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Abstract: Assuring the safety of automated vehicles is essential for their timely introduction and
acceptance by policymakers and the public. To assess their safe design and robust decision making
in response to all possible scenarios, new methods that use a scenario-based testing approach are
needed, as testing on public roads in normal traffic would require driving millions of kilometres.
We make use of the scenario-based testing approach and propose a method to model simulated
scenarios using Gaussian Process based models to predict untested scenario outcomes. This enables
us to efficiently determine the performance boundary, where the safe and unsafe scenarios can
be evidently distinguished from each other. We present an iterative method that optimises the
parameter space of a logical scenario towards the most critical scenarios on this performance boundary.
Additionally, we conduct a novel probabilistic sensitivity analysis by efficiently computing several
variance-based sensitivity indices using the Gaussian Process models and evaluate the relative
importance of the scenario input parameters on the scenario outcome. We critically evaluate and
investigate the usefulness of the proposed Gaussian Process based approach as a very efficient
surrogate model, which can model the logical scenarios effectively in the presence of uncertainty.
The proposed approach is applied on an exemplary logical scenario and shows viability in finding
concrete critical scenarios. The reported results, derived from the proposed approach, could pave
the way to more efficient testing of automated vehicles and instruct further physical tests on the
determined critical scenarios.

Keywords: gaussian process; probabilistic sensitivity analysis; machine learning; safe automated
vehicles; scenario-based testing; logical scenario; critical scenarios; corner cases; CAV

1. Introduction

With the help of technological advances in vehicle technology, fatal accidents have
been steadily declining over the past decades [1]. The rate at which fatal accidents are
declining has slowed down, however, suggesting that further improvements can only be
achieved by significantly reducing the proportion of accidents which are caused by human
error. The latest developments in advanced driver assistance systems and proof-of-concept
prototypes of automated vehicles (AVs) are very promising to overcome this challenge [2].
The introduction of higher levels of automation (SAE levels 3+ [3]) into wider public
use is currently hindered by the satisfactory assurance of their safety in every possible
situation. For instance, to formulate a statistical safety case which supports the superiority
of AVs over human drivers, an estimated 440 million km of on-road driving with AVs is
necessary [4].

Current research thus focuses on reducing the necessary testing with physical hard-
ware by utilizing virtual testing in simulation. A common approach focuses on the circum-
stance that most day-to-day driving is uneventful and thus tries to prioritise dangerous
and safety-critical scenarios which happen very rarely [5]. Most methods are therefore
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aimed at finding these critical scenarios by pursuing a scenario-based testing approach,
where AVs are evaluated with the help of vehicle simulation [6]. When implemented in
simulation, scenario-based testing allows for an automatic generation of interesting test
cases, which can then be further evaluated in tests involving physical hardware.

A terminology for describing scenarios in the different phases of development, test
and validation of AVs is presented in Reference [7]. Scenarios can be abstracted into three
levels, depending on where they are used in the development process. The highest ab-
straction is the functional scenario, which describes the involved entities and behaviours
semantically, mostly in natural language. A logical scenario, as the middle level of abstrac-
tion, specifies the parameters which were described linguistically in the functional scenario.
The logical scenario also specifies value ranges for each parameter in the scenarios state
space, thus giving a formal description of the scenario. On the lowest level of abstraction, a
concrete scenario specifies concrete values for each parameter from the respective value
ranges. We make use of this terminology, which is visualised in Figure 1.

Func�onal Scenarios Logical Scenarios Concrete Scenariosderived from derived from

More Scenarios

Higher Level of Abstrac�on

Figure 1. Terminology of the three scenario types (after Reference [7]).

A challenging problem in scenario-based testing is the combinatorial explosion of
possible concrete scenarios. Defining a concrete scenario to include the interactions of the
AV with its surroundings, especially with other traffic participants leads to an indefinite
amount of concrete scenarios. There is a need for a novel method that efficiently finds the
parameter combinations that lead to critical concrete scenarios. In our previous work [8],
we have shown how stochastic machine learning can be used to estimate the performance
boundary of an AV in a given logical scenario, by simulating a limited number of concrete
scenarios. The performance boundary separates the scenario space into regions according
to their criticality.

Contributions

We build on our previous work [8] to further reduce the number of necessary simula-
tions for concrete scenarios. Starting from a small set of concrete scenarios, which have
been executed in simulation to find their respective criticality measure, a novel algorithm
is developed to propose and select candidates of concrete scenarios which are predicted to
be most critical. This approach iteratively explores the parameter space of a predefined
logical scenario and thus reduces the necessary simulation effort, while at the same time
holistically covering the parameter space of the logical scenario. We apply this optimisation
method on a complex interaction scenario between an AV and a pedestrian stepping onto
the road.

Furthermore, we use the Gaussian Process (GP) models to compute several variance-
based sensitivity analysis (SA) measures for the previously optimised scenario data set of a
pedestrian stepping onto the road. The results derived from conducting the SA, including
the main and interaction effects between the input parameters of the logical scenarios,
enable us to effectively determine the input parameters with the highest impact on the
scenario outcome. SA can thus be used to reduce the complexity of a logical scenario
into a computationally tractable problem and to our knowledge, such a sensitivity based
assessment of scenarios using GP emulators has so far not been conducted.
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The remainder of this paper is organised as follows. In Section 2, we review relevant
literature in the field of scenario-based testing and supervised machine learning with
multivariate GPs. Section 3 formally introduces GP and what modifications are necessary
for them to be used in a classification setting. Further, we introduce the sensitivity analysis
used for assessing the variance-based SA indices, including main and interaction effects;
and Sobol indices in Section 4. In Section 5, we present the optimisation method, including
the iterative algorithm to find the most critical scenarios. Section 6 provides the results of
applying the optimisation method to the exemplary scenario of a pedestrian stepping onto
the road. It further presents the results of the sensitivity analysis on the optimised data
set constructed with the optimisation method, and a second functional scenario of a traffic
jam approach, taken from literature. Finally, we conclude with Section 7 and point to open
areas for future work.

2. Related Work
2.1. Scenario-Based Validation of AVs

Scenario-based testing has emerged as an active field of research, pursuing the aim
of validating the safety of AVs. It is inherently connected to the definition of scenarios
in automated driving research ([7,9]), and examines the interactions and relations of the
AV (also called ego vehicle) with one or several other actors in defined environmental
conditions [10]. By testing the AV in concrete scenarios, the decision making of the AV
can be validated based on the outcome of the concrete scenario. It is here assumed that
the decision making of the AV changes, depending on the specified behaviour of other
involved actors and the various environmental conditions, similar to human decision
making while driving.

The execution of such scenario-based tests is predominantly done with vehicle simula-
tion software, which combines the dynamics of the ego vehicle with a virtual representation
of the world and other traffic participants, as well as sensor emulation. Most of the subse-
quently presented methods for scenario-based testing utilise simulation. Scenario-based
testing of AVs is however not limited to simulation and can also be done with Hardware-
in-the-Loop or field-operational tests on the road or proving ground [6]. Using simulation
in executing the tests offers however benefits in terms of cost and execution time, as large
numbers of concrete scenarios can easily be carried out.

A scenario-based validation process should cover all functional scenarios defined in
the concept phase of the development process [7]. After these functional scenarios are
defined, the respective logical scenarios can be constructed, by specifying the parameters
and value ranges. To actually carry out a scenario, a concrete scenario needs to be drawn
from the logical scenario space by setting the values of each parameter. The simplest
approach is to sample values from specified probability distributions of each parameter,
such as Monte Carlo (MC) sampling. The values of the concrete scenarios in Reference [11]
are, for example, drawn from a uniform distribution. The MC simulation approach would
however only yield accurate outcomes, if a high number of concrete scenarios were carried
out, making it computationally expensive. But when a sufficient number of concrete
scenario are carried out, this approach covers the whole parameter space of a logical
scenario, and is thus often used as a baseline for comparison to other methods [12].

The MC sampling based approach can be improved, if the probability distributions
used for sampling concrete values are changed from uniform distributions to distributions
which are closer to the true distributions of the parameters characterising the functional
scenarios. Zhang et al. [5] proposed a related approach to improve the computational effi-
ciency of the MC method by starting with MC sampling, but benefiting from the important
sampling concept to sample from a tractable distribution, which can be considered a close
distribution to the true one.

The proposed method achieved much higher computational efficiency in the mag-
nitude of hundreds to thousands of times greater compared to the original MC method.
This results in more scenarios being evaluated that can be classed as rare events and might
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be problematic for AVs [5]. Importance sampling methods are especially suited here and
have been used to evaluate adaptive cruise control systems [13]. Further, they were found
to improve the evaluation time of testing a car following scenario by a factor of up to
100,000 and a lane change scenario by up to 20,000 [14,15].

