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Abstract: In this study, when deriving thermoplastic polyurethane (TPU), the researchers replaced
1,4-butanediol (1,4-BDO) with 1,3-butanediol (1,3-BDO) as a chain extender and examined how the
structure of the chain extender affected the final polymers. Regarding the raw materials for poly-
merization, three types of commercial polyols with the same molecular weight (Mn = 1000 g/mol),
namely, poly (butyl acrylate) (PBA), poly (tetramethylene ether) glycol (PTMG), and polycarbonate
diol (PCDL) were used. These polyols were used in conjunction with butanediol and 4,4’-methylene
diphenyl diisocyanate. Three groups of TPUs were successfully synthesized using one-shot solvent-
free bulk polymerization. Compared with TPUs polymerized using 1,4-BDO, materials polymerized
using 1,3-BDO are more transparent and viscous. Structural analysis revealed that no substantial
differences between the final structures of the TPUs were present when different chain extenders
were used. Thermal analysis indicated that compared with TPUs polymerized using 1,4-BDO, the
glass transition temperature of those with 1,3-BDO was 15 ◦C higher. Examination of microphase
separation in the structure by using morphological analysis revealed that compared with TPUs
synthesized using 1,4-BDO, PBA, and PTMG synthesized using 1,3-BDO were relatively separated.
PCDL synthesized using 1,3-BDO exhibited no morphological difference. Rheological analysis indi-
cated PCDL synthesized using either 1,4-BDO or 1,3-BDO did not exhibit any obvious differences.
In conclusion, TPUs synthesized using PCDL and 1,3-BDO exhibited thermal plasticity at room tem-
perature (15–20 ◦C). Their basic application could be extended to the development of smart materials.
In terms of further application, they could be used in shape memory and temperature-sensitive high
molecular polymers.

Keywords: thermoplastic polyurethane; chain extender; thermal behavior; morphology; microphase
separation; rheology

1. Introduction

Among the rapid advancements in smart high polymer materials, the innovation of
thermoplastic polyurethanes (TPUs) is a key area [1–3]. Compared with polyurethane (PU),
TPU is a type of high polymer elastomer material. Specifically, it is a type of thermoplastic
elastomer (TPE). In recent years, the amount of research related to TPUs has increased
substantially. TPU is composed of hard to soft rubbery polymers; it has excellent abrasion
resistance, is tough, and is oil and solvent resistant. Additionally, it possesses charac-
teristics such as high elasticity, high tensile strength, and high ductility. Recent research
directions in developing TPU are related to the polymer structure. The structure of TPU is
a main block copolymer, which is made up of alternating soft and hard chain segments
that endow the materials with softness and rigidity, respectively. The polymerization of
TPU involves three constituents, namely isocyanate, polyol (i.e., macrodiol), and the diol
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that acts as the chain extender. The hard chain segment is composed of isocyanate and
the chain extender, whereas polyalcohol is the main structure of the soft chain segment.
Currently, the polyols commonly used in the TPU market are polyether and polyester,
but both types of polyols have application limitations. Only recently did polycarbonate
become the new generation of polyols. Because the polycarbonate functional group has
a high level of polarity and a strong intermolecular force, strong and tough mechanical
performance could be achieved with the use of polycarbonate [4]. It offers good resistance
to hydrolytics and oxidation, so polycarbonate could also be an excellent candidate for the
biostability polymer [5]. Hence, new discoveries were made from the transition of CO2 into
polycarbonate due to the awareness of greenhouse gas [6]. Wang and co-workers showed
that waterborne polyurethane from CO2-polyol may achieve better hydrolysis resistance
than poly (butyl acrylate) (PBA) [7]. Although the cost associated with polycarbonate is
relatively high [8,9], the number of relevant studies has increased markedly in recent years.
Application problems have been solved based on the constituents of the polymers, and this
could be extended to the development of new types of high molecular polymers.

