even
if the gradients themselves persist over time. Preventing this
scenario in a computationally affordable manner is among the
aims of this work.

More recently [9] proposed a method called time-segment-
assimilation (TSA) that incorporates multiple time steps into

Figure 2. Sketch illustration for missing temporal consistency, i.e.
spurious time derivatives in reconstructed fields obtained from
sparse Lagrangian tracers. Although the field does not change with
time, the reconstructions give different output at different times t
and t+∆t (see black rectangle).

the inverse problem of the flow field reconstruction. Therein,
the temporal evolution of flow fields is obtained by forward
and backward simulation applying the vortex-in-cell time
integration method [CHRISTIANSEN1973363]. It performed
well in recovering additional structures and implements the
missing temporal constraint to the detriment of computational
cost.

Using temporal information within the reconstruction pro-
cess provides the following benefits: As pointed out by [24],
the achievable spatial resolution should in this case be lim-
ited by inter-streak distance rs instead of inter-particle dis-
tance rp and rs < rp holds true at all times. Also according to
[25], the additional temporal information yields an increased
ratio of the number of realizations from STB measurement to
the degrees of freedom of the reconstruction target. Innovat-
ively, the naturally Lagrangian data framework of VIC# [26]
and FlowFit has been utilized to address the missing tem-
poral constraint by taking into account information at addi-
tional non-particle positions: [25] applied Taylor’s hypothesis
to project spatial information onto preceding and prospective
positions on particle streaks, whereas [27] introduced virtual
tracer particles (VPs) to induce memory in the reconstruction
process. The former was demonstrated on experimental data of
a thermal plume, where considerable temporal smoothing was
achieved. The focus of this paper lies in an elaboration on the
virtual particle seeding approach introduced by [27] in arti-
ficial experiments. This way, improvements in precision can
be distinguished from immoderate temporal smoothing of the
fields.
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1.2. Uncertainty quantification and error scaling

The uncertainty quantification of LPT/PTV methods and spa-
tial field reconstruction schemes is a current topic due to recent
developments, see e.g. [28]. As mentioned above, FlowFit
and VIC+ can retrieve smaller flow scales than the inter-
particle distance (Nyquist limit) owing to the combination
of both velocity and acceleration data in the reconstruction
process. With few exceptions, particle tracking experiments
regarding recent  turbulence research are carried out in the
high-Reynolds-number-regime, targeting general turbulence
characterization, the occurrence of a secondary peak in the
energy spectrum, and the origin of superstructures in wall-
bounded flows [29–33]. This carries the experimental research
to the boundaries of feasibility and requires, e.g. high flow
rates in wind tunnel facilities and/or small tracer particles,
which complicates dense volumetric seeding owing to lim-
ited particle seeding rates on one hand and a lack of spa-
tial resolution on the other. Using such particle-tracking data
for volumetric field reconstructions raises the question of
uncertainty and error quantification for applied reconstruc-
tion methods like FlowFit. It is anticipated that inter-particle
distances greater than several Kolmogorov length scales η
will effectively cause truncation of the turbulent spectrum.
But an assessment of the scaling of expected velocity and
acceleration errors with average inter-particle distance has
not yet been performed for various benchmark flows. The
average inter-particle distance is a measure for seeding con-
centration but does not cover local concentration variations
due to rapid particle dispersion in turbulent flows. In prin-
ciple, the uncertainty in flow field estimation is expected to
decrease locally whenever particles approach each other. This
motivates us to inspect the connection between reconstruction
errors and local particle configurations within the scope of this
work.

1.3. Structure of the paper

This paper addresses the questions of both uncertainty quan-
tification and temporal consistency in FlowFit’s flow field
reconstructions, as an understanding of either one of these top-
ics may greatly contribute to the other. For this purpose, two
local criteria based on properties of the underlying particle
cloud that might correlate with errors in estimated field values
are introduced in section 2.1. In the next step, a scheme for
temporal coupling of the reconstructions via virtual particles
(VPs) is presented in section 2.2. Section 3 describes two
artificial particle-tracking-experiments in homogeneous iso-
tropic turbulence and a channel flow designed utilizing the
Johns Hopkins Turbulence Database (JHTDB) test cases and
tools [34–36]. These form the basis of further analysis, which
aims to (i) establish a connection between local particle cloud
configuration and errors in estimated velocity and acceler-
ation field values using FlowFit 2.0 and (ii) quantify and
discuss the impact of additional information carriers in the
form of VPs on the reconstructed fields. Besides the tem-
poral coupling, a further beneficial effect of VP seeding is
identified.

Figure 3. Sketch of the two criteria for error quantification. Left:
The distance d from a measurement point (grey) to the nearest
neighbor in the initial particle cloud (black). Right: The more
uniform/spherical the arrangement of three nearest neighbors, the
smaller s becomes.

2. Error estimation and temporal coupling

2.1. Candidate properties for local uncertainty quantification

FlowFit optimizes flow fields based on the Lagrangian data
Dtrack at certain time instants. This optimization aims to find
continuous fields coinciding with measured field valuesUk,Ak
at particle positions Xk. Owing to continuity, estimated field
values will become less reliable with increased distance from
particles, which qualifies the nearest neighbor distance d, i.e.
the distance between the position at which the reconstructed
field is evaluated and the position of the closest particle in
Dtrack, as a first candidate for local uncertainty quantification ;
see also figure 3. On the other hand, acceleration field val-
ues contain contributions from local velocity field derivatives,
which might presumably be better resolved in a situation of a
more uniform, i.e. spherical arrangement of nearest neighbors.
An unambiguous mathematical criterion to assess uniformity
can be constructed from the first three nearest neighbors by the
summation of the unit vectors from point of interest to neigh-
bor position. The absolute of the resulting vector, denoted s,
will read zero in the case of a perfectly spherical composi-
tion, but will yield a value of up to three if all neighbors are
found in the same direction, see figure 3. The general state-
ment holds true that the greater the value of s , the less uniform
the arrangement of neighbors becomes. Note that in the case
of four or more neighbors, there are degenerate, non-spherical
cases with small s, e.g. four particles aligned.