An improvement over MC simulation was also shown by using subset simulation on
the test case of a lane change scenario [5]. It was shown to offer a similar improvement as
importance sampling by focusing on a subset of scenarios that have a higher probability
of failure.

Variance reduction techniques, such as importance sampling and subset simulation,
rely heavily on the availability and validity of prior knowledge to shape the probability
distribution used for sampling. Such data can be sourced from accident databases or large
scale naturalistic driving trials [14], but this carries the risk of excluding scenarios that
emerge from new automation technology. This new technology is often not included in
historic accident databases and naturalistic driving trials and thus questions the validity of
the used prior probability distributions.

A relatively unexplored field concerns the selection of the correct parameters to
describe a logical scenario (and by extension, the concrete scenarios derived from it).
During the process of defining logical scenarios from the functional scenarios, parameters
that formally describe the functional scenario need to be chosen. This is frequently done
based on expert knowledge on which parameters might have a higher impact on the
scenario outcome.

Furthermore, determining the effect of the scenario parameters on the outcome is
important for understanding the behaviour of AVs, and can be done via sensitivity analysis
of scenarios. In the context of testing AVs, SA are commonly applied to find sensitivities of
model parameters in AV sub-modules. It has been applied to assess which parameters of a
radar simulation have the greatest impact on the performance of a spatial clustering algo-
rithm which is applied to the simulated output of the radar models [16]. Vehicle dynamics
models have also been analysed towards their sensitivities, as the quality of the used
vehicle dynamics models has an effect on AV simulations [17]. In order to find the optimal
calibration of the trajectory planning module of an AV for several different functional
scenarios, sensitivity analyses can be used to reduce the complexity of a genetic algorithm
based optimisation as shown in Reference [18]. The sensitivity analysis is herein used to
restrict the search space of possible calibration parameters by excluding parameters with
a sensitivity below a certain threshold from further simulation. The presented approach
includes the simulation of the AV on a set of functional scenarios, it is however not specified
how these scenarios are defined, nor does the sensitivity analysis and optimisation include
a variation of these functional scenarios.

2.2. Supervised Machine Learning Algorithms

Supervised machine learning offers powerful tools for building input-output relation-
ships of observed systems and have shown their efficacy in a range of problems, such as
image classification and control [19,20].

The most prominent supervised machine learning methods are Artificial Neural Net-
works, which are very powerful for building classifications models of high dimensional
data, and solving problems such as object classification in images. These advances were
made possible by the wide availability of large amounts of annotated data, reducing overfit-
ting [19]. This makes them however unreliable in the application at hand, where preexisting
data is sparse or expensive to obtain due to computationally expensive simulations or
costly tests involving physical hardware.

A supervised machine learning method that can build surrogate models based on small
data sets is the Support Vector Machine (SVM) [21,22]. They were shown to be effective
in scenario prediction of human driving as shown in Reference [23]. The disadvantage of
SVMs compared to GPs is that they do not provide an inherent estimate of the confidence
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of a prediction. Furthermore, GPs can offer better adjustment in nonlinear modelling by
allowing custom kernel functions [24].

The k-Nearest Neighbour (k-NN) algorithm can also be used to model a relationship
between input and observed output of an unknown function [25]. The method predicts
new data points by relating known data in the vicinity of the predicted point. As the
predicted point moves closer to the decision boundary between classes, the reliability of
the method declines, however. This makes it less suited for the evaluation of automated
vehicles, where it is critical to find corner case scenarios on the boundary between two
performance modes.

3. Gaussian Processes

Gaussian Processes are a class of supervised machine learning algorithms, which
describe the functional relation between input and output data as a multivariate Gaussian
distribution. They are a powerful nonlinear regression and classification method [24].
An application of GPs is the modelling and prediction of trajectories, such as vehicle and
pedestrian trajectories [26,27]. They have also been used to model the driving intention of
human drivers on intersection scenarios [28,29].

Using GPs to build a surrogate model of a scenario-based testing framework for
AVs has been relatively unexplored. A comparable study for autonomous, unmanned
underwater vehicles was conducted by Reference [30], where the state space of the vehicle
was adaptively searched using a Gaussian Process Regression (GPR) model. In this paper,
we adopt the notion of the performance boundary, which separates the different modes of
the system under test, and adapts the concept to automated ground vehicles.

GPR was used in an automotive context in Reference [31] to model the probability
distribution of a logical scenario, which was then used to conduct importance sampling.
The logical scenario considered was a lane change scenario, where they could show an
improvement over crude MC sampling.

In our application, we use Gaussian Process Classification (GPC) and Regression
(GPR) to optimise the parameter space of a given logical scenario. Once trained, these GP
models allow for a quick prediction of untested concrete scenarios. We apply the opti-
misation method on a complex logical scenario, which is further described in Section 6.1.
The scenario data is obtained by evaluating concrete scenarios in the vehicle simulation
software CarMaker [32], and for the purpose of this study, the simulation is regarded as
ground truth. For this to be valid in the overall scope of AV validation, the simulation must
be validated by physical tests.

3.1. Formal Description of Gaussian Processes

We lean on the extensive work of Reference [24], who formally defined the GP model
by a prior distribution

f (x) ∼ GP(m(x), k(x, x′)) , (1)

where m(x) denotes the distribution mean and k(x, x′) the kernel function. We used the
radial basis function (RBF), also known as squared exponential kernel in this paper [24].

Given a data set D = {(xi, yi)|i = 1, . . . , n}, consisting of n samples, wherein xi
denotes the vector of input data taken from the input space X , and yi = f (xi) the cor-
responding output observations from the simulation. With the definition of a Gaussian
Process from Equation (1), a joint prior distribution for observed outputs f and predicted
outputs f ∗ is described as: [

f

f∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
, (2)

with an assumed mean of zero and the covariance matrices
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K = k(X, X) (3)

KT
∗ = k(X, X∗)

K∗ = k(X∗, X)

K∗∗ = k(X∗, X∗)

for all observed and predicted data points. Here X denotes a d× n matrix of the training
inputs {xi}n

i=1 (also known as the design matrix, c.f. Section 5.1), d stands for the dimension
of input space X , and X∗ is the matrix of test inputs. The subscript ∗ differentiates the
predicted data from the actually observed data. Without loss of generality, the mean
function is usually assumed to be zero, which does not limit the mean of the posterior to
zero [24].

The posterior distribution of f (·) given y = { f (x1), . . . , f (xn)} is a Gaussian distribu-
tion given by

f (x)|y ∼ N (m∗(x), σ2 k∗(x, x′)) (4)

where

m∗(x) = t(x)TK−1y (5)

k∗(x, x′) = k(x, x′)− t(x)TK−1t(x′) (6)

t(x)T = (k(x, x1), . . . , k(x, xn)), (7)

σ2 designates the variance of the input data, and k(x, x′) is the kernel function which
both will be introduced in Section 3.2.

The posterior distribution of the predicted value is obtained by conditioning the joint
prior distribution to

f∗| f , X, X∗ ∼ N (K∗K−1 f , K∗∗ − K∗K−1KT
∗ ) . (8)

The predicted value f∗ is given by a Gaussian distribution with mean and covariance
and can be evaluated over X∗. The inherent property of the GPR of providing a predictive
value along with its variance is later used in the optimisation method described in Section 5.

3.2. Learning the Hyperparameters

The RBF kernel function k(x, x′) is used in this paper:

k(x, x′) = exp{−(x− x′)TB(x− x′)}, (9)

where B = {(
√

2bi)
−2}d

i=1, a diagonal matrix of positive smoothness parameters, and d
is the dimension of x. These parameters are represented in a vector θ = (b1, . . . , bd, σ2),
and are called the hyperparameters. The hyperparameters bi’s have the effect of re-scaling
the distance between two inputs x and x′. Thus, they determine how close two inputs
x and x′ need to be such that the correlation between f (x) and f (x′) takes a particular value.

A stationary and isotropic RBF was used in this GP, which is invariant to both trans-
lation and rotation of the input data set. The hyperparameters can be optimised in order
to find the best fit of the GP, given the training dataD. The optimal hyperparameters are
found by maximising the log marginal likelihood

θmax = arg max
θ

log p( f |X, θ) , (10)

where the log marginal likelihood is given by

log p( f |X, θ) = −1
2

f TK−1 f − 1
2

log |K| − n
2

log 2π . (11)
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3.3. Gaussian Process Classification

In a classification setting, our data setDc = {(xi, yi)} consists of input features xi and
associated discrete class labels yi. A GPC can be fit on this data set and give prediction
in form of binary class probabilities y∗. To that end the output of a regression model is
squashed through a logistic function (e.g., sigmoid function, σ(·)). This transforms the
output from a domain of (−∞, ∞) to [0, 1].