TPU is a type of block copolymer. The thermal incompatibility between the chain
segments is a crucial factor affecting the structure. The miscibility of TPU affects the
microphase separation of the structure, including the transition temperature from a glassy
state to a rubbery state and the formation of hard and soft zones through modification of
soft and hard chain segments. Many researchers have investigated the influence of the
constituents and the contents of the hard chain segments on TPU [10–12]; the constituent
structure is also extensively used in material science applications. The rubber-like form of
TPU can be used to achieve the shape memory effect. By manipulating the constituents of
soft and hard chain segments, TPU with an amorphous reversible phase may cause shape
memory [13–17]. In the past decades, considerable attention has been focused on smart
high polymer materials on shape memory [14,15], which is also applicable in smart textile
products [18].

One point worth noting is that the recent research has focused on isocyanate; it is
believed to be the main influence in the formation of hard zones [19], soft zones [20],
and the soft/hard zone structure ratio [21]. Using a chain extender could enhance the
glass-transition temperature (Tg) and elastic modulus by changing the hard/soft segment
interrelation [22]. Without using a chain extender, polyurethanes reacted by isocyanates
and macrodiols were lacking physical properties and microphase separation [23]. However,
few studies have actually discussed the influence of the chain extender on the chain
segment. In the TPU industry, 1,4-BDO is often used as a chain extender; its straight
chain structure is beneficial for forming long chain linear block copolymers. However,
according to toxicity data in the TOXNET of the National Library of Medicine on the
National Institutes of Health campus in the United States, the toxicity of 1,4-BDO is much
greater than that of 1,3-BDO [24]. Additionally, inhaling hazards may occur during the
polymerization process; Lora-Tamayo et al. reported a poisoning case caused by 1,4-
BDO. Usage of 1,4-BDO may not be entirely safe [25]. With regard to research on chain
extenders, researchers have used different types of short chain diols in the polymerization
reaction [26,27]; some have used 1,3-BDO in the polymerization to examine its further
application as an alternative use to 1,4-BDO and may have an additional benefit for
industrial usage, i.e., modulating the glass-transition temperature to room temperature.
Additionally, Zhang’s study indicated that the short side chain could be used in regulating
the glass-transition temperature and bio-based shape memory PU [28]. Although an
enormous amount of research has already been conducted on the key factors that affect
the hard/soft zone of isocyanates, research into using butanediol as the chain extender is
relatively rare. In recent years, understanding of butanediol has deepened, and research on
bio-based short chain diols has already been conducted in different fields [29–31]. Using
the fermentation process to catalyze the reaction, biobased butanediol could be created [32].
To understand the mechanisms behind it, the current study attempted to examine how the
chain extender could influence the structure of TPU [33–41].
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In the field of TPU research, the microphase separation of hard and soft chains is
a topic worth exploring. The morphology of the microphase would affect the final per-
formance of TPU [42–44]. Some researchers have discussed the influence of the ratio of
hard chain segments and soft chain segments on phase separation [45,46]. Niemczyk and
co-workers proposed that a hydrogen bond would crystallize with TPU partially [47];
thus, the soft chain segment could be used to establish the elastic modulus and flexible
characteristics by affecting the cross-linking density of polyurethane [22]. Xiao discov-
ered that adding different soft chain segments to the PU elastomer would significantly
change its material properties [48]. Studies conducted in recent years have chosen to
produce TPU by using different structures, and these studies could be applied in adhesive
additives [49–54]. Researchers have conducted studies on diols to distinguish their bond-
ing properties. Using a fixed NCO/OH ratio, Mónica used polypropylene glycols with
different molecular weights to prepare TPU pressure-sensitive adhesive [55]; this study
highlighted the centrality of hard chain segment content and also confirmed that TPU could
be used as an adhesive [56]. Wamuo also stressed the importance of the chain structure
to the crystal, and the set speed of hot melt glue could be confirmed [57]. The results of
other studies conducted in recent years have indicated that rheological properties could be
used to evaluate complex materials similar to TPU. The viscoelastic properties of adhesives
are essential with regard to adhesive performance; additionally, the balance between their
elasticity (solid state) and viscosity (liquid state) could help researchers in understanding
their properties. Additionally, when rheological methods are used to examine the shear
thinning and frequency scanning and to examine their viscoelasticity, the results could be
used in confirming whether materials could be candidate adhesives (e.g., hot melt glue or
pressure-sensitive adhesive).

