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Applied Genetic Programming for Predicting Specific
Cutting Energy for Cutting Natural Stones
Umit Atici a and Adem Ersoy b

aEngineering Faculty, Nigde Omer Halisdemir University, Nigde, Turkey; bFaculty of Engineering and
Natural Sciences, Adana Science and Technology University, Adana, Turkey

ABSTRACT
In the processing of marbles and other natural stones, the
major cost involved in sawing with circular diamond sawblades
is the energy cost. This paper reports a new and efficient
approach to the formulation of SEcut using gene expression
programming (GEP) based on not only rock characteristics but
also design and operating parameters. Twenty-three rock types
classified into four groups were cut using three types of circu-
lar diamond saws at different feed rates, depths of cut, and
peripheral speeds. The input parameters used to develop the
GEP-based SEcut prediction model were as follows: physico-
mechanical rock characteristics (uniaxial compressive strength,
Shore scleroscope hardness, Schmidt rebound hardness, and
Bohme surface abrasion), operating parameters (feed rate,
depth of cut, and peripheral speed), and a design variable
(diamond concentration in the sawblade). The performance
of the model was comprehensively evaluated on the basis of
statistical criteria such as R2 (0.95).

Introduction

With the growing global demand for natural stones, the production of
natural stones is becoming increasingly efficient to improve productivity
and reduce cost. Block cutting machines are generally classified into frame
sawing machines and stripper-trimmer (ST) machines. Circular diamond
saws have been widely used in principal industrial applications because
they cut fast, are flexible, and economical, and are easy to operate with
high accuracy of the cut surface. Rock blocks can be split into slabs by the
reciprocating movement and vertical downfeed of the diamond sawblades.

The prediction of rock sawability is important in the cost estimation and
planning of stone plants. Accurate estimation of rock sawability facilitates
efficient planning of rock sawing projects. Rock sawability depends on non-
controlled parameters related to rock characteristics and controlled para-
meters related to the properties of cutting tools and equipment (Mikaeil,
Mohammad, and Reza 2011). One of the major goals of natural-stone cutting
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processes is to minimize the production cost of the final product. Therefore,
it is critical to determine the costs involved and to understand and control
the energy-consumption mechanisms throughout the cutting process
(Yurdakul and Akdas 2014). Stone processing cost is controlled to a large
extent by the cutting rate of the saws. A saw is a complex system whose
performance is influenced by a variety of factors. The principal factors that
require consideration in predicting cutting rates, particularly for stone appli-
cations, are the rock characteristics and the design and operating parameters
of the saw.

The specific cutting energy (SEcut) is one of the most important performance
indicators in sawing processes with circular diamond sawblades. It is derived
from the amount of energy required to remove a given volume of rock and has
been successfully used for the performance evaluation of circular diamond
sawblades in the rock sawing and diamond tool industry (Buyuksagis and
Goktan 2005; Sengun 2009; Ersoy and Atici 2004). The specific energy is the
most widely used parameter tomeasure the efficiency of a rock cutting system. A
smaller value of specific energy indicates higher sawability.

Many studies have investigated the sawing performance and mechanism of
the circular diamond saw (Buyuksagis 2007; Buyuksagis and Goktan 2005;
Ersoy and Atici 2004, 2007; Fener, Kahraman, and Ozder 2007; Luo and Liao
1995; Theodoridou, Dagrain, and Ioannou 2015; Turchetta, Polini, and
Buyuksagis 2009; Ucun et al. 2012; Wright and Cassapi 1985; Wright and
Jennings 1989; Yurdakul 2015; Yurdakul and Akdas 2014). Most of these
studies are related to a single rock type, especially granite.