Firstly, a latent variable f∗ is predicted corresponding to the input x∗

p( f∗|X, y, x∗) =
∫

p( f∗|X, x∗, f)p(f|X, y)df . (12)

and the class prediction can then be calculated using

p(y∗|X, y, x∗) =
∫

σ( f∗)p( f∗|X, y, x∗)d f∗ . (13)

Equation (12) is a non-gaussian likelihood function, due to the discrete class labels
in y. The integral can be computationally approximated using a Laplace approximation.

We use a GPC in the optimisation method in Section 5 to differentiate between scenar-
ios with valid and invalid time-to-collision label.

4. Sensitivity Analysis

In this section, the global sensitivity analysis (SA) of the model output is briefly de-
scribed. This allows for an evaluation of the relative importance of inputs when they are
varied generously, that is, when their uncertainty is acknowledged over a wide range.
The most common approach to global SA is the analysis of variance of the model response
originally proposed by Reference [33]. This approach, known also as Variance-based,
can capture the fraction of the model’s response variance explained by a models input on
its own or by a group of model inputs. In addition, this approach can also provide the total
contribution to the output variance of a given input, that is its marginal contribution and its
cooperative contribution. There are several methods, as discussed in References [33–35],
to compute this SA approach. In this paper, the GP-based SA method [36,37], which is com-
putationally more efficient, will be adopted and used to compute the sensitivity measures.

In order to carry out the SA using the methods proposed in References [36,37], we need
to examine how a function of interest, f (x), depends on its input variables. For the case of
this study, f will typically be the function that computes, for example, collision as a function
of a vector of input parameters (speed of ego car, speed of pedestrian stepping onto street,
distance between pedestrian and ego car at the time the pedestrian steps out, sensor range,
and horizontal field-of-view of sensor) as described and illustrated in Section 6.1.

We first need to introduce some important notations. We denote a d-dimensional
random vector as X = (X1, . . . , Xd), where Xi is the ith element of X, the sub-vector (Xi, Xj)
is shown by Xi,j. In general, if p is a set of indices, then Xp can be written for the sub-vector
of X whose elements have those indices. X−i is defined as the sub-vector of X containing all
elements except Xi. Similarly, x = (x1, . . . , xd) denotes the corresponding observed random
vector X. In this study, X is considered as an input vector consisting of all input parameters.

By considering the sensitivity of the input parameters in X, we can determine which
input parameters are most influential in inducing uncertainty in f . The main effects as
the function over the input range, which are introduced in Appendix A, provide a visual
tool to investigate how the logical scenarios respond to variations in each individual input
parameter. In the next section, the variance-based SA indices, including first-order and
total effects indices will be introduced.

4.1. Variance-Based Methods

The variance-based methods measure the sensitivity of the output Y = f (X), the out-
come of the scenario, to the changes in the model inputs in terms of a reduction in the
variance of Y. A review of the variance-based approach can be found in Reference [34].
Two principal measures of the sensitivity of the model output, Y to an individual input
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Xi are proposed. The first measure which is given in Equation (14), can be considered as
the expected amount by which the uncertainty in Y will be reduced if we learn the true
value of Xi. This can be also viewed as the variance of the main effect of Xi (as given in
Equation (A2)), Vi = var(zi(Xi)), or simply represented as,

Vi = var{E(Y | Xi)} . (14)

The second measure, proposed by Reference [38], can be written as:

VTi = var(Y)− var{E(Y | X−i)} , (15)

which is the remaining uncertainty in Y that is unexplained after everything has been learnt
except Xi.

These two measures (Equations (14) and (15)) can be converted into scale invariant
measures by normalizing with var(Y) as follows:

Si =
Vi

var(Y)
, STi =

VTi

var(Y)
= 1− S−i (16)

where Si is the 1st order index for Xi, and STi is the total effect index of Xi. The 1st order
indices measure the portion of variability that is due to variation in the main effects for
each input variable, while the total effect indices measure the portion of variability that is
due to total variation in each input.

It should be noted that the variance measures are linked to the Sobol decomposition
(as discussed in Appendix A), when the parameters are independent, and the total variance
of f (·) can be represented as the sum of the variances for each term given in Equation (14),
(see References [36,37,39] for further details about the Sobol decomposition and indices).

4.2. Emulators-Based Sensitivity Analysis

In principle, if the function of interest, f (x) was adequately simple, the sensitivity
measures, discussed in Section 4.1 and Appendix A, could be computed in an analytical
manner. As the function of interest representing an AV system/scenario become more com-
plex, which is the case for this paper, these SA measures cannot be analytically evaluated,
and thus a computationally more efficient and robust model is required to compute these
measures discussed in Section 4.1.

If f (x) is computationally cheap enough and can be quickly evaluated for a large
number of different inputs, standard MC methods would be sufficient to efficiently eval-
uate the SA measures described in Section 4.1. The MC-based computation techniques
proposed in References [33,34,40] demand considerable (thousands to millions) function
evaluations. Thus, these methods are impractical for a computationally expensive function,
such as the vehicle simulation at hand. In order to tackle this computational complexity,
the methodology proposed in References [36,37] was used and further developed based on
the Bayesian paradigm. A Bayesian approach lets us estimate all the quantities that are
required to examine the SA in modelling and predicting the outcomes of concrete scenarios
(derived of the two addressed logical scenarios), amounting to a global sensitivity analysis.

Until we actually run a concrete scenario in simulation, the functional relationship f (·),
between the scenario outcome and other input parameters are unknown for any particular
input configuration X. Within the Bayesian setting, it is therefore plausible to specify a
prior distribution for the unknown input parameters, X. Please note that placing prior
distribution on the input parameters would provide a useful operational meaning to the
SA measures of interest in this paper, and also provide a way to quantify the uncertainty
on the input parameters as described in Reference [37].

The elicited prior can then be updated to the posterior distribution via the Bayesian
paradigm in the light of the data, D = {(xi, yi) : yi = f (xi), i = 1, . . . , n}, generated via
simulation from a set of known concrete scenarios, as described in Section 5.1. The resulting
posterior distribution for f (·) can then be used to make formal Bayesian inferences about
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the SA measures discussed in the previous section. Although there is still uncertainty
about the exact value of the function f (·) at input values where it was not evaluated,
we can further reduce uncertainty when the correlation of function values from one point
to another is taken into account. This is done by taking the expected value of the obtained
posterior distribution as a point estimate for f (·). Furthermore, this means that there are
two different distributions being used in the SA computation: firstly, the distribution G rep-
resenting the uncertainty in the input parameters x, which is then propagated to the output
values through the function f (·); and secondly, the posterior distribution on f (·) which is
very necessary for the efficient computation of the SA measures. The uncertainty on the
model output (or the scenario output) can be reduced as much as required by evaluating
the function f (·) through many simulation runs and thus increasing the training points.
The next section describes the probabilistic approach for computing the SA measures using
the Gaussian Process emulator.

Inference for Variance-Based Sensitivity Analysis Measures

This section will outline how the GP posterior distribution, which we derived in
Section 3, can be used to estimate the sensitivity measures introduced in Section 4.1 and
Appendix A. As stated in Reference [36], we can use the GP emulator developed to
probabilistically estimate f (·), to make inference about the main and interaction effects of
f (·), since they can be considered as linear combinations of f (·). Furthermore, since the
posterior distribution of f (·) is a multivariate Gaussian distribution (c.f. Equation (4)),
the resulting posterior distribution for the main and interaction effects is also a multivariate
Gaussian distribution. Specifically, if the posterior mean for f (·) is given by Equation (5),
then the posterior mean of the following quantity

E( f (X) | xp) =
∫

χ−p
f (x)dG−p|p(x−p | xp), (17)

(recalling that χ−p denote the input space associated with x−p, and G−p|p(x−p | xp) is
conditional distribution of x−p given xp under the input parameters distribution, G), can be
written as

Epost{E( f (X) | xp)} = Tp(xp)K−1y , (18)

where

Tp(xp) =
∫

χ−p
t(x)TdG−p|p(x−p | xp) . (19)

The posterior mean of main effect or interaction can be similarly obtained as follows:

Epost{zi(Xi)} = {Ti(xi)− T}K−1y (20)

Similarly, we can derive the standard deviations of the main effects and interactions.
For further details see References [36,37].

After evaluating Equation (20) for all inputs Xi, we can visually assess the main
effects by plotting their posterior means Epost(zi(Xi)) against xi, typically with bounds of
plus and minus two posterior standard deviations. In order to see the influence of each
variable, the input variables can be standardized and Epost(zi(Xi)) drawn in a single plot
for i = 1, . . . , d. The results of the SA of the two logical scenarios of interests in this paper
will be presented in Section 6.