Based on the foregoing literature review, the researchers in the current study replaced
1,4-BDO with 1,3-BDO in the synthesis of TPUs and examined the thermal, morphological,
and rheological effects. The research was aimed to gain an understanding of the production
of TPUs from this perspective, with the hope of understanding the possibility of applying
it in smart materials. Specifically, the researchers wished to confirm whether materials
with unique properties could be produced using a new direction, with findings useful in
developing new types of high polymer material.

2. Materials and Methods
2.1. Materials

Three types of polyol were used in synthesizing TPUs. The researchers performed
grouping based on structure and performed detailed experimental comparisons. The three
function groups were polyester, polyether, and polycarbonate. Poly (butylene adipate) diol
(PBA) is a linear polyester polyol (Lydye Chemical, Mn = 1000 g/mol). Poly (tetramethy-
lene ether) glycol (PTMG) is a type of linear polyether (Lydye Chemical, Mn = 1000 g/mol),
and polycarbonate diol (PCDL) is a type of carbonate polyol (Tosho NIPPOLLAN 981,
Mn = 1000 g/mol). Their structural differences could be used to achieve different perfor-
mances in the PU/TPU industry. The structures of the three types of polyol are provided
in Table 1.

For a polymerization flow diagram of the TPUs, refer to Scheme 1. Three types of
polyols and chain extender were used to prepare six types of TPUs. The final polymer
product in the diagram is the polymerization product of PTMG and 1,3-BDO.
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Table 1. The types of polyol used in synthesizing thermoplastic polyurethanes (TPUs).

Polyols Abbreviation Chemical Structure of the Main Components

Poly(butylene adipate) diol PBA
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Regarding the hard chain section of the TPUs, 1,4-butanediol (Alfa Aesar, Ward Hill, MA,
USA) and 1,3-butanediol (Alfa Aesar, Ward Hill, MA, USA) were used. The aromatic diiso-
cyanate 4,4′-diphenylmethane diisocyanate (MDI) used originated from BASF, of Germany.
All the materials were used immediately after they were received. Each TPU formula used the
same mole ratio, and the NCO/OH of the hard chain segment is R. To control the influence
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of hard chain segment on the TPUs, we designed two compounding ratios, R = 1.00 and
R = 1.02; this was done to determine whether the increase of hard chain segments would affect
structure and performance. For the constituents of the two hard chain segments, see Table 2.

Table 2. Formula structures and [NCO]/[OH] ratios of thermoplastic polyurethanes.

MDI: Polyols: BDO
(Molar Ratio)

[NCO]/[OH]
(R Value)

Hard Segment
(wt %)

2:1:1 1.00 37.13

2.02:1:1 1.02 37.52

2.2. Synthesis of Thermoplastic Polyurethanes (TPUs)

In this experiment, the researchers used a one-shot solvent-free bulk polymerization to
synthesize TPUs. First, three types of polyol and chain extenders were placed in a vacuum
oven. They were heated at 80 ◦C for 4 h to remove moisture. For the MDI, they were placed
in a 60 ◦C oven for 2 h to convert them to a solution state. The polymerization reaction
could be started after all the materials were prepared.

First, the polyol and the chain extender were placed in an acrylic plaster beaker, and
a polyol-BDO premixed solution was prepared by mixing the ingredients thoroughly
using a mixer. Next, MDI was added to the premixed solution, and they underwent a
homogeneous reaction in a short amount of time. After the reaction was completed, the
reactants were placed on a board smeared with polytetrafluoroethylene, and then they
were placed in an oven at 120 ◦C for 3 h of consolidation. The final product was a piece of
TPU material to be used for experimentation.

2.3. Preparation of TPU Films

To investigate the properties of the TPUs, the researchers prepared thin films for
thermal and morphological analysis using the solvent casting method. The TPU block
materials were dissolved around 30–40 wt % in N-dimethylacetamide solution, then poured
on a glass pane, and baked for 20 h to form thin films casting.