The various modeling techniques, simple and multiple regression techni-
ques have been widely employed in several fields of geoscience. This is
because they are appropriate techniques when the research problem includes
one dependent variable that is related to two or more independent variables,
and they can easily be used for determining the linear and/or nonlinear
relationship between dependent predictive and independent criterion vari-
ables (Aydin et al., 2015). Many studies have used regression analysis to
predict the SEcut and performance of a circular diamond saw (Ersoy and Atici
2005; Kahraman, Fener, and Gunaydin 2004; Sengun and Altindag 2013;
Aydin et al. 2013; Velchev et al. 2014; Yurdakul and Akdas 2012). Most of
these studies are related to rock characteristics for estimating SEcut; operating
parameters have not been used. In addition to rock characteristics,
Kahraman, Fener, and Gunaydin (2004) used operating parameters such as
traverse speed (Vc), depth of cut (hc), and saw diameter to predict the sawing
rate for 13 different carbonate rocks. Aydin et al. (2013) carried out an
experimental study to determine SEcut using rock characteristics and operat-
ing parameters for nine granitic rocks. These researchers have suggested 11
and 9 different models including rock properties and operating parameters,
respectively. However, the aforementioned studies did not suggest a single
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model including operating and design parameters. Yurdakul and Akdas
(2012) presented a theoretical model to explain the estimation of SEcut
based on the relationship between the sawblade operating parameters and
the rock properties using 13 values collected from 7 different types of block
cutters and 6 different carbonate rocks.

The natural-stone sawing process is a complex process influenced by a
variety factors such as rock characteristics, operating and machine para-
meters, and circular diamond disk design parameters. To make the right
decision regarding the power consumption of rock cutting, all known criteria
related to the problem should be analyzed. Although an increase in the
number of related criteria complicates the problem and makes it more
difficult to reach a solution, it may increase the correctness of the decision
based on such criteria. Owing to the increasing complexity of the decision
process, many conventional methods such as regression analysis are able to
consider limited criteria and may be generally deficient. Therefore, it is
obvious that assessing all the known criteria related to the power consump-
tion is extremely important for the decision-making process (Mikaeil,
Mohammad, and Reza 2011).

Developments in various fields of computer science such as artificial
intelligence (AI), artificial neural networks, adaptive neurofuzzy inference
systems, and fuzzy logic methods are commonly adopted in many engineer-
ing applications. They facilitate modeling of problems with high reliability
and accuracy; moreover, such models can be adapted to different situations
easily and quickly. Because of these capabilities, along with the rapid devel-
opments in computer technology, AI-based models are widely used in stone
cutting processes (Kahraman et al. 2006; Mikaeil et al. 2013; Yurdakul and
Akdas 2014; Aydin et al. 2015; Tutmez, Kahraman, and Gunaydin 2007). A
major disadvantage of such systems is that they are not capable of providing
practical prediction equations. To overcome these limitations, genetic pro-
gramming (GP) and its variants, such as linear genetic programming and
gene expression programming (GEP), have been successfully adopted in
engineering applications in recent years.

Owing to the complexly of the cutting process, SEcut cannot be predicted
accurately by a classical model including operating and design parameters as
well as rock properties. The main objective of the present study is to
investigate the use of GEP in predicting SEcut for a circular diamond saw
on the basis of rock properties (uniaxial compressive strength (ƒc), Shore
scleroscope hardness number (SHN), Schmidt rebound hardness (RH), and
Bohme surface abrasion strength (BSA)), operating parameters (feed rate
(Vf), depth of cut (hc), and peripheral speed (Vp)), and a design parameter
of the circular diamond disk (diamond concentration in the sawblade (D%)).
To build the model, SEcut values of 535 specimens were used in training,
testing, and validation; the datasets were obtained from an experimental
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study. In this regard, the present study is the first attempt at using a single
model for modeling sawblade performance as a function of rock properties,
operating parameters, and design variables using GEP.

In the present study, 23 rock types (6 limestones, 3 andesites, 7 granites,
and 7 travertines) were cut with 3 different types of circular diamond saws on
a fully instrumented laboratory-cutting rig at different feed rates and depths.
The objective of this paper is to examine the influence of the cutting variables
and cut rock properties on the performance characteristics of circular dia-
mond saws using GEP.