Direct posterior inference for the variance-based measures introduced in Section 4.1,
Vi and VTi , is more complex as these measures are quadratic functionals of f (·).
See Reference [36] for detailed discussion on mathematical approached of dealing with
quadratic functional forms of f (·).
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5. Method for Scenario Optimisation and Data Acquisition through Simulation

In this section, we present the methodology to optimise a given logical scenario to-
wards the most critical concrete scenarios. We discuss how the scenario data sets required
to train the GP models and compute the SA measures, as described in Section 4, are gener-
ated using a vehicle simulation. The optimisation method is later applied to an exemplary
functional scenario of a pedestrian stepping onto the road in front of the AV, described in
Section 6.

The AV scenario, according to the scenario-based testing methodology described
above, must be parameterised in terms of a set of input parameters. These scenario param-
eters define the functional scenario and by providing concrete values for each parameter,
the concrete scenarios are constructed. The scenario parameters are selected to describe the
geometric constitution of the functional scenario, the behaviour of the respective actors and
the physical characteristics of the AV. Additionally, to supply a useful operational meaning
to the sensitivity measures described in this paper, it is important that the input parameters
considered for each scenario have a reasonable operational interpretation. Constricting the
parameter space to reasonable ranges also facilitates the optimisation towards critical sce-
narios without excluding possible scenarios ex-ante. In order to ensure that the parameters
are meaningful and to be able to model the uncertainty on these parameters, we assume
these parameters are independently distributed according to some statistical distributions
over realistically chosen ranges.

Based on a given logical scenario description, we present a method to optimise its
parameters towards concrete scenarios with the targeted level of criticality. An overview
of the method is shown in Figure 2. The method extends the notion of modelling a
logical scenario with a GP model as shown in Reference [8], by implementing an iterative
update step, where new information is collected by executing selected concrete scenarios
in simulation. The method starts with an initial set of concrete scenarios, which are
evaluated using a vehicle simulation and scored with a criticality metric, as described in
Section 5.2. This data set is then used to train the GP models, which in turn are used in an
optimisation algorithm to create candidate scenarios predicted to be most informative in
finding critical scenarios. This algorithm is described in Section 5.3. The method and the
resulting, optimised data set of critical scenarios are described in Section 6 on an exemplary
scenario of a pedestrian stepping onto the road.

Candidate Genera�on Training GP Models

Simulation Output

Scenario Scoring

Train Gaussian 

Process Models

on scenario data set

Minimal 

Time-to-Collision

Scenario 

Parameters

Scenario

results

combined

to data set
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CarMaker Vehicle

Simula�on

Set of ini�al 

concrete scenarios
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Generate batch 

of unknown
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Predic�on of unknown 
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Selec�on of most 
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Figure 2. Overview of the automated vehicle (AV) Scenario Optimisation Method.

5.1. Initial Scenario Data Set and Data Generation via Simulation

In order to represent a logical scenario with a GP model, an initial data set of concrete
scenarios is necessary to accurately train the GP model. In this section, we briefly describe
the sampling method used to construct an initial data set that is optimally suited to train
the GP models.
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We use a Latin Hypercube (LHC) design to create an initial data set of predefined
size [41]. In LHC, the scenario space is divided into equal parts, so-called Latin Hypercubes,
where the sampling positions are randomly chosen from the input probability distribution.
This ensures that the entire scenario space is covered as evenly as possible, without leaving
large areas uncovered or areas where many samples are densely packed.

The LHC design has been found to be superior to a random sampling strategy (MC
sampling) for modelling logical scenarios [8]. In a numerical experimental study conducted
by Reference [42], it was illustrated that the sampling error for MC is 20 times larger than
for the LHC based sampling method. However, the published theoretical results show that
the sampling error of the MC goes down as O(n−1/2), whereas the sampling error for LHS
is O(n−1), quadratically faster, for almost all distributions and statistics in common use.
In other words, if you need n samples for a desired model accuracy using LHC, you will
need n2 samples for the same accuracy using MC sampling method [37].

While it is possible to increase the size of an MC sample data set by generating more
data from the uniform distributions of input parameters, the same is not possible for data
sets designed with the LHC method. The sample, based on the LHC sample method,
will be optimally generated according to the requested sample size and the range of input
parameters. As the computational complexity of training a GP model is O(n3), a relatively
small initial set of 100 concrete scenarios is chosen. A GP model trained on this data set is
sufficient for use in the search algorithm described in Section 5.3.

Once a data set of concrete scenarios is available, the concrete scenarios are passed
to the simulator to be executed, as shown in Figure 2. Here, the functional scenario is
modelled and evaluated in the vehicle simulation software CarMaker [32]. The ego vehicle,
along with the actors and geometric layout of the scenario are therein modelled in a way,
that the scenario parameters can be set to the concrete values provided by the initial data
set and the optimisation algorithm. Section 6.1 describes the modelling of the exemplary
scenario in detail.

The drawback with this approach is, that with a change in the logical scenario,
the modelling in the simulation needs to be adapted and the optimisation conducted
again. The advantage of using simulation, however, is the ability to swiftly generate the
required simulations of the concrete scenarios from the given logical scenario. It also pro-
vides all the necessary measurements to assign a score to each concrete scenario, indicating
the outcome, and thus enabling the construction of a data set, which can be used to train
the GP surrogate models.

5.2. Scenario Scoring

In order to be able to model the concrete scenario data using a Gaussian Process, a
label or score needs to be assigned to each concrete scenario. Therefore, we assess the input
parameters on their impact on the outcome of the scenario, by evaluating the data provided
by the simulator. The score of the scenario needs to reflect the criticality, in order to
focus the testing effort towards more critical scenarios, close to the performance boundary.
The intention behind this is to omit concrete scenarios that certainly do or do not end in a
collision. These are concrete scenarios far from the performance boundary and therefore
less interesting for the validation of AVs. As scoring metric, the minimal time-to-collision
(TTC) was therefore chosen as criticality measure. The TTC has previously been described
as an effective measure for rating the severity of scenarios involving longitudinal conflicts
in collision avoidance systems [43] and can thus be used to differentiate between critical
and non-critical scenarios for AVs in the considered scenarios. The TTC can be calculated by

TTC =
drel
vrel

, (21)

wherein drel and vrel are the relative distance and relative velocity between the ego vehicle
and in the exemplary scenario, the pedestrian that is stepping onto the road. In order to
obtain a single score for the concrete scenario, the TTC is calculated at every time step of
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the simulation. The minimum TTC value over the entire duration of the concrete scenario is
then taken as its criticality measure. It is to be noted that drel and vrel are not equivalent to
the scenario parameters d and S1/S2, as described in Section 6.1. The quantities, drel and vrel
change over the course of the scenario, depending on the actions of the ego vehicle and the
pedestrian. The scenario parameters influence drel and vrel and thus the TTC, but the exact
relationship is to be analysed hereby.

Van der Horst and Hogema [43] specified the threshold for a critical scenario to be 1.5 s,
which we will use as an optimisation criterion in the following section. A TTC threshold
of 1.5 s will not target scenarios which result in a collision. While collision scenarios are
certainly of value in an AV validation, the goal in this work is to find critical corner case
scenarios, which are scenarios that almost resulted in a collision.

5.3. Methodology for Scenario Optimisation

After showing the efficacy of modelling logical scenarios using GP models in Refer-
ence [8], a logical next step is to optimise the validation process towards only simulating
concrete scenarios that are most critical. The parameter space of the logical scenario de-
scribed in Section 6.1 includes parameter combinations which could lead to less interesting
concrete scenarios. These include, for example, the concrete scenarios, where the pedestrian
crosses the road long before the ego vehicle reaches the intersection point or on the contrary,
where the pedestrian crosses the road after the ego vehicle has passed. These concrete
scenarios are not particularly interesting for a validation of the AV, as no direct interac-
tion or conflict arises. In the following, we present a method to optimise the parameter
space of the logical scenario to find the critical concrete scenarios that were determined by
evaluating the TTC measure as outlined in Section 5.2.

We apply a two-stage GP approach for a given logical scenario, consisting of GPC
and GPR models as defined in Section 3. Firstly, an initial data set DI = {(xI)} of
concrete scenarios is created from the definition of the selected logical scenario. Since
it is desired to evenly cover the entire parameter space of the logical scenario, the LHC
approach as described in Section 5.2 was chosen as the optimised design to generateDI .
The corresponding outputs (yI) to the concrete scenarios are then determined by computing
the criticality measure of each concrete scenario as described in Section 5.2.