The coding of the TPU materials in the current study are explained as follows: the
first part of the sign is related to the polyol, whereas the second part is related to the chain
extender used. For example, “PCDL-1,3-BDO” means that during the synthesizing process,
PCDL was the choice of polyol, and 1,3-BDO was the chain extender. Two types of hard
chain indices were designed for each group of TPU formula to discuss the influence of hard
chain segment on TPU. The [NCO]/[OH] ratio is set as the R value. The third part of the
formula sign consists of the R value. For example, “PBA-1,4-R = 1.02” means PBA was used
as the polyol and 1,4-BDO as the chain extender during the synthesizing process, with the
hard chain index R value being 1.02. This formula was used to conduct the synthesizing
process, and the codes are used to display the research results.

2.4. Instrumental Methods
2.4.1. Fourier Transform Infrared Spectrometry (FT-IR)

To express the chemical structure of the TPUs, 16 scans were performed with a Perkin
Elmer Spotlight 200i Sp2 equipped with an AutoATR system. The scope of data collected
using the transmission mode was 4000–400 cm−1, and the resolution ratio was 4 cm−1.

2.4.2. Gel Permeation Chromatography (GPC)

After the TPUs were synthesized, their molecular weight was confirmed through gel
permeation chromatography (GPC) using a Viscotek GPCmax VE-2001. The number-average
molecular weight (Mn), weight-average molecular weight (Mw), and polydispersity index
(PDI) were examined using GPC. The mobile phase featured a 1 mL min−1 current velocity
using dimethylformamide (DMF) under 60 ◦C; the column was 300 mm × 810 mm.
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2.4.3. Thermogravimetric Analysis (TGA)

Thermal stability was investigated through thermogravimetric analysis (TGA). The
samples were heated from 35 ◦C to 500 ◦C in N2 air by using NETZSCH TG 209 F3 with
a temperature rate of 10 ◦C/min; the variations in the sample weight according to the
increase in temperature were recorded.

2.4.4. Differential Scanning Calorimetry (DSC)

For measurement of thermal performance, glass transition temperature (Tg), and
melting temperature (Tm), the differential scanning calorimetry (DSC) method was used;
the measurements were taken using a HITACHI SIINT SII X-DSC7000 instrument. First,
4–8 mg of each sample were sealed in an aluminum pan, placed on the platform, and
maintained at the system-maintained temperature of −60 ◦C for 10 min. Next, the samples
were heated to 220 ◦C at a temperature rate of 10 ◦C/min. After this heating process was
maintained for 3 min, a cooling scan from 220 to −60 ◦C was performed at a cooling rate of
−10 ◦C/min. The temperature rising and cooling scans of the samples were performed
under a nitrogen gas condition; Tm and Tg values were obtained from the second scan.

2.4.5. Dynamic Mechanical Analysis (DMA)

The researchers performed a dynamic mechanical analysis (DMA) using HITACHI
DMS 6100. With regard to the testing method, a stretching mode with 0.5% dynamic stretch
was used, and the specimen dimensions were controlled between 40 mm (length) × 10 mm
(width); the thickness of the specimen was maintained between 0.2 and 0.3 mm. The DMA
system temperature was set from −60 ◦C to 110 ◦C, and the heating rate was 5 ◦C/min;
the frequency used was 1 Hz.

2.4.6. Atomic Force Microscope (AFM)

With regard to morphological analysis for investigating microphase separation, an
atomic force microscope (AFM) was used to understand the conditions of the hard and
soft chain segments. The researchers used Park XE-100 to perform surface analysis of the
sample thin films at room temperature and the scanning scope was 10 µm× 10 µm and
5 µm× 5 µm, respectively. A microscope was used to observe and capture the morphology
of the surface. TPU samples subjected to three annealing time lengths (0, 10, and 20 h) were
scanned; the annealing time was used to understand the degree of microphase separation.