2.2. Algorithm for the advection and weighting of virtual
particles in FlowFit reconstruction

The spatial gaps in measured clouds of Lagrangian tracers
were identified to be potential sources of unphysical temporal
behavior. If the Lagrangian tracers were dense enough to
resolve the smallest relevant scales at inter-particle dis-
tances smaller than η, no such problem would occur. Con-
sequently, suppression of unnatural changes in undersampled
flow regions requires a sufficient number of tracers. More gen-
erally speaking, a sufficient number of data points is required
to reduce those degrees of freedom that allow for temporal

4
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deviations from the governing equations. Since any experi-
mental record cannot be changed in hindsight, we aim to arti-
ficially enhance the number of tracers from the reconstructed
fields themselves. Additional virtual tracer particles (VPs) can
make use of the physically meaningful velocity and acceler-
ation information provided by the reconstruction process and
restrict the material derivative within spatial gaps without real
tracers. The motivation for their application (instead of using
joint methods formulating a 4D inverse problem) is the incon-
testable simplicity of the approach and the ease of implement-
ation in the naturally Lagrangian data framework of FlowFit.
An outline of the procedure can be found in figure 4. Posi-
tions are drawn randomly from the flow-domain to select the
VPs. In the following, these are advected into the next time
step by means of the reconstructed velocity and acceleration
data. Next, they are added to the existing particle cloud with
individual weights for the updated velocity and zero weight for
their initial acceleration. Based on the extended particle cloud
and the weights, FlowFit reconstructs the field under these
additional constraints. In this way, direct temporal coupling
with almost no further computational cost can be achieved,
and reconstructions run on the enhanced clouds are less sens-
itive against positional changes of the real particles due to
artificially increased seeding density. However, care must be
taken in case of possible noise amplification. To circumvent
this problem, the weight with which virtual particle velocities
enter the cost function is clearly required to be lower than the
corresponding weight of real tracer velocities. This will guar-
antee that FlowFit decides in favor of the real particle inform-
ation in case of any contradictions. Additionally, a dampening
of virtual particles with locally estimated velocity gradients
can be applied.

2.3. Weighting of Virtual Particles

The deviation from real particle velocities enters the cost func-
tion with a weight close to 1. Virtual particle velocities are
applied with a lower weight for velocity and zero weight for
acceleration. On the other hand, the weight should not be too
small in order to let them be smoothed out. The advection is
typically subject to relatively large errors, so it is worthwhile
to deduce equations for their temporal evolution. The latter
can subsequently be used to define proper weights. Note that a
physically motivated estimate for the acceleration exists in the
current case, so the advection incorporates a higher temporal
derivative and is presumably less erroneous than in the case
of known initial velocity alone. However, this acceleration is
uncertain (FlowFit error) and undergoes unknown continuous
changes over time owing to dynamics (dynamic error), which
leads to additional errors in the estimation of the new position
and velocity. Consequently, we aim to incorporate both effects
into the equations by considering the Lagrangian statistics and
the reconstruction errors. In the following, the deviation of
true velocities and the reconstructed velocities (FlowFit velo-
city error) is denoted as ν, which reads ν = ureconstructed −utrue

or ν = ureconstructed − utrue for vectors or a single component,
respectively. Analogously,  to denote acceleration, α or α is
used. Because the reconstructions represent a lowpass-filtered

version of true fields, the assumption of vanishing mean values
of the errors ν and α is justified.

The Taylor series for a position and velocity component
along a trajectory read

x(t+ τ) = x(t)+ u(t)τ + a(t)
τ 2

2
+Θ̃x(t, τ) (1)

u(t+ τ) = u(t)+ a(t)τ +Θ̃u(t, τ). (2)

with error terms Θ̃(τ). In fact, the true values for initial velo-
city u(t) and initial acceleration a(t) are unknown so the estim-
ation become

x(t+ τ) = x(t)+
(
u(t)+ ν(t)

)
τ +

(
a(t)+α(t)

)τ 2

2
+Θx(t, τ) (3)

u(t+ τ) =
(
u(t)+ ν(t)

)
+
(
a(t)+α(t)

)
τ +Θu(t, τ) (4)

where the Θ’s now contain both errors, owing to deviations
from the constant acceleration model and errors due to the
reconstruction, respectively. The mean square errors (MSEs)
of position and velocity become

⟨Θ2
x⟩(τ) =

1
4
⟨a2 +α2 + 2aα⟩τ 4

+ ⟨ua+ νa+ uα+ να⟩τ 3

+ ⟨−∆xa−∆xα+ u2 + ν2 + 2 uν⟩τ 2

− 2⟨∆xu+∆xν⟩τ + ⟨∆x2⟩, (5)

⟨Θ2
u⟩(τ) =⟨a2 +α2 + 2aα⟩τ 2

+ 2⟨νa+ να−∆ua−∆uα⟩τ
+ ⟨∆u2 − 2∆uν+ ν2⟩. (6)

Herein, the time dependent shifts ∆x(t, τ) = x(t+ τ)− x(t)
and ∆u(t, τ) = u(t+ τ)− u(t) appear. ⟨. . .⟩ denotes the tem-
poral average over t (plus additional average over spatial sym-
metries of the flow) and repeating time dependence noted
by ...(t) was dropped above for better readability. So, terms
like ⟨∆x(t+ τ)u(t)⟩ or ⟨∆x(t+ τ)a(t)⟩ implicitly contain the
Lagrangian velocity and acceleration autocovariances and
crosscovariances which can be evaluated on the basis of the
available particle tracks. In general, the MSEs show quite com-
plex dependencies but there is less reason to assume that the
FlowFit errors are correlated to any of the other properties so
crossterms containing ν or α are neglected. This way, equa-
tions (5) and (6) yield the simpler versions

⟨Θ2
x⟩(τ) =

1
4
⟨a2 +α2⟩τ 4 + ⟨ua⟩τ 3

+ ⟨u2 + ν2 −∆xa⟩τ 2 − 2⟨∆xu⟩τ + ⟨∆x2⟩ (7)
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⟨Θ2
u⟩(τ) = ⟨a2 +α2⟩τ 2 − 2⟨∆ua⟩τ + ⟨∆u2 + ν2⟩. (8)