Experimental procedures

Cutting rig

Circular sawing tests were performed on a high-precision fully instrumen-
ted experimental side-cutting machine specially designed for this study. It
consists of three major sub-systems: a cutting unit, an instrumentation unit,
and a personal computer. Sawing tests were performed with a maximum
spindle motor power of 4 kW; the spindle speed could be adjusted between
0 and 5000 rpm. The cutting unit was placed on the columns of the
machine with a sledge. The saw movements (forward–backward in the
horizontal plane, and up–down in the vertical plane) were driven by two
0.75 kW AC motors, which were located in the beginning and end sections
of the cutting unit.

During the study, data were collected by a PC. Cutting parameters such as
feed rate or cutting speed, depth of cut, peripheral speed, specific removal
rate, and vertical and horizontal axial forces were measured using sensors,
load cells, transducers, and an encoder in the monitoring system. The power
consumed during a sawing test was measured using a digital measuring
instrument. All aspects of the cutting machine (such as motors, sensors,
transducers, inverters, load cells, and changes in cutting parameters) were
controlled by the computer with specially developed software. One set of data
for each test was recorded in 1 s. Complete details of the sawing experiments
can be found elsewhere (Ersoy and Atici 2004).

The circular diamond sawblade used in the tests had a diameter of
400 mm with a steel core having a thickness of 4 mm; 28 pieces of dia-
mond-impregnated segments (40 × 7 × 4 mm) were brazed to the periphery
of the circular steel core with a standard narrow radial slot. Three different
sawblades were used in the study for 16 types of rocks. The sawblade
specifications are listed in Table 1. The grit (US mesh) sizes of the diamond
were approximately 50/60, 40/50, and 30/40 at concentrations of 35, 34, and
28 (1.54, 1.50, and 1.23 carat/cm3), respectively.
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Blade A is used for granite, syenite, and gabbro stones, which are generally
fine-grained and high-strength stones that are very hard and abrasive and
contain no visible cracks or fractures. Blade B is used for andesite, basalt, tuff,
and dacite stones, which are abrasive, medium hard, and porous. Blade C is
used for limestones and marbles, which are non-abrasive, medium hard, and
generally medium- to coarse-grained.

Operating parameters

The saw operating parameters involved in the sawing trials are as follows: rota-
tional (peripheral) speed, cutting speed or feed rate, depth of cut, specific removal
rate, cutting (horizontal, vertical, and axial) forces, power, and SEcut. These were
monitored on a computer-controlled logging system (except for SEcut). Water was
used as the flushing and cooling medium, at a flow rate of 15–20 L/min.

The circular sawing experiments were performed in the down-cutting
mode. Each rock was sawn using each saw (A, B, C types; Table 1) with a
particular feed rate (0.2, 0.4, 0.6, 0.8, and 1.0 m/min) and depth of cut (10,
30, 50, 70, and 90 mm) at five peripheral speeds (60, 65, 70, 75, and 80 m/s).
Thus, for each saw and each rock, a set of sawing data was obtained
depending on the depth of cut and feed rate adopted at a constant peripheral
speed. Thus, 280 sawing tests were completed with a total sawn area of
approximately 70,000 cm2.

Rock characteristics

The sawing trials were conducted on 23 rock samples that have substantial
market demand. The mechanical tests were performed according to related
Brown (1981) recommendations and testing procedures of the used instru-
ments. The physico-mechanical properties of the tested rocks are summar-
ized as statistical values in Table 2.

Specific cutting energy

The specific cutting energy (SEcut) is derived from the amount of energy
required to remove a given volume of rock and has been successfully used in
the diamond tool industry. The significance of SEcut as a fundamental

Table 1. Specification of the diamond segments.
Sawblade US mesh of diamond D% Bond composition Stone groups

A 50/60 30–40 Co–Bronze–Sn Granite, syenite, and gabbro
B 40/50 30–38 Co–Bronze Andesite, basalt, tuff, and dacite
C 30/40 25–30 Co–Bronze Limestone and marble

D%, diamond concentration in the sawblade (%).
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parameter derives from the fact that any proposed machining mechanism
must be able to account for the magnitude of SEcut and its dependence on the
rock characteristics and operating parameters. In particular, the magnitude of
SEcut is useful for estimating the power requirements of a cutting operation.
Thus, studying SEcut provides a very good indication as to how well a saw is
performing for a particular rock formation.