2.4.7. Rheological Measurement

Rheological measurements were taken using an Anton Paar Physica MCR Rheometer
using two rheological methods. The samples were placed on a 1 mm gap and heated to
200 ◦C. Then, the samples were tested using steady shear flow and dynamic oscillatory
flow. In the steady shear flow experiments, the shear rate was set to 0.1–100 1/s for
the observation of rheological behaviors under shear thinning. The purpose of using
the oscillatory flow was to collect data related to the storage modulus (G′) and the loss
modulus (G”) as well as to confirm the condition of the melt viscosity. The oscillatory
experiment was conducted in the frequency range of 0.01 to 100 Hz with strain = 5% at
200 ◦C to determine whether the deformation was proportional to the stress and whether
the deformation indicated the physical significance of the viscoelastic modulus.

3. Results and Discussion

In this study, the researchers used the one-shot solvent-free bulk polymerization
method to synthesize polyol, MDI, and BDO into TPU. Because 1,3-BDO was used in place
of 1,4-BDO as a chain extender, FT-IR analysis had to be used to confirm any changes in the
structure of the TPUs. FT-IR spectrum diagrams of TPUs with three different functional
groups are displayed in Figure 1. A stretching and bended vibration-NH absorption band is
present at the 3330 cm−1 point; this is a characteristic of a carbamate functional group. The
vibration band present at the 2730 cm−1 point has a N=C=O structure; these representations



Appl. Sci. 2021, 11, 698 7 of 18

of absorption peaks also indicate a carbamate functional group. These results indicate that
TPU was successfully synthesized using both 1,3-BDO and 1,4-BDO as the chain extender
with varying polyols.
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The number-average molecular weight (Mn), weight-average molecular weight (Mw),
and polydispersity index (PDI), according to the molecular distribution data obtained
from the GPC analysis, are listed in Table 3. The results revealed that even when 1,4-BDO
was replaced by 1,3-BDO, TPU with high molecular weight could be polymerized. The
PDI values of all the TPU samples were lower than 2.0; this means that this method is
applicable in terms of polymer processing (e.g., injection molding and extrusion) [13].
Next, thermal analysis and testing were conducted to confirm the structure. Examination
of the thermal properties was performed to gain further understanding of the TPUs for
application and research.

Table 3. Number-average molecular weight (Mn), weight-average molecular weight (Mw), and
polydispersity index (PDI) of the TPUs synthesized in this study.

Polymer Code Mn
(g/mol)

Mw
(g/mol)

Mw/Mn
(PDI)

PBA-1,3-R = 1 106,553 160,281 1.50
PBA-1,3-R = 1.02 109,180 184,483 1.69

PBA-1,4-R = 1 153,223 274,070 1.79
PBA-1,4-R = 1.02 141,036 208,916 1.48
PCDL-1,3-R = 1 126,288 198,902 1.58

PCDL-1,3-R = 1.02 82,993 150,089 1.81
PCDL-1,4-R = 1 187,687 356,779 1.90

PCDL-1,4-R = 1.02 94,794 151,253 1.60
PTMG-1,3-R = 1 114,117 163,701 1.43

PTMG-1,3-R = 1.02 108,948 162,242 1.49
PTMG-1,4-R = 1 96,633 142,240 1.47

PTMG-1,4-R = 1.02 109,293 183,788 1.68

TGA was used to evaluate thermal stability during the thermal degradation process.
Figure 2 illustrates the thermal degradation conditions of TPU under inert gas; the figure
indicates that even when different chain extenders were used during the polymerization
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process, the thermal degradation temperatures of the TPUs were similar (approximately
300 ◦C). For PBA and PTMG groups, the TGA spectra indicate a two-stage thermal degra-
dation [58], and this involves the degradation of the hard and the soft chain segments [59].
The first stage of degradation is related to carbonate bonds, whereas the second stage
originates from the polyol structure. However, only one peak was observed for the PCDL
group; this is probably because the PCDL group has a higher level of phase mixture; thus,
the two-stage degradation is less obvious [60]. With regard to the degradation temperature
(Td), when the weight loss was 5%, the Td of the TPU polymerized using 1,3-BDO was
2–5 ◦C lower than the Td of the TPU polymerized using 1,4-BDO. The reason behind
this is probably that the methyl bonds of 1,3-BDO can be damaged more easily under
high temperature, and this resulted in a relatively lower thermal degradation temperature.
However, regardless of the type of butanediol used, the thermal degradation spectra of
the TPUs are similar. The use of 1,3-BDO as the chain extender did not greatly affect the
polymer structure, indicating that the polymerized TPUs have excellent thermal stability.
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Figure 2. Thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) spectra of TPU prepared through
the polymerization of PBA (a), PTMG (b), or PCDL (c), with 1,3-BDO or 1,4-BDO.