The initial data set augmented by the computed outputs, DI = {(xI , yI)}, is con-
verted into a classification data set DC = {(xc, yc)} where the superscript c stands for
classification, and a data setDR = {(xr, yr)}, which is used for regression modelling, thus
the superscript r. For DC, the output or label (yc) of each concrete scenario instance is
binary, describing whether the concrete scenario has a valid TTC (yc = 1) or not (yc = 0).
This is done in order to filter out scenarios where the pedestrian crosses the road far ahead
or behind the ego vehicle, as previously described. Such concrete scenarios would not
have a valid TTC, as either Equation (21) cannot be reasonably evaluated, or the TTC is
obstructively large and thus not of interest. Furthermore, DR is then the subset of the
concrete scenarios in DC with label yc = 1, but the output (label) of the DR data set, yr,
is the actual minimum TTC score as calculated by Equation (21).

These two data sets are then used in the two-staged GP approach, as described in
Algorithm 1. Further inputs to Algorithm 1 are the total number of newly generated,
critical scenarios N, the number of candidates used in each iteration ncand, and the target
TTC measure ttctarget.
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Algorithm 1: Scenario Optimisation

Input: DC = {(xc, yc)},DR = {(xr, yr)}, N, ncand, ttctarget
Result: Dcrit

for iter = 0 to N do
x∗ ← rand(ncand) /* create ncand candidate scenarios */

GPC train←−− DC /* GPC model */

GPR train←−− DR /* GPR model */
ŷ∗c ← GPC.predict(x∗)
x∗ttc ← x∗(ŷ∗c = 1) /* get candidates predicted to have a TTC */
ŷ∗ttc, σ̂∗ttc ← GPR.predict(x∗tcc) /* get predicted TTC of candidates
from GPR */

x∗opt ← H(ŷ∗ttc, σ̂∗ttc, ttctarget) /* apply selection heuristic to GPR
predictions */

while ynew = ∅ do
/* while no TTC in scenario found */
x∗opt ← x∗opt.pop() /* select scenario candidate that is most
favourable */

ynew ← sim(x∗opt) /* get actual TTC from sim */
end
{DC,DR,Dcrit}.append(x∗opt, ynew) /* add simulated scenario and
corresponding TTC to respective data sets */

end

In order to find critical scenarios, firstly a large pool of ncand concrete scenarios is
generated at random and the GPC and GPR models are trained on the respective data
sets. The GPC model is then used to predict which of the randomly generated candidate
scenarios x∗ have a valid TTC, meaning the corresponding predicted output label is ŷ∗c = 1,
based on the knowledge from previously executed scenarios in DC. Those candidate
scenarios of the original candidate pool, which are predicted to have a valid TTC, x∗tcc,
are then used with the GPR model to predict the TTC measures of each scenario candidate
in x∗tcc. A heuristic as described in Reference [44] is used to rank the candidate scenarios
according to their significance.

The heuristic trades of the proximity of the candidate scenario to the criticality thresh-
old ttctarget with the predictive variance supplied by the GPR model, which indicates
the uncertainty of the prediction. Thus concrete scenarios which are close to the critical-
ity threshold and unknown to the predictive GPR model are scored highest. A straddle
heuristic as given in Reference [44] was found to yield the best selection results:

H(s) = 1.96 ∗ σ̂∗ttc − |ŷ∗ttc − ttctarget| . (22)

In Equation (22), σ̂∗ttc and ŷ∗ttc designate the predictive variance and TTC of a given
candidate scenario, provided by the GPR model, and s = (ŷ∗ttc, σ̂∗, ttctarget).

The most favourable scenario candidate x∗opt is then selected according to the highest
score calculated by Equation (22). This concrete scenario is then actually evaluated in the
Carmaker simulation model. If no valid TTC is found, the next best scenario candidate is
chosen according to H(s).

Finally the data setsDC andDR are updated with the new information ({(xc
opt, yc

new)}
and {(xr

opt, yr
new)}) from the simulation, and the found critical concrete scenario ({x∗opt, ynew})

is added to a data set of critical scenariosDcrit . Algorithm 1 is executed until the predefined
number of N critical scenarios are found.

Since the data setsDC andDR used in the GPC and GPR models of the logical scenario
are updated after each iteration, Algorithm 1 iteratively improves the knowledge of the
performance boundary of critical scenarios around ttctarget.
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6. Results

In the following the results of the proposed optimisation method are presented. Firstly,
the previously mentioned exemplary scenario of a pedestrian stepping onto the road in
front of the AV is described in Section 6.1. The results of the optimisation method applied
to this exemplary functional scenario are then presented in Section 6.2, including the
optimised data set of critical scenarios.

Furthermore, we conduct a probabilistic sensitivity analysis as introduced in Section 4,
on the optimised scenario data set generated with the method from Section 5. Additionally,
we conduct the same sensitivity analysis on a previously generated scenario data set taken
from Reference [8]. This data set is less complex and can thus be analysed visually to
validate the sensitivity analysis. The results from the sensitivity analyses are presented in
Section 6.3.

6.1. Description of the Pedestrian Step-Out Scenario

We show the efficacy of the optimisation method on the functional scenario of a
pedestrian stepping onto the road in front of the ego vehicle. In this functional scenario,
the ego vehicle is driving along a straight road, when suddenly a pedestrian crosses in front
of the vehicle from the near side of the road. Furthermore, the pedestrian is occluded behind
a parked car, and only becomes visible once they step onto the driving lane, as illustrated in
Figure 3. The ego vehicle is similarly fitted with a non-pivoting radar sensor, and equipped
with longitudinal control and emergency braking systems. The radar sensor was set to
recognise obstructions such as pedestrians in the driving lane of the ego vehicle and pass
these on to the vehicle control.

Figure 3. Pedestrian step-out scenario with the yellow ego vehicle, the pedestrian and a static blue
vehicle, which acts as an obstruction so that the pedestrian is only seen once they step onto the
driving lane.

The scenario can be described in its logical form using the following 5 input parameters:

1. Speed of ego vehicle (S1);
2. Speed of pedestrian stepping onto street (S2);
3. Distance between pedestrian and ego vehicle at the time the pedestrian steps out (d);
4. Sensor Range (blue cone) (SR);
5. Horizontal field-of-view of sensor (opening angle of blue cone) (H).

In addition to the initial speed of the ego vehicle, the speed of the pedestrian, which in
this case moves in a straight line orthogonal to the ego vehicle, is parametrised. The radar
sensor is parametrised using two input parameters: its horizontal field-of-view and its
range. Furthermore, we add a parametrisation of the distance between the ego vehicle
and the pedestrian, controlling when the pedestrian starts their movement to step onto
the road. This spans up a five-dimensional logical scenario space, from where possible
concrete values are sampled. The ranges of these five input parameters are listed in Table 1.
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Table 1. Input parameters for the pedestrian step-out scenario and their ranges.

Simulation Parameters Lower Limit Upper Limit

S1 [km/h] 10 50
S2 [km/h] 2 15

d [m] 5 40
SR [m] 10 100
H [deg] 45 150

6.2. Optimised Critical Scenarios for the Pedestrian Step-Out Scenario

The optimisation as described in Section 5.3 was run for N = 100 iterations. This yielded
100 critical concrete scenarios inDcrit, which are close to the critical TTC of ttctarget = 1.5
seconds. The initial dataDI , constructed via LHC sampling to optimally fill the parameter
space, had a size of 100 concrete scenarios and was executed in simulation. From DI ,
the classification data setDC and the regression data setDR were constructed and then
fed into Algorithm 1. In every iteration of Algorithm 1, a new candidate scenario pool of
size ncand = 1000 was used.

To account for variations in the sampling, the optimisation was repeated three times
with different initialisation seeds. The optimised concrete scenarios of one of the experi-
ments are visualised in Figure 4. The concrete scenarios are coloured according to their
actual minimum TTC measure, as evaluated in the simulation. In the three repetitions,
between 71%–75% of the concrete scenarios inDcrit are within 0.5 s of the target TTC of
1.5 s, while only 9%–12% had a TTC higher than 2 s. Between 15%–18% of the concrete
scenarios that were found had a TTC between 0 and 1 s.