All of the terms can be evaluated and binned spatially by use of
(i) the particle-track data and (ii) track benchmarking in order
to estimate the reconstruction errors [37]. To elaborate on the
latter: If no ground truth data in form of a reference or DNS is
available, reconstruction errors ν and α can be obtained indir-
ectly by the exclusion of a small number of particles from the
FlowFit reconstruction. This way, FlowFits input data is not
altered much, but independent ground truth data modulo meas-
urement noise is created to compare with the FlowFit results.
Since reconstruction errors will certainly exceed the measure-
ment noise in spatially undersampled flows, this will be a reli-
able ansatz. In the JHTDB test cases the reconstruction error
can be accessed directly. Use of binned Lagrangian statistics
ensures that even spatial variations of the dynamic time scales
are covered, as is the case in boundary layers. Note that ⟨Θ2

x⟩
and ⟨Θ2

u⟩ are thus functions of position and prediction time τ .
Usually, the time spacing between camera snapshots is con-
stant and so only a single τ needs to be evaluated, therefore the
dependency is dropped in the following notation. To apply the
results for a weighting of virtual particles, the considerations
have to be generalized to three dimensions. Because FlowFit
does not consider a positional error, the MSE in position must
be added to the velocity error by consideration of the estimated
velocity gradients, so

σ2
u = ⟨Θ̃2

u⟩ ≈ ⟨Θ2
u⟩+Cgradient


(
∂u
∂x

)2(
∂u
∂y

)2(
∂u
∂z

)2

 ·

⟨Θ2
x⟩

⟨Θ2
y⟩

⟨Θ2
z ⟩

 , (9)

and analogously for the velocity components v and w. Cgradient

is a constant greater than or equal to 1, which accounts for
the smoothing of gradients in the reconstruction. With these
errors at hand, a scalar weight W for virtual particles can be
introduced thus

W=
RMSE of tracked velocities

RMSE of virtual particle velocities

=
RMSE of tracked velocities√

(σ2
u +σ2

v +σ2
w)/3

≈
Cweight

Cweight +
√
(σ2

u +σ2
v +σ2

w)/3
, (10)

which takes values smaller than 1 to account for the lower reli-
ablity of the virtual particles. RMSE denotes the root mean
square errors. Here, another constant Cweight is introduced,
because tracked velocities in the JHTDB test cases show no
experimental error. We want to stress that in an experimental
study, no Cweight has to be chosen. Note that the scalar weight
W can vary with VP position due to spatial variations of Lag-
rangian statistics in equations (7) and (8) and the consideration
of local gradients in equation (9). Further, the dependence of
local particle cloud configuration expressed by d and s has not
yet been considered but may be included in the calculation.

Figure 4. Outline of the iterative algorithm for temporal coupling
of single reconstructions by use of virtual particles (VPs). Real
particles (black) and VPs from preceding FlowFit reconstructions
(white) are combined in order to create an enhanced particle cloud
utilized for prospective reconstructions.

3. Synthetic experiments in two DNS test cases

3.1. Description of the JHTDB test cases

Virtual experiments in two test cases from the Johns Hopkins
Turbulence Database were performed. Cuboid sub-volumes
were chosen in the forced isotropic turbulence (FIT) data-
set [34] with Reλ ∼ 433 and the channel flow (CF) dataset
[35] with Reτ ∼ 1000. The latter sub-volume is co-moving in
streamwise x-direction with a speed of 0.7 in order to keep
track of the same flow structures over a greater range of time.
The position and extent of the sub-domains is documented in
table 1. Several sets of particle tracks with different seeding
densities were generated by making use of the database func-
tions [36]. To achieve homogeneous seeding, the subvolumes
were extended by a buffer volume within which, random pos-
itions were drawn from a uniform probability density. All of
these particles are integrated forward in time. At each time
step, the particles inside the sub-volumes are saved and utilized
to generate track-files, whereas the particles in the buffer layer
are replaced by newly drawn random positions to guarantee a
constant particle inflow into the sub-domain. The velocities
and accelerations in the trackfiles were determined from velo-
city and pressure provided by the spatio-temporal interpola-
tion schemes (8th- and/or 4th-order Lagrange polynomials and
4th-order centered finite differencing in space and piecewise
cubic hermite interpolation polynomials in time).

The frame spacing ∆t, i.e. the size of the time step between
successive reconstructions, was chosen rather conservatively
to enable variations in hindsight. The frame spacing in FIT was
adjusted to approximately τη/4, which corresponds to roughly
1/8 acceleration decorrelation times. The frame spacing in CF
was chosen to be approximately 1/4 of the acceleration decor-
relation time in the layer closest to the wall, i.e. the layer of
the sub-domain with the smallest dynamic timescale.

6
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In the following, the track-data at every time instant is pro-
cessed with FlowFit. A B-spline grid is set such that the num-
ber of particles per cell is in the order of 0.04 unless the grid
spacing would fall below the DNS grid spacing. FlowFit relies
on a parameter R (acceleration-velocity measurement error
ratio) which is to define for proper weighting in the cost func-
tion (see appendix), and can be evaluated for any measure-
ment [7]. However, by accessing DNS flow fields directly, no
measurement error can be quantified in the artificial test case.
A first attempt to cast velocity and acceleration errors com-
parable in cost function (and to define R) is by means of a
normalization with the intensity of turbulent fluctuations, i.e.
the standard deviations of velocity and acceleration. This pre-
dicts a value of R≈ 4 in FIT. But according to a small para-
meter pre-study of the data the parameter was corrected to 30
in FIT and 40 in CF in order to account for error-prone acceler-
ation calculation from pressure values. The latter arises since
the simulations were performed with spectral methods, but
finite difference schemes and Lagrangian interpolation poly-
nomials are applied using JHTDB database tools as mentioned
above. If R is heavily underestimated or overestimated, this
will be equivalent to fitting to either only acceleration values
or only velocity values on particle positions, respectively. If
only the particle velocity is being fitted to, this will basically
yield a divergence -free interpolation of the field without mak-
ing use of acceleration data (and Navier–Stokes constraint) but
provides a nonsense pressure field. Fitting solely to acceler-
ation data will result in a nonsense velocity field with high
frequency content defined mostly by measurement errors (or
interpolation errors in the DNS test case) alone. It is therefore
not critical to slightly overestimate R here, as the utilisation
of acceleration data is a plus, but an underestimation results
in totally disregarding measured velocities, which are usually
known with higher accuracy.