The thermal conversion effect was evaluated using DSC. The thermal properties of
the TPUs are presented in Figure 3, which clearly illustrates that the TPUs synthesized
using 1,3-BDO have no temperature for melting (Tm). For TPUs synthesized using 1,4-
BD, their Tm range is between 139 ◦C and 150 ◦C; this is common for TPUs. The TPUs
synthesized using 1,3-BDO also have no melting point; this indicates that their structures
are not crystalline, and this is related to the fact that they possess some viscosity.
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Figure 3. Differential scanning calorimetry (DSC) thermograms of TPU formed through the polymerization of PBA (a),
PTMG (b), or PCDL (c), with 1,3-BDO or 1,4-BDO.

When 1,3-BDO was used as the chain extender in synthesizing TPU, the glass tran-
sition temperature (Tg) was higher than when synthesis was performed with 1,4-BDO.
When two types of polyol, namely PBA or PTMG, are used in synthesizing TPU, the Tg
of TPU synthesized using 1,3-BDO was approximately 10–15 ◦C higher than the Tg of
TPU synthesized using 1,4-BDO. When PCDL was used to synthesize TPU, the Tg of the
TPU synthesized using 1,3-BDO was approximately 5 ◦C higher than that of the TPU syn-
thesized using 1,4-BDO. The results also revealed the Tg of TPU synthesized from PCDL
and 1,3-BDO was approximately 15 ◦C; this temperature is close to room temperature
(15–25 ◦C) [28,61]. This indicates that the TPU could be used as a novel type of composite
material produced through high polymer processing at room temperature (20 ◦C) [16].

The researchers compared the major mechanical characteristics (storage modulus
(G′), loss modulus (G”), and tan δ) using DMA. According to the data (Figure 4), the
tan δ values of TPU synthesized using 1,3-BDO are higher than the tan δ values of TPU
synthesized using 1,4-BDO. This confirms that when 1,3-BDO was used for the synthesis,
the appearance of the resultant TPU was soft and viscous. Based on the storage modulus
diagram, the storage modulus of TPU synthesized using 1,4-BDO would be significantly
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reduced under lower temperature than TPU synthesized using 1,3-BDO; this is probably
related to their lower Tg.
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Figure 4. According to dynamic mechanical analysis (DMA), the following parameters were measured: storage modulus
(mPa) and tan δ related to the temperature rate; storage modulus (a) and tan δ (b) of TPU from PBA, storage modulus (c)
and tan δ (d) of TPU from PTMG; storage modulus (e) and tan δ (f) of TPU from PCDL.
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All the glass transition point (Tg) data obtained through DMA analysis are listed in
Table 4. The Tg of TPU synthesized using 1,3-BDO was approximately 10–15 ◦C higher
than the Tg of TPU synthesized using 1,4-BDO. The reason behind this is that 1,3-BDO
contains a methyl group in its structure, and this results in an asymmetrical TPU structure
during the polymerization process. The DMA results also confirmed that TPU synthesized
using 1,3-BDO has viscoelasticity (this must correspond with the conclusion from the DSC
scan, which tends to be viscous materials). The storage modulus (G′) data confirmed
that TPUs synthesized using 1,3-BDO have greater viscoelasticity than TPUs synthesized
using 1,4-BDO.

Table 4. The tan δ crest peak location on the DMA spectrum was used as the glass transition temper-
ature (Tg). Relevant numerical values associated with TPU prepared through the polymerization of
different butanediols with different R values.