Gene expression programming

Themajor disadvantage of classical modeling methods is that they are not capable
of providing practical prediction equations for complex cases such as SEcut estima-
tion. To overcome this limitation, new approaches such as GP and GEP (a variant
of GP) have been proposed. They generate simplified prediction equationswithout
assuming prior form of the existing relationship. GEP is a new and powerful
evolutionary AI-basedmethod developed by Ferreira (2001). Its evaluation system
for any kind of knowledgemirrors that of biological evaluation, and it is encoded as
a computer program with linear chromosomes of fixed length. In this approach, a
mathematical function defined as a chromosome withmultiple genes is developed
using the data presented to it. Although GEPmainly executes symbolic regression
via most of the genetic operators of genetic algorithms (GA) and GP, there are
some differences between GA, GP, and GEP. While any mathematical expression
is adopted as symbolic strings of fixed length (chromosomes) inGA,GP represents
it as nonlinear entities of different sizes and shapes (parse trees). However, in GEP
it is encoded as simple strings of fixed length, which are subsequently expressed as
expression trees of different sizes and shapes (Cevik 2007; Kayadelen 2011).
Further details have been provided by Ferreira (2001; 2006).

GEP model

The GEP model developed herein mainly aims to generate mathematical
functions for predicting SEcut based on rock properties, design variables,
and operating parameters. The first step is the selection of rock properties
(ƒc, SHN, RH, and BSA), operating parameters (Vf, hc, and Vp), and a design
parameter of the circular diamond disk (D%). The correlation matrix for
SEcut and other parameters is presented in Table 3. The correlation between

Table 2. Mechanical and physical properties of rocks used in the experiments.
Minimum Maximum Mean Standard deviation

ƒc (MPa) 30.7 292 77.36 45.6
SHN 9.0 80.5 42.22 6.44
RN 41.3 62.8 51.87 6.44
BSA (cm3/50 cm2) 1.4 43.43 16.63 9.91

ƒc, uniaxial compressive strength (MPa); SHN, Shore scleroscope hardness number; RN, Schmidt rebound
hardness; BSA, Bohme surface abrasion strength (cm3/50 cm2).
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SHN and ƒc and RN is 0.732 and 0.771, respectively. A strong correlation
between independent variables, known as multicollinearity, leads to problems
in the analysis. For example, the variables do not contribute sufficiently to
the model. Figure 1 shows the effects of the independent variables on the first
created model. The contribution of Vf is shown to be quite low. Because of
multicollinearity and low contribution, SHN and Vf were excluded from the
model, and then, the GEP model was developed using datasets of 535 rock
specimens obtained from an experimental study. When training and testing
the GEP model, ƒc, RH, BSA, Vf, hc, and D% were entered as input variables,
while the SEcut value was the output variable. The training and testing data
were randomly selected. The numbers of experimental datasets used for
training and testing/validating this model were 401 and 134, respectively.

For GEP formulation, the fitness ƒi of an individual program i is mea-
sured by

f i ¼
XCt

j¼1

M � Cij � Tj

�� ��� �
; (1)

Table 3. Statistical correlation matrix of rock properties and SEcut.
D% ƒc SHN RN BSA Vp Vf hc SEcut

D% 1.000 0.442 0.153 −0.351 0.126 −0.192 −0.117 −0.069 −0.018
ƒc 0.442 1.000 0.732 0.523 −0.563 −0.165 −0.084 −0.457 0.300
SHN 0.153 0.732 1.000 0.771 −0.676 −0.248 −0.017 −0.458 0.411
RN −0.351 0.523 0.771 1.000 −0.574 −0.061 0.061 −0.449 0.433
BSA 0.126 −0.563 −0.676 −0.574 1.000 0.153 0.020 0.329 −0.175
Vp −0.192 −0.165 −0.248 −0.061 0.153 1.000 0.029 0.051 −0.047
Vf −0.117 −0.084 −0.017 0.061 0.020 0.029 1.000 0.043 −0.036
hc −0.069 −0.457 −0.458 −0.449 0.329 0.051 0.043 1.000 −0.667
SEcut −0.018 0.300 0.411 0.433 −0.175 −0.047 −0.036 −0.667 1.000