3.2. Uncertainty analysis and link between particle
configuration and reconstruction quality

The errors in FlowFit’s flow field reconstruction need to be
characterized first in order to enhance the reconstruction res-
ults in any second step. To that end, the FIT test case is best
suited for the application of the developed candidate properties
d and s because errors in any quantity can be treated the same
way for each spatial coordinate. The reconstructed B-spline
fields are sampled on the DNS grid for best comparison of
reconstructed field values and DNS field values by means of ν
and α. Additionally, the errors very close to the boundaries of
the sub-domain are observed to exceed the error in its interior
by a factor of up to 4 due to unknown boundary conditions.
Thus, a shell with thickness of 0.08 sub-domain-edge-length
was excluded from the following analysis. This was found to
be sufficient to compensate for the effect. Also, the latter step
prevents a bias in the evaluation of s and respective errors
because boundary points are known to exhibit high s-values.
Note that distance, velocity and acceleration are obtained in
dimensionless form from the simulation, which by no means
hinders the assessment of the relevance of s and d.

Figure 5. Component PDFs of velocity and acceleration errors for
the reconstructed fields with ∼6500 seeded particles, average
inter-particle distance rp ≈ 7.52η. The distributions are symmetric,
long-tailed, and isotropic.

An example PDF of obtained velocity and acceleration
error is provided in figure 5. The distributions are symmetric
and long-tailed. Furthermore, the error PDFs are found to be
isotropic, as expected for an isotropically forced test case and
an isotropic cost function. The pronounced tails are inherent to
the velocity increment statistics at small spatial shifts as well
as to the velocity gradient tensor elements, as shown in [38].
Consequently, long tails in the error PDFs will certainly occur
if the reconstructions are seen as low-pass filtered versions of
the true fields. So it is expected that the error PDFs resemble
turbulent velocity increment distributions.

Exemplary joint PDFs of squared deviations ν2 and α2 and
candidate properties d and s are provided by figure 6. Besides
different error amplitudes, the histograms appear very sim-
ilar regardless of seeding density. The maximum of the dis-
tributions on slices with fixed d basically shifts towards smal-
ler values if the nearest neighbor distance is decreased. So, a
clear trend of reduced errors for decreased nearest neighbor
distance is observed, as expected from the form of the cost
function. Interestingly, no clear relation between errors and
nearest neighbor configuration can be found, since no trend
can be inferred from the joint PDFs involving s.

Figure 7 shows the presence of d-dependence in terms of
root mean square errors (RMSEs) for all considered particle
seeding densities. The RMSEs approach a constant value close
to the particles, which can be interpreted as the tolerance
owing to the weighting of different terms in the cost function.
Furthermore, RMSEs grow monotonically and exhibit a region
with linear behavior in the double logarithmic plot. Note that
the statistics to the very left and very right end of the d-axis
are not converged due to the small amount of data points per
bin, compare to figure 6, and that only every second data point
is displayed. Owing to the former observations, a functional
ansatz in the form of a power-law plus a constant for small to
intermediate distances is chosen, explicitly

RMSE = C1d
γ +C2 (11)

for both velocity and acceleration. The constantC2 therein cor-
responds to the error that is admitted at the particle positions.
Weighted least square fits with regard to equation (11) are
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Table 1. Information on the virtual experiments. Tc denotes the decorrelation time of acceleration, l+ viscous units, η, τη Kolmogorov
length and time scale.

FIT CF

Sub-domain (0,π/8)× (0,π/8)× (0,π/8) (−0.5, 0.78)×(0.64, 0.96)×(0, 0.32)
Streamwise × wall normal × wall parallel
(Wall positions at y= ±1)

Frame spacing ∆t 0.01 ≈ τη/4 ≈ Tc/8 0.04 ≈ Tc(y+ = 40)/4
Total available duration 2.0 25.9935
# particles 1600 6500 13 000 26 000 2000 8400 16 400
Average particle spacing 12η 7.52η 5.96η 4.73η 40.3l+ 24.97l+ 19.98l+
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Figure 6. Double logarithmic error histograms for FIT test case
sub-volume seeded with #P ≈ 6500 particles. Squared velocity error
(left) and squared acceleration error (right) in dependence of nearest
neighbor distance d (top) and deviation from spherical arrangements
of three nearest neighbors s (bottom). The error amplitudes clearly
grow with growing nearest neighbor distance. This trend appears
more pronounced for the velocity, because the acceleration error
variance is larger, but still clearly recognizable. No clear trend of
reduced errors with decreased s is obtained.

shown as lines, and data to the far right end was masked. Expo-
nents γ close to one indicate linear scaling, which cannot be
perceived visually in the double-logarithmic plot but appears
obvious from a Taylor-series perspective. Furthermore, the
weighted least squares fit reveals that the tolerance for devi-
ation from particle velocity grows only slightly with decreas-
ing particle number, whereas the tolerance for deviations in
particle acceleration increases significantly. This cannot be
caused by a changing ratio of B-spline grid points to particles,
since the number of particles per B-spline cell is tuned to
about 0.04 to allow for sufficient degrees of freedom in the
reconstructed field, so an exact reasoning remains puzzling.

Figure 7. Means of root mean square error amplitudes (RMSEs) in
dependence of the nearest neighbor distance d for several seeding
densities obtained from 2D histograms as in figure 6.

The C2-values allow us to check for consistency, because the
internal FlowFit parameter R should approximately coincide
with Cα

2 /C
ν
2 , if the remaining terms in the cost function are

disregarded.Cα
2 /C

ν
2 = 33.81 compares well toR= 30 in a suf-

ficiently seeded caseN= 26000, but the discrepancy increases
with lesser N, indicating that a reconstruction of matching
velocity and acceleration fields is hampered by spatial under-
sampling.