Chain Extender 1,3-BDO 1,4-BDO

[NCO]/[OH]
(R Value) 1.00 1.02 1.00 1.02

PBA-1000 −2.8 ◦C −1.2 ◦C −31.3 ◦C −28.3 ◦C
PCDL-1000 8.1 ◦C 10.6 ◦C −3.5 ◦C −1.3 ◦C
PTMG-1000 −19.1 ◦C −13.9 ◦C −44.9 ◦C −38.4 ◦C

Next, AFM was used to identify the microphase distribution of the TPUs. The surfaces
of TPUs that were subjected to thermal processing and those not subjected to thermal
processing were analyzed to confirm their phase separation condition and structure. The
annealing was conducted at 100 ◦C. With the increase of annealing time, changes in the
crystal could be evaluated. All the captured images were uniformly modified to the same
scale for direct comparison. Figure 5 presents the AFM images of TPUs synthesized from
PBA and PTMG; the images clearly indicate that obvious microphase separation was
present in TPUs synthesized using 1,3-BDO. Because the miscibility between the hard
and soft chain segments is poor, the differentiation between the dark and light zones is
fairly apparent. After being subjected to 10 and 20 h of thermal processing, only the dark-
colored aggregates increased substantially. According to the surface structure, the crystals
aggregated with the increase of thermal processing time. AFM images of thermal treatment
were presented in Figure S1 for TPU composed by PBA and Figure S3 for TPU composed by
PTMG. The increase in the number of TPU hard chain segments resulted in the formation
of more crystals, which in turn led to more aggregates. The AFM scanned images of TPUs
with disparate R value were presented in Figure S2 for TPU synthesized from PBA, and
Figure S4 For TPU synthesized from PTMG to address the results of aggregation.

Compared with the AFM images of TPUs synthesized with PCDL, the constituents of
TPUs synthesized with PBA and PTMG are slightly different; the AFM images indicate that
regardless of whether TPUs were synthesized using 1,4-BDO or 1,3-BDO, the aggregate of
crystals was present in both types of TPU. The aggregate condition of the two types of TPU
is depicted in Figure 6; TPUs synthesized using 1,3-BDO as a chain extender exhibit a more
obvious phase separation phenomenon. It has the same phenomenon that more aggregates
with the increase of the hard phase presented in Figures S5 and S6.

In all the synthesized TPU series, an increase in hardness resulted in an increase of
crystallization. The microphase separation of the TPUs synthesized using PCDL revealed
that regardless of whether the TPUs were synthesized using 1,3-BDO or 1,4-BDO, the
aggregation of crystallizations was readily observable in the synthesized products; this is
because the polarized structure of polycarbonate bonds is beneficial for the production of
hard chains [48].
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Next, the researchers performed a rheological analysis using two methods to under-
stand the shear-thinning behaviors via frequency sweep and the viscoelastic characteristics
under the oscillatory mode; the shear-thinning data related to the shear rate are presented
in Figure 7. The results indicate that for the PBA and the PTMG groups, the melt viscosity
of TPUs synthesized using 1,4-BDO was higher than the melt viscosity of TPUs synthesized
using 1,3-BDO. For the PCDL, TPU synthesized using 1,4-BDO or 1,3-BDO as the chain
extender had a similar shear-thinning curve. Looking at the morphological analysis con-
ducted using AFM, we can explain this property by referring to the influence of structure.
Regardless of the type of butanediol used to synthesize the PCDL, the aggregation of the
soft and hard chain zones would be more even and compatible than in the other groups.
The higher level of microphase compatibility would result in a satisfactory level of melt
viscosity obtained from the flow behavior.

Next, to confirm the viscoelasticity, a vibration scan experiment was performed at
200 ◦C. The data are compiled and displayed in Figure 8. A vibration rheology experiment
allows rapid observation of the presence of an intersection point between G′ and G”. The
loss modulus (G”) of all the TPUs was higher than their storage modulus (G”); this indicates
all the TPU fused masses are viscous and can be used as hot melt adhesive. A difference
between G′ and G” could also be detected; the difference between G′ and G” was larger in
two groups, namely PBA and PTMG. TPU polymerized using 1,3-BDO has a more loosely
organized internal structure; thus, the maintenance of a crystal structure is more difficult.
Relatively, for TPUs polymerized using PCDL, differences between TPUs synthesized
using different types of butanediol are minor. They have a similar internal structure, and
their microphase compatibility is relatively better. Thus, they could be candidate materials
for hot melt adhesives [9].
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Figure 8. Rheological properties. (a) Storage modulus and (b) loss modulus of TPUs prepared using 1,3-BDO or 1,4-BDO
during the synthesizing of PBA, PTMG, or PCDL.