Furthermore, we evaluated the Mean Absolute Error (MAE) and Root-Mean-Squared
Error (RMSE) of the optimised scenario with respect to the target TTC. The resulting set of
MAE = {0.086, 0.146, 0.114}, measured in seconds, shows very low deviation from the TTC
target of 1.5 s. The RMSE was calculated to {1.516, 1.426, 1.297} seconds. The RMSE is more
sensitive to outliers than the MAE. This can be observed here, as there are a few larger
outliers in the data set of optimised scenarios. The largest outlier scenario had a minimum
TTC of 11 s, as can be seen from Figure 4. The inclusion of these scenarios might be due to
a slightly inaccurate prediction in the GP models, or they were included by the heuristic on
purpose to explore the scenario space. This is the case, if one of the scenario candidates has
a high predictive variance. It is then included by the heuristic according to Equation (22) to
explore the scenario space and improve the GP models.
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Figure 4. Combinations of scenario parameters of critical scenarios for the pedestrian step-out scenario.
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6.3. Probabilistic Sensitivity Analysis of Scenario Data Sets

It is further necessary to analyse the sensitivity of the scenario parameters, in order
to determine the efficacy of this method. We conducted a novel sensitivity analysis based
on the GP models used to model the pedestrian step-out scenario, the results of which are
presented in Section 6.3.1. The SA enables us to determine the influence of the scenario
parameters on the outcome and could be used to reduce the sampling density of less
influential parameters, and thus overall computational effort.

Furthermore, we conduct a sensitivity analysis on a second scenario data set taken
from Reference [8]. This data set modelled a less complex traffic jam approach scenario,
which could be visually analysed. The second scenario and corresponding results of the
probabilistic sensitivity analysis are described in Sections 6.3.2 and 6.3.3.

6.3.1. Sensitivity Analysis of the Pedestrian Step-Out Scenario

As described above, the probabilistic SA measures are very important to evaluate the
influence of the input parameters on the scenario outcome. Additionally, the SA would aid
in simplifying the final model formulating the AV scenario. Reducing the dimensionality of
the parameter space would be very practical in better visualising the performance boundary
of the scenarios with a dimensionality larger than three. In this section, the probabilistic SA
measures for the pedestrian step-out scenarios will be efficiently computed and illustrated
using the GP-based method, as described in Section 4.2.

For the pedestrian step-out scenario, it is not feasible to examine the main effects
from a plot of all the executed concrete scenarios, as the dimensionality of parameters is
larger than 3. Thus a probabilistic sensitivity analysis is here more appropriate than for a
simple scenario as presented in Reference [8]. The main effects are shown in Figure 5 and
discernibly linear, with parameter S1 having an opposite influence on the scenario outcome
than S2 and d. The almost horizontal lines of parameters SR and H and low values of
their first-order sensitivity indices (c.f. Table 2) imply a negligible influence on the scenario
outcome. This information can, for example, be used to change the sampling behaviour for
these two parameters to be more conservative, as their effect on the scenario outcome is
small. More dense sampling is however advised on S2 and d and especially S1, as it has the
highest impact on the variability of the output.

By comparing the total effect sensitivity indices with the first-order sensitivity indices
in Table 2, it is evident that interaction effects between input parameters are largely negligi-
ble. Table 2 presents the SA indices to evaluate the sensitivity of the scenario outcome with
respect to changes in the input parameters presented in Table 1.

It is evident that ‘speed of ego car (S1)’ and ‘speed of pedestrian stepping onto street
(S2)’ are the most influencing factors affecting the outcome of the pedestrian step-out
scenario according to their variance contributions, 28% and 17.5%, respectively. It should
be noted that SA indices reported in Table 2 are all computed based on 100 data points
selected using the LHC sampling method. We can also say that 54.5% of total variance
can be explained by the first-order interaction between (S1, S2), which is very significant.
In other words, we can say that the total variance of the scenario outcome can be explained
based on S1, S2 and their first-order interaction. The estimated posterior mean and variance
of the fitted GP to this data set were reported to be 0.83 and 0.028, respectively.

Figure 5 and Table 2 illustrate the first order (Si) and total effect (STi ) variance-based
sensitivity indices for the input parameters. Using these sensitivity measures, we can
similarly conclude that the outcome of the pedestrian step-out scenario is more sensitive
to S1, d (distance between pedestrian and ego vehicle), and S2, consecutively. It seems
the conclusions taken from these SA indices are slightly different from those taken from
the main and the first-order interaction effects. We can argue that the interaction between
the speeds of ego vehicle and pedestrian could be somehow represented in terms of the
distance between pedestrian and ego car. Furthermore, these variance-based sensitivity
indices suggest that both the sensor range and horizontal field-of-view of the sensor do
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not have a manoeuvresignificant impact on the outcome of the scenario (i.e., its minimum
time-to-collision).

Figure 5. The estimated main effects, 1st and 2nd order sensitivity indices of the parameters in the pedestrian step-out
scenario as discussed in Table 1.

Table 2. The emulator-based sensitivity analysis (SA) of the pedestrian step-out scenario (c.f. Section 6.1).

Parameters Variance (%) Si STi

Speed of ego vehicle (S1) 27.98 0.4221 0.4843
Speed of Pedestrian stepping onto street (S2) 17.47 0.2468 0.2852

Distance between pedestrian and ego vehicle (d) 0 0.265 0.3215
Sensor Range (SR) 0 0.0124 0.0196

Horizontal field-of-view of sensor (H) 0 0.0128 0.0199
(S1, S2) 54.53

Total Variance (%) 99.99

Estimated mean output 0.83 ± 9.0905 × 10−6

Estimated variance output 0.028

6.3.2. Scenario Description of the Traffic Jam Scenario

Furthermore, we took a scenario data set from Reference [8], and used the same
SA methods on the data. Since the scenario considered in Reference [8] is simpler and
only involves three scenario parameters, a direct comparison of the SA with the visual
assessment of the scenario data set is possible and can thus validate the SA method.

The functional scenario considers an AV, equipped with a forward-facing radar sensor
to detect objects, which approaches a traffic jam in which vehicles are moving considerably
slower than the approaching ego vehicle. Furthermore, the road layout is a left-turning
curve with a fixed radius of 50 m, where the vehicles under consideration travel on the outer
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lane. The traffic jam is represented by the last vehicle driving in it to reduce simulation
complexity and the ego vehicle has a clear line of sight on the traffic jam. Figure 6 illustrates
the functional setup of the scenario. It is ensured that the vehicle always arrives at the
traffic jam while turning on the curved road. An overtaking manoeuvre of the AV in this
scenario is not desired, as the opposite lane might not be free.

Figure 6. Traffic jam approach scenario with the blue target vehicle and the yellow ego vehicle
equipped with a radar sensor.

In order to carry out scenario-based testing, a logical scenario representation is de-
fined from this functional description. The scenario was parametrized with the following
three parameters:

1. Speed of the ego vehicle (S1)
2. Speed of the traffic jam (S2)
3. Aperture angle of the radar sensor (AA)

The logical scenario description furthermore requires the input parameters to be
restricted on realistic ranges, to loosely constrict the scenario space. These ranges can be
found in Table 3, representing the logical description of the scenario.

Table 3. Input parameters for the traffic jam approach scenario and their ranges.

Simulation Parameters Lower Limit Upper Limit

S1 [km/h] 40 70
S2 [km/h] 5 20
AA [deg] 10 25

The concrete scenarios for the traffic jam scenario were scored on a binary scale,
depending on whether the ego vehicle was able to prevent a collision (0) or not (1). This
poses a binary classification problem, which was modelled using a GPC as described in
Section 3.3. The exact description of the scenario data set and its modelling can be found
in Reference [8].

6.3.3. Sensitivity Analysis of the Traffic Jam Scenario

The results of the SA for the traffic jam scenario are visualised in Figure 7, where the
main effect plot reflects what is already known from studying the visualisation of the three
scenario parameters as discussed and illustrated in Reference [8]. The influence of S1 on the
scenario outcome is contrary to the influence of S2 and AA, with all of them having linear
effects over the entire input domain. In concrete terms, this means, the logical scenario
results in a collision for higher values of S1 and lower values of S2 and AA.
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Figure 7. The estimated main effects, 1st and 2nd order sensitivity indices of the parameters in the traffic jam scenario as
discussed in Table 3.

The box plot of the first-order sensitivity indices in the middle of Figure 7 shows that
parameter S1 has the highest effect on the scenario outcome, followed by AA and S2. It is
to be noted that the uncertainty in the box plots includes the uncertainty about the input-
output relationship as well as the uncertainty of the integration estimates for the emulator.

For uncorrelated input parameters and a deterministic response, the first-order sensi-
tivity index would be equal to the total effect sensitivity index, Si = STi . A comparison of
the first-order sensitivity indices with the respective total effect sensitivity indices there-
fore presents a measure of the proportion of variability due to interaction between input
parameters. From Figure 7 and the values listed in Table 4, it is discernible that the total
effect of all three parameters is significantly higher than the first-order sensitivity indices.
This indicates interaction effects between the input parameters causing a portion of the
variability in the scenario outcome.

Table 4. The emulator-based SA of the traffic jam scenario (c.f. Section 6.3.2).