Significance at 95% confidence level. D%, diamond concentration in the sawblade (%); ƒc, uniaxial com-
pressive strength (MPa); SHN, Shore scleroscope hardness number; RN, Schmidt rebound hardness; BSA,
Bohme surface abrasion strength (cm3/50 cm2); Vp, peripheral speed (m/s); Vf, feed rate (m/min); hc, depth
of cut (mm); SEcut, specific cutting energy (MJ/m3, J/mm3).
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Figure 1. Effect of independent variables in the first model.
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where M is the range of selection, Cij is the value returned by the individual
chromosome i for fitness case j (out of Ct fitness cases), and Tj is the target
value for fitness case j. If |Cij – Tj| (the precision) is less than or equal to 0.01,
then the precision is equal to zero, and fi = fmax = CtM. In this case, M = 100
was used; therefore, fmax = 1000. The advantage of this kind of fitness
function is that the system can find the optimal solution by itself (Ferreira
2006). Then, the set of terminals ‘T’ and the set of functions ‘F’ used to create
the chromosomes were chosen, that is, T = {ƒc, RH, BSA, Vf, hk, D%}, and
four basic arithmetic operators (+, –, *, /) and some basic mathematical
functions (Sqrt, cubic root, 4Rt, Sub3, Exp, x3, 1/x, Ln) were used.

For choosing the chromosomal tree, that is, the length of the head and the
number of genes, the GEP model initially used a single gene and two lengths
of heads, and increased the number of genes and heads, one after another,
during each run, while monitoring the training and testing performance of
each model. After several trials, the numbers of genes and lengths of heads
were found to be 6 and 8, respectively, in order to obtain the best results. The
sub-ETs (genes) were linked by addition.

Finally, a combination of all genetic operators (mutation, transposition,
and crossover) was used as the set of genetic operators. The parameters for
training the GEP model are listed in Table 4. Chromosome 30 was observed
to be the best generation of individuals in predicting SEcut. The explicit
formulation based on the GEP model for SEcut is given by

SEcut ¼ e
7:95� 4:63d3

4
� 3d3þd5ð Þð Þ

d3

h i
þ 12:26þ d2

d5 þ d0

� �3

þ 1� d2 � 20:38
d1

� �� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

d2�d3ð Þþ ffiffiffi
d5

2p
2


 �
� 5:15þd1

2ð Þ
h i3

2

r
þ e

4 0:66�d3ð Þ
�12:63þd4ð Þ

h i
� d0�d4

2ð Þ
h i3

þ 1:03d3 � 9� d3ð Þ
d1 � d2 � d0 � d3ð Þ

� � 10
3ð Þ

þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ed3 � d3 � d22 � �9:86ð Þ5

p
� 52:91

(2)

The expression tree of the formulation is shown in Figure 2, where d0, d1, d2,
d3, d4, and d5 refer to D%, ƒc, RH, BSA, Vf, and hc, respectively. The constants
used in the formulation are listed in Table 5.

Results and discussion

This section presents the analysis results of the developed model and
presents a quantitative assessment of the predictive abilities of the
model. In evaluating the model, it is important to define the criteria,
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namely, the performance of the model and prediction accuracy. Of the 535
datasets, 401 were used for training the model and the remaining 134 were
used for testing the model. The performance of the developed model was
evaluated on the basis of the following parameters: fitness, mean squared
error (MSE), which measures the average of the squares of the errors, that
is, the difference between the observed and predicted values, root mean
square error (RMSE), which represents the sample standard deviation
between the observed and predicted values, and mean absolute percentage
error (MAE), which is a measure of prediction accuracy of a forecasting
method in statistics, for example, in trend estimation, and it usually
expresses accuracy as a percentage. The coefficient of determination (R2)
and calculation errors were used as criteria for assessing the agreement
between the experimental and predicted values. The statistical performance
of the developed model is summarized in Table 6.