4. Conclusions

Modified TPUs, with different chain extenders, can be prepared using the one-shot
solvent-free bulk polymerization method. Examination of their structures, thermal proper-
ties, morphology, and rheological properties revealed that the changing of chain extenders
did not affect the structure of the main polymer chain segments; this was also applicable
to the synthesizing of high molecular polymers. FT-IR results indicated that the two are
structurally similar. Thermal analysis performed using DSC and DMA revealed that the Tg
of TPUs prepared using 1,3-BDO as the chain extender was approximately 10–15 ◦C higher
than that of the TPUs prepared using 1,4-BDO as the chain extender. The main reason
was that rotation difficulties in the branched chain structure resulted in an increase of Tg.
Additionally, the Tg point would also slightly increase, by 1 to 2 ◦C, with the increase in the
TPU’s hard chain segment. The DSC scanning data also revealed that the Tm of TPU made
with 1,3-BDO belongs to the category of amorphous materials; the DMA testing spectrum
revealed that a TPU containing 1,3-BDO exhibits the characteristic of viscoelasticity. The
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differences in the thermal properties results prompted the researchers to perform further
study on the viscoelastic and rheological properties.

Subsequently, investigations related to morphological analysis and rheological mea-
surement were conducted. Detailed morphological analysis was performed using AFM
scanning. In PBA and PTMG, TPUs that contained 1,3-BDO exhibited an obvious mi-
crophase separation, which was a clear difference between hard and soft zones; the sep-
aration phenomenon did not change even when the hard chain content was increased.
However, in the PCDL group, the microphase separation was not obvious; we believe that
the reason for this is that the polycarbonate bonds in PCDL have excellent stiffness, which
could help maintain structural stability. The results of the rheological measurements (to ex-
amine the viscoelasticity behavior) were similar to those obtained using the morphological
test. For PBA and PTMG groups, TPUs that contained 1,3-BDO had poor viscoelasticity.
The rheological results clearly confirmed that for PCDL, even when 1,3-BDO was employed
as a chain extender during the synthesizing process, the TPUs synthesized were similar
to the TPUs synthesized using 1,4-BDO as a chain extender; the reason behind this is that
PCDL has a side methyl group, resulting in a high free volume rotation obstacle—thus, the
increase of Tg. In addition, Tg range of the TPUs synthesized using PCDL is within room
temperature (15–20 ◦C). Another factor is that the carbonate group of the PCDL structure
contains three oxygen atoms with the six lone pairs of electrons that will mutually repel
each other; this causes the compatibility of TPUs synthesized using PCDL to be better than
that of the TPUs synthesized using polyester or polyether. The conclusions of this study
indicate that PCDL could be used in conjunction with 1,3-BDO as a candidate material for
future smart material development.
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PTMG-1,3-R = 1 after 20 hr. (B) PTMG-1,4-R = 1 at 0 h (D) PTMG-1,4-R = 1 after 10 h (F) PTMG-1,4-R
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h (E) PTMG -1,3-R = 1.02 after 20 hr. (B) PTMG -1,4-R = 1.02 at 0 h (D) PTMG -1,4-R = 1.02 after 10 h
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(F) PCDL -1,4-R = 1 after 20 h., Figure S6: AFM image of (A) PCDL-1,3-R = 1.02 at 0 h (C) PCDL-1,3-R
= 1.02 after 10 h (E) PCDL -1,3-R = 1.02 after 20 hr. (B) PCDL-1,4-R = 1.02 at 0 h (D) PCDL-1,4-R =
1.02 after 10 h (F) PCDL -1,4-R = 1.02 after 20 h.
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