3.3. Scaling of Total Mean Square Error on Number of
Particles

The total MSE averaged over time and space (disregarding
field values too close to the boundary) is a simple quantitative
measure for the quality of the reconstruction. It will certainly
decrease the more information on the present flow field is
available, i.e. the more tracer particles are present, or equival-
ently, the higher the seeding density. Figure 8 shows the avail-
able data points and indicates by a weighted least squares fit
that reconstruction accuracy in velocity and acceleration scales
roughly with the inverse of N in FIT. In contrast, the situation
in the non-isotropic CF case is less intuitive. A roughly inverse
scaling withN is obtained for total velocity MSE but the expo-
nents for total acceleration MSE suggest an N−2/3 dependence
for the considered range of seeding densities inside the log-
layer of the wall-bounded flow.
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Figure 8. Total MSE averaged spatially and temporally in
dependence of the seeded particle number for FIT test case (left)
and the CF test case (right).

3.4. Impact of virtual particles

Section 3.2 aimed to link the uncertainty in flow field estim-
ation to two local properties associated with the Lagrangian
particle cloud. In the course of this analysis, the local arrange-
ment of particles was found to be irrelevant, and only the
nearest neighbor distance could be identified as a measure of
reconstruction quality. Although a clear trend can be quanti-
fied, the errors scatter widely regardless of neighbor distance.
In consequence, the preliminary study hardly assists in the
design of an optimal seeding strategy for additional VPs. The
latter aims to preserve dispersive structures that are resolved
within a certain particle distribution, but whose temporal evol-
ution is highly dependent on ingoing and outgoing tracers,
which suggests VP seeding close to real particles or on their
trail, respectively. However, as pointed out in the introduction,
it is at spatial gaps furthest away from real particles where the
time derivative of reconstructed fields is least constrained. A
reasonable first approach would therefore be to seed VPs ran-
domly with a uniform probability density in the flow domain.
The nearest neighbour distance is disregarded from the weight
of VPs due to the latter demand and the great scatter in figure 6,
i.e. temporally averaged values are used for the α and ν terms
in equations (7) and (8) as initially assumed. The parameters
Cgradient and Cweight are adjusted to set the relative weight W of
VP velocities in the cost function to a value of about 0.7. Much
smaller values resulted in negligible effects on the reconstruc-
tions.

One aims to minimize the error over time and so the total
MSEs, i.e. MSEs averaged spatially over the sub-domains,
serve as comparison criterion for the impact of VPs. The tem-
poral evolution of the total MSEs under the influence of addi-
tional VPs is presented in figures 9 and 10 for the FIT and
CF test case, respectively. The graphs show that the velocity
MSE decreases rapidly within the first ∼10 time steps and
even the very first step causes a great drop in the FIT test
case. Thereafter, the velocity MSE ratio levels were measured
at values between 0.9 and 0.7 corresponding to a total MSE
reduction of 10% to 30%. Only velocity data is provided at
the VP positions, but still the acceleration MSE decreases and
levels accordingly. The gain in acceleration ranges from 5%
to 15%. Note that the graphs display the temporal evolution
of the total MSEs of single realizations in rather small sub-
domains. Therefore, they are expected to be noisy and show

Figure 9. MSE ratios as for the CF test case sub-domain. Uniform
VP seeding with average relative velocity weights of ∼0.7 is
applied. The number of virtual particles (#VP) chosen was slightly
greater than the number of real particles (#P). The black line refers
to the total MSE of the reconstructions excluding VPs so values
smaller one indicate an improvement.

Figure 10. MSE ratios as for the FIT test case sub-volume. Uniform
VP seeding with average relative velocity weights of ∼0.7 is
applied. The number of virtual particles (#VP) chosen was slightly
greater than the number of real particles (#P). The black line refers
to the total MSE of the reconstructions excluding VPs so values
smaller than one indicate an improvement.

some abrupt changes whenever badly resolved structures leave
or enter the domain. Moreover, the MSE values to which the
graphs are normalized differ greatly due to the higher accuracy
in the case of high seeding densities, compare figure 8. For this
reason, the noisy appearance of the acceleration MSE ratio in
the highly seeded channel flow test case should be interpreted
with care.

The enhancements can also be observed visually. Figure 12
presents a snapshot of the CF sub-domain, visualized with Q-
criterion. The dominant vortical structures appear more con-
nected and elongated. The same trend also becomes visible in
the FIT case, see figure 11 for an example. Here, additionally
positive isosurfaces of velocity and acceleration gain are dis-
played. The spatial fields of gain are calculated from

vel. gain =
ν2

w/o VPs −ν2
with VPs

ν2
w/o VPs

, (12)
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Figure 11. Q-isosurface of the flow field at time step 34 for
reconstructions without VPs, with VPs and the DNS. #particles =
1600, #virtual particles = 2000. The bottom row shows an
isosurface of spatially smoothed velocity gain (left) and acceleration
gain (right). Surfaces are color coded by depth (red to green to
blue). The gain is found near the prominent vortical structures.

acc. gain =
α2

w/o VPs −α2
with VPs

α2
w/o VPs

(13)

and yield positive values whenever the quadratic error is
reduced after VP seeding, but negative values otherwise. In
the depicted flow domain, the locations of positive accelera-
tion gain appear inside the Q-isosurfaces (encasing high Q-
values with regard to a defined threshold), which motivates us
to evaluate conditional averages of the gain with respect to the
Q-value determined by FlowFit. Figure 13 shows an exem-
plary result for the FIT test case, in which the trend can be
confirmed statistically. Interestingly, high velocity and accel-
eration gain is not found solely at high positive Q-values, but
rather increases with absolute Q-value.