The fitness values ranged from 0 to 1000, with 1000 corresponding to ideal
fitness. For this model, the fitness values were in a good range. For both
training and validation cases, MSE, RMSE, and MAE were very close to 0.
The R2 value relating the experimental and predicted data from the GEP
model was 0.96, implying that 96% of the variation in the data could be
explained by the model, which showed good performance. The total errors
between the experimental and predicted values were evaluated on the basis of
the MAE. The SEcut values predicted by the GEP model in the training and
testing phases are graphically compared with their experimental counterparts
in Figures 3 and 4, respectively. As can be seen from these figures, the actual
values are close to the predicted values.

Table 4. GEP parameters used for the developed model.
Parameter definition GEP model

Program size 94
Literals 30
Fitness function RMSE
Number of generations 1999
Arithmetic operators +, –, *, /
Mathematical functions Inv, sgrt, 3Rt, 4Rt, 5Rt, X2, X3, X4, X5

Number of chromosomes 30
Head size 8
Number of genes 6
Linking function Addition
Mutation rate 0.00138
Inversion rate 0.00546
One-point recombination rate 0.00277
Two-point recombination rate 0.00277
Gene recombination rate 0.00277
Gene transposition rate 0.00277

RMS, root mean square error.
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Figure 2. Expression tree for the GEP model.
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Conclusions

This paper reported a new and efficient GEP-based approach to the formula-
tion of SEcut for natural rock cutting using a circular diamond saw. This is the
first such report in the literature. Unlike previous studies, this study developed
a single model for more than one rock type. The proposed model is empirical
and based on experimental results. Data for the development of the model

Table 5. Constants in the GEP model.
Constant Sub-ET 1 Sub-ET 2 Sub-ET 3 Sub-ET 4 Sub-ET 5 Sub-ET 6

c0 4.63 1.12 −9.25 9.81 9.00 −9.86
c1 −9.31 2.48 −5.27 −9.16 6.97 2.29
c2 1.08 6.12 6.50 −1.38 7.31 −8.48
c3 8.57 −3.16 −226.89 −0.66 2.08 −11.00
c4 6.72 0.55 −3.96 −1.05 −10.90 3.03
c5 2.58 −0.81 5.17 0.13 9.83 4.81
c6 −5.41 2.20 2.66 −1.90 −2.08 7.15
c7 −7.36 12.26 1.88 −7.67 8.65 −6.55
c8 1.27 4.06 −2.19 9.21 1.03 5.18
c9 7.95 −7.68 −5.79 −3.58 −4.55 −5.71

Table 6. Performance statistics of the model.
Training Validation

Fitness 742.06 722.95
MSE 0.121 0.147
RMSE 0.348 0,383
MAE 0.235 0.237
R2 0.956 0.959
Calculation errors 0 0

MSE, mean squared error; RMS, root mean square error; MAE, mean absolute
percentage error; R2, coefficient of determination.

Figure 3. Measured versus predicted SEcut for data used to train the GEP model.
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were obtained from an experimental study. The proposed GEP-based equation
is sufficiently simple to be used by those who are not familiar with GEP.

The validity of the GEP model was verified by the statistical performance
criteria used for evaluating the model. Furthermore, the model yielded a high
R2 value (0.96) and low MSE, RMSE, and MAE values (0.121, 0.348, and
0.235, respectively). In addition, it resulted in a highly nonlinear relationship
between SEcut and the cutting process, with high accuracy and relatively low
error.

This paper presented not only a mathematical model of GEP but also
software models in different computer languages such as MATLAB, Excel,
and C++. Using such software, researches and producers can easily predict
SEcut and the cutting efficiency. The overall GEP evaluation results obtained
in this study revealed that GEP is a promising approach for modeling natural
stone cutting, which is a complex process influenced by a variety of factors.
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