Parameters Variance (%) Si STi

Speed of ego vehicle (S1) 28.88 0.3122 0.6160
Speed of traffic jam (S2) 16.64 0.1289 0.4088

Sensor Aperture Angle (AA) 31.18 0.2427 0.5438
(S1, S2) 3.72

(S1, AA) 6.21
(S2, AA) 3.87

Total Variance (%) 90.49

Estimated mean output 0.537633 ± 8.1986 × 10−5

Estimated variance output 0.136
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Table 4 reports the probabilistic SA measures for the scenario outcome (collision or
no-collision) with respect to the changes of the input parameters discussed in Table 3.
From the second column of Table 4, we can say that 31.2% of total variance (also known as
the main effect and explained in Section 4) can be explained by AA (sensor aperture angle)
based on 100 data points selected using the LHC sampling method, while main effects of
‘Speed of ego vehicle’ (S1) and ‘Speed of traffic jam’ (S2) are describing 28.9% and 16.6% of
total variance, respectively. We can then conclude that the outcome of the scenario is more
sensitive to variation of AA than S2. Note that the main effect proportions do not sum to
100% of the variance. The remaining variance after the main effects are deducted from the
total variance is thus explained by the first-order interactions (13.8%) and the third-order
interaction (9.51%), as explained in Appendix A.

The data set used to train the GP emulator required for classification and computing
the SA measure was almost balanced in the sense that 56% of concrete scenario outcomes
resulted in a collision. The estimated posterior mean and variance of the fitted GPC to this
data were reported to be 0.537 and 0.136, respectively.

Using the first order (Si) and total effect (STi ) variance-based sensitivity indices from
Figure 7 and the Table 4, we can conclude that the outcome of the traffic jam scenario is
more sensitive to S1, AA and S2, consecutively.

7. Conclusions and Future Work

In this article, we showed how Gaussian Process models can be used to test AVs in
a scenario-based setting. We used a vehicle simulation of scenarios to compile concrete
scenario data and train probabilistic models to predict the scenario outcomes. GPs were
formally introduced and it was shown that GP models can predict the outcomes of a logical
scenario including several actors and their interactions.

We presented a method to optimise the parameter space of a logical scenario towards
critical scenarios, measured by their minimal time-to-collision. This active learning method,
as presented in Algorithm 1, was then evaluated on an exemplary functional scenario
of a pedestrian stepping onto the road in front of the ego vehicle. The scenario was
parametrised with 5 scenario parameters and the optimisation method sampled between
71–75% of new concrete scenarios within 0.5 s of the targeted, critical time-to-collision
of 1.5 s. The Mean Absolute Error was between 0.086 and 0.146, while the Root-Mean-
Squared Error was between 1.297 and 1.516, measured in seconds and for differently seeded
initialisations of the method. The resulting data set of critical scenarios consisted of the
targeted 100 concrete scenarios.

Furthermore, we formally introduced and conducted a probabilistic sensitivity analy-
sis on the optimised data set and found that the configurations of ego speeds, actor speeds
and the geometric layout of the scenario had the strongest effect on the scenario outcome.
Sensor parameter variations were found to have a lower impact. This information can be
used to further restrict the parameter space of the logical scenarios and denser sampling of
the most important parameters.

The same probabilistic sensitivity analysis was also conducted on a simpler scenario
data set of a functional scenario describing a traffic jam approach, taken from literature.
On this functional scenario, a visual analysis of the parameter influences was possible and
could therefore be linked to the results of the probabilistic sensitivity analysis and validate
the sensitivity results. For the functional scenario of the pedestrian stepping onto the road,
it is not possible to visually analyse the scenario parameter influences, due to the higher
number of parameters.

A limitation of the optimisation method is the fitting of GP models in every iteration
step, which is computationally expensive. This could be improved if the GP model fitting
is adapted to only incorporate the newly found concrete scenario, instead of refitting the
GP models in every iteration. Further research is also necessary into the efficacy of different
selection heuristics, which trade off exploration and exploitation of the logical scenario
parameter space. This is something we plan for future work, along with extending the GP
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modelling to be able to classify multiple possible outcomes of the scenario, for example in
several criticality classes and with different criticality metrics.
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Appendix A. Function Decomposition for Main Effects and Interactions

Sobel [33] proves that any quadratically integrable function f (·) can be decomposed
in terms of its main effects and interactions as follows:

y = f (x) = z0 + Σd
i=1 zi(xi) + Σi<j zi,j(xi,j) + . . . + z1,2,...,d(x) (A1)

where the relationship between y and x is formulated via y = f (x), f (·) is a function of
uncertain quantities x, and its expected value is denoted by z0 = E[ f (X)]. The function
zi(xi) appeared in Equation (A1) is the main effect of the ith variable, xi, and defined as:

zi(xi) = E[ f (X) | xi]− E[ f (X)] (A2)

The main effect, zi(xi) is the function of xi only that best approximates f (·) in the
sense of minimizing the variance (calculated over the other variables) [36,37].

The function zi,j(xi,j) given in Equation (A1), and defined in the Equation (A3),
describes the first-order interaction between xi and xj, and similarly zi,j,k(xi,j,k) is the second-
order interaction, and so on.

zi,j(xi,j) = E[ f (X) | xi,j]− zi(xi)− zj(xj)− E[ f (X)] (A3)

The main effect has a straightforward interpretation for the context of present study;
it is the expected change to the scenario outcome that would be obtained if we were
to know that parameter i has value xi, taking into account the residual uncertainty in
the other parameters. Additionally the decomposition of variance formula described in
Equation (A4) implies that the variance of the main effect for parameter i is the expected
amount by which the variance of f would be reduced if the value of parameter i was known.

var(Y) = E(var(Y|X) + var(E(Y|X)) (A4)

From Equation (A1), it is visible that the functions in the Sobol decomposition are pair-
wise orthogonal [45]. The used prior distribution of the input parameters (denoted by G),
affects the definition of the main and interaction effects terms given in Equation (A1)
(more details are discussed in Section 4.2).

References
1. ADAC. Zahlen, Fakten, Wissen. Aktuelles aus dem Verkehr; Technical Report; ADAC e.V.: München, Germany, 2016.
2. Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al.

Making Bertha Drive—An Autonomous Journey on a Historic Route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [CrossRef]
3. SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; Technical Report; SAE:

Warrendale, PA, USA, 2018.
4. Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle

reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [CrossRef]

http://doi.org/10.1109/MITS.2014.2306552
http://dx.doi.org/10.1016/j.tra.2016.09.010


Appl. Sci. 2021, 11, 775 22 of 23

5. Zhang, S.; Peng, H.; Zhao, D.; Tseng, H.E. Accelerated Evaluation of Autonomous Vehicles in the Lane Change Scenario Based on
Subset Simulation Technique. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3935–3940. [CrossRef]

6. Batsch, F.; Kanarachos, S.; Cheah, M.; Ponticelli, R.; Blundell, M. A taxonomy of validation strategies to ensure the safe operation
of highly automated vehicles. J. Intell. Transp. Syst. 2020, 1–20. [CrossRef]

7. Menzel, T.; Bagschik, G.; Maurer, M. Scenarios for Development, Test and Validation of Automated Vehicles. In Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1821–1827. [CrossRef]

8. Batsch, F.; Daneshkhah, A.; Cheah, M.; Kanarachos, S.; Baxendale, A. Performance Boundary Identification for the Evaluation of
Automated Vehicles using Gaussian Process Classification. In Proceedings of the 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 419–424. [CrossRef]

9. Ulbrich, S.; Menzel, T.; Reschka, A.; Schuldt, F.; Maurer, M. Defining and Substantiating the Terms Scene, Situation, and Scenario
for Automated Driving. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems,
Las Palmas, Spain, 15–18 September 2015; pp. 982–988. [CrossRef]

10. Zlocki, A.; Eckstein, L.; Fahrenkrog, F. Evaluation and Sign-Off Methodology for Automated Vehicle Systems Based on Relevant
Driving Situations. Transp. Res. Rec. J. Transp. Res. Board 2015, 2489, 123–129. [CrossRef]

11. Khastgir, S.; Dhadyalla, G.; Birrell, S.; Redmond, S.; Addinall, R.; Jennings, P. Test Scenario Generation for Driving Simulators
Using Constrained Randomization Technique. SAE Tech. Pap. 2017, 1–7. [CrossRef]

12. Althoff, M.; Mergel, A. Comparison of Markov Chain Abstraction and Monte Carlo Simulation for the Safety Assessment of
Autonomous Cars. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1237–1247. [CrossRef]

13. Gietelink, O.; De Schutter, B.; Verhaegen, M. Probabilistic validation of advanced driver assistance systems. IFAC Proc. Vol.
2005, 38, 97–102. [CrossRef]

14. Zhao, D.; Huang, X.; Peng, H.; Lam, H.; LeBlanc, D.J. Accelerated Evaluation of Automated Vehicles in Car-Following Maneuvers.
IEEE Trans. Intell. Transp. Syst. 2018, 19, 733–744. [CrossRef]

15. Zhao, D.; Peng, H. From the Lab to the Street: Solving the Challenge of Accelerating Automated Vehicle Testing. arXiv 2017,
arXiv:1707.04792

16. Ngo, A.; Bauer, M.P.; Resch, M. A Sensitivity Analysis Approach for Evaluating a Radar Simulation for Virtual Testing of
Autonomous Driving Functions. In Proceedings of the 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS),
Singapore, 17–19 July 2020; pp. 122–128.