3.5. Discussion of the improvements

The previous section demonstrated that virtual particles bene-
ficially affect physically constrained flow field reconstruc-
tion by temporal coupling. The percental reduction of mean
square errors in figures 9 and 10 appeared mostly independ-
ent of undersampling, although the reconstructed flow fields
are of quite different quality due to varying seeding densit-
ies. The improvement was shown to appear in regions with
high Q-absolutes, but most notably affects the vortical struc-
tures. A clearly unphysical effect of VPs manifests in the great
reduction of MSEs after only one advection step in the highly
seeded FIT cases. Two successive time steps contain almost
the same information and there is no clear physical reason
for an instant error drop of this size. This reduction could
theoretically depend on the transport of well resolved struc-
tures/information into the boundary where the reconstruction
is known to yield significantly higher errors. However, this
effect was already accounted for by excluding the boundary

from the MSE calculation itself, so it cannot be the cause of
this considerable gain. Furthermore, one could raise the ques-
tion of time reversibility, since the idea of additional informa-
tion carriers in the form of VPs should not be limited to advec-
tion progressive in time. This is rendered reasonable because
the dissipation is practically negligible on Kolmogorov time
scales and the Euler equations are time reversible. In fact,
it is not yet possible to enhance the flow fields under back-
ward advection or alternating backward and forward advec-
tion, respectively, since the MSEs would grow backwards and
decrease again during a forward step. Several trials yield the
same qualitative results. One reason for this peculiar behavior
is found by a reconsideration of formulae (5) and (6). During
the advection process the velocity MSE following the VP pos-
itions changes, according to equation (6). Therein, the shift
∆u can be approximately expressed by a(t)τ when dynamic
changes of the acceleration are ignored for the moment. This
yields the neat and compact equation

⟨Θ2
u⟩= ⟨ν2⟩+ ⟨α2⟩τ 2 + 2⟨να⟩τ. (14)

Therein, all but the last term have positive signs by defini-
tion. If the last term is non-vanishing and negative, the velo-
city MSE ⟨Θ2

u⟩ will initially decrease for small positive time
steps until the quadratic term takes over. For negative time
shifts, all terms will be positive and no such effect can occur.
Indeed, when the reconstructions are checked for the a pri-
ori neglected covariance term ⟨να⟩, the average correlation
coefficients Cνα = ⟨να⟩(⟨ν2⟩⟨α2⟩)−1/2 in tables 2 and 3 are
obtained for the FIT case and the CF case, respectively. They
take absolute values between circa 0.07 and 0.45 and grow
with the number of seeded particles. Equation (14) suggests
that the possible gain will depend on the strength of this cor-
relation and the time shift. The minimal velocity MSE ⟨Θ2

u⟩
in equation (14) occurs at a time shift τ

∗
and causes a relative

gain of C2
να because

τ∗ = −⟨να⟩
⟨α2⟩

= −Cνα

√
⟨ν2⟩
⟨α2⟩

(15)

⇒ ⟨Θ2
u⟩∗

⟨ν2⟩
= 1−C2

να ∈ [0,1]. (16)

By pure chance, the initially chosen frame spacings in table 1
coincide almost perfectly with the optimal time steps τ

∗
for

both test cases. Thus, the effect predicts maximum MSE
improvements between 0.6% and 20% dependent on the seed-
ing density. Consequently, it explains both the instant error
reduction in the highly seeded FIT cases and parts of the error
amplification during backwards advection. Here, the question
for the origin of the correlations can be raised. FlowFit distin-
guishes from simpler reconstruction schemes, since both velo-
city and acceleration fields are found simultaneously rather
than solving the fields separately. The joint approach enhances
the reconstruction quality, but at the same time it becomes
likely that deviations in velocity and acceleration are slightly
correlated also. The error-correlation model fails to capture the
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Figure 12. Q-isosurface for the reconstructed flow field at time step 42 without VPs (top), with VPs (middle) and the DNS field (bottom) of
the CF sub-domain. # particles = 8400, # virtual particles = 10,000. Surfaces are color coded by z-coordinate (blue to green to red). The
wall is located at y = 1. Prominent vortical structures appear more connected.

Figure 13. The mean velocity gain and mean acceleration gain from
VPs binned for reconstructed Q-value in 50 time steps of the FIT
test case. # particles = 1600, # virtual particles = 2000. High mean
gain is found at high Q-absolutes.

total gain in the other cases, so more mechanisms must clearly
exist to explain the improvements.

The prediction of the velocity MSE ratio along the advec-
tion paths of VPs from equation (14) ignored dynamic changes
in acceleration, and assumed that the virtual particle would
land on the right position, which is obviously not the case

Table 2. Velocity and acceleration error correlation coefficients for
several particle densities in FIT.

# Particles
Spatial component Cνα in x Cνα in y Cνα in z

1600 −0.156 −0.183 −0.135
6500 −0.238 −0.260 −0.218
13 000 −0.321 −0.352 −0.308
26 000 −0.432 −0.458 −0.419

Table 3. Velocity and acceleration error correlation coefficients for
several particle densities in CF.

# Particles
Spatial component Cνα in x Cνα in y Cνα in z

2000 −0.233 −0.078 −0.147
8400 −0.335 −0.166 −0.226
16 400 −0.37 −0.22 −0.287

according to the error provided in equation (5). Instead, the
velocity MSE ratio along VP tracks can be calculated on the
fly by comparison of reconstructed and true flow fields as fol-
lows. The velocity error in the flow domain can be thought of
as an instationary field ν(x, t). Now, a VP is placed at a ran-
dom position x0 and advected with reconstructed velocity and
acceleration, u0,rec = u(x0, t)+ν(x0, t) = u0 +ν0 and a0,rec =
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a(x0, t)+α(x0, t) = a0 +α0. From the data, we can now com-
pare the velocity MSE ν2

1 at new position and new time to the
initial value ν2

0, which reads

⟨ν2
1⟩

⟨ν2
0⟩

=
⟨ν2(x0 +u0,rec∆t+ 0.5a0,rec∆t2, t+∆t)⟩

⟨ν2(x0, t)⟩
(17)

averaged over multiple realizations and time. Representative
results in forward and backward time direction are provided
in figure 14. We want to stress that equation (17) and figure
14 do not present the enhancements of the whole algorithm,
i.e. the iterative advection-reconstruction procedure of figure
4, but only enhancements caused by the error-prone advec-
tion step alone. The ratio ⟨ν2