17. Nolte, M.; Schubert, R.; Reisch, C.; Maurer, M. Sensitivity Analysis for Vehicle Dynamics Models—An Approach to Model
Quality Assessment for Automated Vehicles. arXiv 2020, arXiv:2005.03872.

18. Fraikin, N.; Funk, K.; Frey, M.; Gauterin, F. Efficient Simulation Based Calibration of Automated Driving Functions Based on
Sensitivity Based Optimization. IEEE Open J. Intell. Transp. Syst. 2020, 1, 63–79. [CrossRef]

19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

20. Al-Qizwini, M.; Barjasteh, I.; Al-Qassab, H.; Radha, H. Deep learning algorithm for autonomous driving using GoogLeNet.
In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 89–96.
[CrossRef]

21. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
22. Esmaeilbeigi, M.; Daneshkhah, A.; Chatrabgoun, O. Some Computational Considerations for Kernel-Based Support Vector

Machine. In Digital Twin Technologies and Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 177–189.
23. Remmen, F.; Cara, I.; de Gelder, E.; Willemsen, D. Cut-in Scenario Prediction for Automated Vehicles. In Proceedings of the

2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–7.
[CrossRef]

24. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive computation and machine learning; MIT Press:
Cambridge, MA, USA, 2006; p. 266.

25. Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [CrossRef]
26. Kim, K.; Lee, D.; Essa, I. Gaussian process regression flow for analysis of motion trajectories. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1164–1171. [CrossRef]
27. Ellis, D.; Sommerlade, E.; Reid, I. Modelling pedestrian trajectory patterns with Gaussian processes. In Proceedings of the 2009

IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October
2009; pp. 1229–1234. [CrossRef]

28. Tran, Q.; Firl, J. Modelling of traffic situations at urban intersections with probabilistic non-parametric regression. In Proceedings
of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 334–339. [CrossRef]

29. Armand, A.; Filliat, D.; Ibanez-Guzman, J. Modelling stop intersection approaches using Gaussian processes. In Proceedings
of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9
October 2013; pp. 1650–1655. [CrossRef]

30. Mullins, G.E.; Stankiewicz, P.G.; Hawthorne, R.C.; Gupta, S.K. Adaptive generation of challenging scenarios for testing and
evaluation of autonomous vehicles. J. Syst. Softw. 2018, 137, 197–215. [CrossRef]

http://dx.doi.org/10.1109/ITSC.2018.8569800
http://dx.doi.org/10.1080/15472450.2020.1738231
http://dx.doi.org/10.1109/IVS.2018.8500406
http://dx.doi.org/10.1109/ITSC.2019.8917119
http://dx.doi.org/10.1109/ITSC.2015.164
http://dx.doi.org/10.3141/2489-14
http://dx.doi.org/10.4271/2017-01-1672
http://dx.doi.org/10.1109/TITS.2011.2157342
http://dx.doi.org/10.3182/20050703-6-CZ-1902.02068
http://dx.doi.org/10.1109/TITS.2017.2701846
http://dx.doi.org/10.1109/OJITS.2020.3001801
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/IVS.2017.7995703
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/ICVES.2018.8519594
http://dx.doi.org/10.1080/00031305.1992.10475879
http://dx.doi.org/10.1109/ICCV.2011.6126365
http://dx.doi.org/10.1109/ICCVW.2009.5457470
http://dx.doi.org/10.1109/IVS.2013.6629491
http://dx.doi.org/10.1109/ITSC.2013.6728466
http://dx.doi.org/10.1016/j.jss.2017.10.031


Appl. Sci. 2021, 11, 775 23 of 23

31. Huang, Z.; Lam, H.; Zhao, D. Towards affordable on-track testing for autonomous vehicle—A Kriging-based statistical approach.
In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017; pp. 1–6. [CrossRef]

32. IPG Carmaker. 2019. Available online: https://ipg-automotive.com/ (accessed on 14 January 2021).
33. Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414.
34. Saltelli, A.; Tarantola, S.; Chan, K.S. A quantitative model-independent method for global sensitivity analysis of model output.

Technometrics 1999, 41, 39–56. [CrossRef]
35. Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93, 964–979. [CrossRef]
36. Oakley, J.E.; O’Hagan, A. Probabilistic sensitivity analysis of complex models: A Bayesian approach. J. R. Stat. Soc. Ser. B

(Stat. Methodol.) 2004, 66, 751–769. [CrossRef]
37. Daneshkhah, A.; Bedford, T. Probabilistic sensitivity analysis of system availability using Gaussian processes. Reliab. Eng. Syst.

Saf. 2013, 112, 82–93. [CrossRef]
38. Homma, T.; Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 1996,

52, 1–17. [CrossRef]
39. Daneshkhah, A.; Hosseinian-Far, A.; Chatrabgoun, O. Sustainable maintenance strategy under uncertainty in the lifetime

distribution of deteriorating assets. In Strategic Engineering for Cloud Computing and Big Data Analytics; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 29–50.

40. Bedford, T.; Wilson, K.J.; Daneshkhah, A. Assessing parameter uncertainty on coupled models using minimum information
methods. Reliab. Eng. Syst. Saf. 2014, 125, 3–12. [CrossRef]

41. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the
Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [CrossRef]

42. Keramat, M.; Kielbasa, R. Latin hypercube sampling Monte Carlo estimation of average quality index for integrated circuits.
Analog Integr. Circuits Signal Process. 1997, 14, 131–142. [CrossRef]

43. van der Horst, R.; Hogema, J. Time-to-Collision and Collision Avoidance Systems. In Proceedings of the 6th ICTCT Workshop,
ICTCT: Salzburg, Austria, 1993; pp. 1–12.

44. Bryan, B.; Nichol, R.C.; Genovese, C.R.; Schneider, J.; Miller, C.J.; Wasserman, L. Active Learning For Identifying Function
Threshold Boundaries. In Advances in Neural Information Processing Systems 18; Weiss, Y., Schölkopf, B., Platt, J.C., Eds.; MIT Press:
Cambridge, MA, USA, 2006; pp. 163–170.

45. Daneshkhah, A.; Bedford, T. Sensitivity analysis of a reliability system using gaussian processes. In Advances in Mathematical
Modeling for Reliability; IOS Press: Amsterdam, The Netherlands, 2008; p. 46.

http://dx.doi.org/10.1109/ITSC.2017.8317656
https://ipg-automotive.com/
http://dx.doi.org/10.1080/00401706.1999.10485594
http://dx.doi.org/10.1016/j.ress.2007.04.002
http://dx.doi.org/10.1111/j.1467-9868.2004.05304.x
http://dx.doi.org/10.1016/j.ress.2012.11.001
http://dx.doi.org/10.1016/0951-8320(96)00002-6
http://dx.doi.org/10.1016/j.ress.2013.05.011
http://dx.doi.org/10.2307/1268522
http://dx.doi.org/10.1023/A:1008207113480

	Introduction
	Related Work
	Scenario-Based Validation of AVs
	Supervised Machine Learning Algorithms

	Gaussian Processes
	Formal Description of Gaussian Processes
	Learning the Hyperparameters
	Gaussian Process Classification

	Sensitivity Analysis
	Variance-Based Methods
	Emulators-Based Sensitivity Analysis

	Method for Scenario Optimisation and Data Acquisition through Simulation
	Initial Scenario Data Set and Data Generation via Simulation
	Scenario Scoring
	Methodology for Scenario Optimisation

	Results
	Description of the Pedestrian Step-Out Scenario
	Optimised Critical Scenarios for the Pedestrian Step-Out Scenario
	Probabilistic Sensitivity Analysis of Scenario Data Sets
	Sensitivity Analysis of the Pedestrian Step-Out Scenario
	Scenario Description of the Traffic Jam Scenario
	Sensitivity Analysis of the Traffic Jam Scenario


	Conclusions and Future Work
	Function Decomposition for Main Effects and Interactions
	References