k+1⟩/⟨ν2
k⟩ was evaluated depend-

ent on nearest neighbor distance. Close to real particles, the
velocity error along the path of the virtual particle increases
under advection, regardless of time direction. This is reas-
onable, since the error is typically very small in the vicinity
of real particles and so is the denominator in (17) and the
total contribution to the total velocity MSE. Favorably, those
VPs  further away from real particles experience a reduction
of their squared velocity error in accordance with equation
(16), but an improvement of about ten percent is not cap-
tured by the obtained correlation Cνα alone (compare to table
2). Furthermore, the partition of improved versus worsened
velocities shows that the effect is not due to outliers. Sim-
ilar results showing a velocity MSE reduction of about 10%
after a single forward advection are obtained for the rest
of the FIT cases and in addition all considered CF cases,
which shows that VPs act as error dampening only in for-
ward time direction and preferably in the spatial gaps with
no real particles. In these gaps, the Navier–Stokes constraints
and the regularization contribute to FlowFit’s cost function, of
which the latter can potentially add partly to unphysical beha-
vior. One could argue that the puzzling behavior under time
reversal contradicts the notion of VPs as additional inform-
ation carriers. In fact, the turbulent fields of interest do not
behave in a time reversible way themselves. The character-
istic teardrop shape of the joint probability density of velo-
city gradient tensor invariants is believed to be a universal
aspect of small scale turbulence, [39–41] only to mention a
few. It shows in particular that the occurrence of stable and
unstable foci corresponding to stretched and compressed vor-
tical motion is not equally likely. Under time reversal, stable
and unstable foci interchange, which will reverse the chrono-
logical order by which tracer particles pass certain structures.
High gain due to VPs emerges within vortical structures. So by
time reversal, any advantageous mechanism present in the for-
ward direction can change to the opposite. On the other hand,
time-symmetry breaking is already quantifiable from a particle
perspective. Two-particle dispersion (or more generally multi-
particle dispersion) is known to be non-reversible in time, both
on very short and long time scales ([42] and [43], respectively).
Therefore, the bulk of virtual particles will undergo differ-
ent relative positional changes dependent on time direction.
Furthermore, it is not the interaction with the true turbulent
topologies but with those favored by FlowFit which causes the

Figure 14. Velocity MSE ratios (green triangles) following VP
paths after backward and forward advection in the reconstructed
fields of FIT with #P = 1600 and averaged over all time steps. The
partition of improved velocity vectors (red crosses) within the bulk
of advected VPs. Values are binned for nearest neighbor distance to
a real particle. The underlying nearest neighbor distribution is
shown in violet.

Figure 15. Conceptual sketch of a vortex as a tube of concentrated
vorticity. The absolute of the vorticity gradient is consequently
smaller in the direction of vorticity than in the perpendicular
orientation pointing out of or into the tube.

self-focusing effect and renders the temporal coupling extra -
useful. It appears that the reconstructed topologies and the real
turbulent topologies interact in such a manner as to shift the
reconstruction closer towards the truth under forward advec-
tion. The above reasoning cannot elucidate the missing time-
reversibility in the application of virtual tracers, but should at
least suffice to illustrate the complexity of the problem.

3.6. Revision of the regularization

FlowFit relies on a regularization (curvature penalization) to
make the underdetermined inverse problem uniquely solvable.
Additionally, the regularization aims to dampen noise inher-
ent to particle tracking data. In order to elaborate on its neces-
sity, think of the reconstruction process as an interpolation
problem. Given the scattered sample points for, e.g. velocity,
one could decide to use scalar radial basis functions (RBFs)
for interpolation. However, if the chosen interpolation func-
tion is too narrow, the field will not appear smooth but exhibit
symptomatic, spurious oscillations between sample points.
Related problems, such as overfitting, are circumvented by
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FlowFits regularization, which constrains the B-spline inter-
polant to be as smooth as possible under simultaneous fulfill-
ment of Navier–Stokes. In the previous section, reconstructed
flow fields were presented showing unconnected vortex blobs
owing to missing particle data in the intermediate zones. In
particular, that these gaps are reduced partly by use of VPs,
which were shown to act as error dampeners in the absence
of real particles. It is those gaps where Navier–Stokes con-
straint and regularization compete against each other, which
possibly contributes to the error correlation Cνα and the effect
of VPs. It is therefore desirable to design a regularization that
is justified not only by the nature of interpolation problems
in general but also from a physical perspective. Basically, it
would be desirable to make the regularization itself favor vor-
tex tubes instead because these are more common structures:
The teardrop shape of the joint PDF of velocity gradient tensor
invariants Q and R reveals that vortical motion is more likely
to appear in the form of stable foci together with a stretch-
ing motion. Vorticity itself is accordingly distributed in a pro-
late fashion owing to the self-stretching term. Thus the vortex
dynamics induce local anisotropy such that, e.g. the gradient of
vorticity is smaller in the direction of vorticity itself : compare
to the sketch in figure 15. This suggests that the second deriv-
atives of the velocity fields, i.e. their curvature, exhibits the
same behavior. Therefore, the problem of vortex blobs can be
addressed by an alternative definition of smoothness in terms
of anisotropic curvature penalization. This means that if the
direction of vorticity is known approximately, the occurrence
of gaps within Q-envelopes of vortex tubes can be penalized
more.

To base the idea on solid ground, the Hessian H of the
velocity fields in the FIT test case is evaluated by use of
the provided analysis tools. The curvature of a velocity field
along the direction of vorticity n∥ = ω|ω|−1 is expressed by
cp = |n⊺∥Hn∥|, which will be called parallel curvature in the
following. Analogously, the orthogonal curvature reads co =
|n⊺⊥Hn⊥| with n⊥ ·n∥ = 0. The unconditional joint probabil-
ity density of parallel and orthogonal curvatures obtained in
the FIT case is provided in figure 16, confirming the hypo-
thesis. The mean values of both curvature absolutes are com-
parable in the absence of swirling motion, but their ratio
increases rapidly with vorticity, see figure 17. Consequently,
an estimate of the vorticity field can be translated into an
advantageous unconditional regularization: As opposed to an
isotropic penalization of terms corresponding to∣∣∣∣∣

[(
∂

∂x

)2

+

(
∂

∂y

)2

+

(
∂

∂z

)2
]
u
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one can specify a local coordinate system by the three ortho-
gonal vectors n∥, n1

⊥ and n2
⊥ and penalize the weighted second

derivatives∣∣∣∣∣
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instead to account for the expected anisotropy. Note that
curvature ratio and coordinates both depend on the vorticity

Figure 16. Joint PDF of orthogonal curvature co and parallel
curvature cp in the FIT test case. The white line marks c0 = cp. The
curvature along the vorticity vector is systematically smaller than in
the orthogonal layer.

Figure 17. Ratio of parallel curvature cp and orthogonal curvature
co in dependence of vorticity absolute in the FIT test case. The
average curvature ratio is strictly greater than one and increases with
vorticity absolute. The far right values are not statistically
converged; compare to the vorticity PDF.

field. Thus, a clever hierarchic implementation with updated
vorticity field estimates needs to be found to circumvent the
given chicken-and-egg problem.

4. Results and outlook

This feasibility study verified the beneficial effect of additional
virtual tracer particles (VPs) in physically constrained flow
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field reconstructions. The additional VPs constrain the mater-
ial derivative in undersampled regions of the flow domain and
counteract unphysical, temporal changes of the Eulerian field,
too. The flow topologies are observed to appear more consist-
ently after application of virtual tracers, although no consid-
erable gain in the form of additional small scale structures
can be found in the spectrum. This suggests that VPs assist
in recovering and shaping those persistent structures that are
occasionally found by FlowFit, but they cannot be considered
for enhancing spatial resolution significantly. Their applica-
tion is native with regard to the data framework of FlowFit and
VIC+, straightforward to implement based on available Lag-
rangian statistics, and comes with almost no further compu-
tational costs in contrast to joint methods that accompany the
spatial reconstruction with computationally expensive simula-
tion methods for time integration. Besides the temporal coup-
ling, another beneficial effect of VP seeding is identified due
to moderate correlations of velocity errors and acceleration
errors in reconstruction results obtained with FlowFit 2.0. This
has hindered the application of VPs in reversed-time direc-
tion so far. However,the steady enhancement of flow fields
regardless of initial seeding density and correlation strength
hints at another mechanism causing the improvements, ren-
dering the temporal coupling responsible. In order to rule out
whether missing time reversibility is caused by the physical
problem or the reconstruction algorithm, a thorough parameter
study would need to be performed. This should include sev-
eral particle-to-VP ratios, different weighting approaches and
seeding strategies. To elaborate on the latter: VPs are shown
to take most effect far from real particles and at high Q-
values. As such, seeding on trails of real particles or within
regions of high Q-values could be considered useful. As the
uncertainty quantification based on local particle cloud prop-
erties could not assist in the choice of an optimal VP seed-
ing strategy, the development of uncertainty quantification and
seeding strategies based on estimated flow properties should
be considered. In the long term, the approach should be applied
to experimental benchmark cases. Currently, a third version of
FlowFit is under development. This implements an advantage-
ous divergence-free B-spline basis and a fast Poisson-solver
for the pressure field, effectively reducing the necessary terms
in the cost function. VPs can potentially take greater effect in
combination with a simplified cost function and an anisotropic
regularization.
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Appendix A. FlowFit’s working principle

The DLR developed the flow reconstruction tool FlowFit [7],
which can in principle be described as an interpolation and

data assimilation scheme. Particle positions, velocities and
accelerations can be deduced from optical particle tracking
experiments, either following the classical particle tracking
velocimetry approach (PTV) [1, 2] or the novel dense Lag-
rangian particle tracking method Shake-the-Box [6].

FlowFit’s input is a temporal snapshot of these tracks, i.e.
a frozen point cloud of particles scattered in 3D space with
known instantaneous velocities and accelerations. The output
is a space-filling velocity field and a pressure field, both rep-
resented with 3rd-order B-spline basis functions, that fits the
provided measurement.

The data assimilation approach distinguishes FlowFit from
simple interpolation schemes, as the measurement values and
the underlying physical constraints (prescribed by incom-
pressible Navier–Stokes equations) are both exploited. This
is key to a high-quality velocity and pressure field recon-
struction. Therefore, we use the term reconstruction through-
out the paper to distinguish FlowFit from simpler interpola-
tion approaches that come without the application of physical
constraints. FlowFit relies on cubic 3D B-splines as inter-
polation functions for three cartesian velocity components
and pressure. Therefore, the output of the reconstruction is
a continuous field represented by coefficient grids for velo-
city components and pressure rather than a grid of velocity
and pressure values. B-splines are piecewise polynomials with
compact support. They were first introduced by Schoenberg
and have been a standard tool in numerical calculations since
the work of [44] and [45]. FlowFit was designed to solve the
inverse problem/ optimization process relying on minimiza-
tion of a cost function. This cost function punishes deviations
from measured particle velocities and accelerations as well as
deviations from the incompressible Navier–Stokes equations
in spatial gaps between particles. The constraints are

u(xp)
!
= up, a(xp) =−∇p+ µ

ρ
∆u !

= ap (A1)

at the particle locations xp, with particle velocities up, particle
accelerations ap, pressure p, viscosity µ and density ρ. On
all B-spline gridpoints, i.e. particularly in the gaps between
particles, the constraints read

∇· u !
= 0, ∇· ∂u

∂t
=∆p+∇· ((u ·∇)u) !

= 0. (A2)

The cost function contains a weighted combination of the
squared deviations from the constraints (A1) and (A2).
Additionally, FlowFit includes a regularization to make the
reconstruction problem uniquely solvable and to dampen
measurement noise. This is achieved by penalization of the
approximate curvature of the scalar velocity functions in order
to favor low wavenumber contributions to the spectrum, where
most of the energy is concentrated. It can be shown by dimen-
sional analysis and spectral arguments that this regulariza-
tion will be approximately consistent with the −5/3 Kolo-
mogorov scaling of the energy spectrum in the inertial range.
The detailed procedure works as follows: FlowFit calculates
a lowpass-filtered version of the velocity field B-spline coef-
ficients. From the difference of this and the coefficients, a
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highpass-filtered version is obtained. The L2 norm of this
highpass-filtered version (that is an estimator for the curvature)
is penalized.

The weighting of these five terms in the cost function is
crucial to the reconstruction process. The acceleration of the
tracers is usually noisier and takes greater values, which can be
accounted for by the introduction of an error ratio R between
these terms. This ratio is estimated during the filtering pro-
cess of the raw tracks. The weighting of the constraints (A2)
against (A1) is more problematic, since the measurement will
always be erroneous, but Navier–Stokes and conservation of
mass must theoretically be fulfilled exactly in the absence of
external forces. For a discussion of this problem and exact
weighting coefficients see [7]. The non-linear least squares
problem is solved with a limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) solver [7, 46].
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