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Abstract 
 

A new BEME distribution known as beta Exponentiated moment exponential (BEME) distribution is 
proposed. We provide here some shape properties, moments in the form of special functions, mean deviations 
of BEME distribution. We derive mathematical properties of the BEME distribution including the reliability 
measures, the Bonferroni and the Lorenz curves, rth order statistics, measures of uncertainty: the Shannon 
entropy measure and the s-entropy measure. The parameters of the BEME distribution are estimated by the 
method of maximum likelihood estimation and estimated non-linear equations for these estimates are 
presented. The application of BEME distribution is explored in three different fields of engineering. 
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1 Introduction 
 
The class of Beta generalized distribution was first time presented by Eugene et al. [1] and they developed it 
through the logit of the beta random variable. They found the properties of the beta-normal distribution (BND) 
and showed a great flexibility in modeling. Jones [2] discussed a number of properties of beta generalized 
distributions.  
 
Nadarajah and Kotz [3] suggested the beta-Gumbel distribution with a fact that it is a more tractable than the 
BND and found the moments in closed-form. The Beta Fréchet (BF) distribution was developed by Nadarajah 
and Gupta [4] by taking the baseline cdf of Frechet distribution in beta distribution and it is the generalization of 
the form of the Fréchet  and exponentiated Fréchet (EF) distributions. Pescim et al. [5] proposed beta-
generalized half normal distribution and derived expressions for the cdf and pdf which depends on simple 
functions. Barreto-Souza et al. [6] found the moments of BF distribution in terms of the moments of base line 
distribution. 
 
The paper is organized as follows. Section 2 comprises of the general expansion of BEME’s pdf, the hazard rates 
function with their graphical illustration, sub-models, and monotonicity of BEME distribution. Some structural 
properties of BEME distribution including moments’ expressions with some numerical illustrations, reliability, 
the mean deviations about arithmetic mean and central value as median are described from Section 3 to Section 
5. Further, in Section 6, we find the expressions for Bonferroni and Lorenz curves of BEME distribution. In 
Section 8, the method of maximum likelihood is used to estimate the unknown parameters of BEME 
distribution. We illustrate the application of this new distribution by applying it on three data sets. Finally, in 
section 9, some concluding remarks related to this distribution are given. 
 

2 The BEME Distribution 
 
In 2012, Dara [7] developed the moment exponential (ME) distribution and used it in reliability analysis. The 
cdf of ME distribution has the following expression   
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for  , , , , 0,x a b     , where    , , ,a b    and the BEME distribution  pdf is given by     
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Fig. 1. pdf graphs of beta exponentiated moment exponential distribution 
 
When product aα approach to zero the graph of function is reversed j-shaped. As aα = 1 distribution is unimodal. 
As aα >1 increase to infinity the distribution approaches positively skewed.  When a ≤ 0.5 and α = β = b = 1 the 
pdf of distribution is reversed j-shaped and a > 0.5 the distribution is unimodal. For increasing the value of a > 
0.5 the mode of BEME increases. For α > 1 and α approaches to ∞ then the BEME approach to symmetrical 
distribution. 
 

2.1 Expansion of BEME density 
 
We provide here the expansion for the probability density function of the BEME distribution depending if the 
parameter value is b > 0 is a real non-integer number or integer.  
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The BEME density can be written in the following form  
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The BEME density can be written in the form such as 
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Clearly, the BEME density has the three different finite and infinite weighted power series sums of the baseline 
cdf of EME(x) for any real non-integer values of the parameters. After some rotational changing in limits we 
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It can be seen that the BEME density is given in the form of weighted sums of the EME distribution function. 
Now, we deduce the sub-models of the BEME distribution by fixing parameters values. 
 
(1) If the parameter value α = 1, this is a new beta-ME (BME) distribution. The cdf of BME distribution is of the 
following form 

 

     ( ; ) ( ; ), , , , 0,BME MEF X I H x a b where a b          
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(3)         If a = b = α = 1, then BEME cdf reduces to the ME cdf and its form is given by 

 ( ; ) 1 1 exp( )MEF x x x       for  , 0  ,;  x       

 
The ME’s pdf has the following function  

2( ; ) exp( )MEf x x x     for  , 0  ,;  x    , which is the ME pdf. 

 

2.2 Reliability functions 
        
We introduce the hazard and reverse hazard functions of the BEME distribution with graphical illustrations.  
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for x > 0,and for positive parameters’ values. The function GEME(x) is defined in (2) and ( )EMEg x is the pdf of 

the (2). 
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Fig. 2. Graph of  HRF of BEME distribution 

 

2.3 Monotonicity property 
 
The monotonicity property of the BEME distribution.  
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3 Moments of the BEME Distribution 
 
We find here the moments expressions of the BEME distribution and express them into special function used by 

Nadarajah et al., (2011). This section also comprises of the moments expressions of sub-models of BEME 

distribution Some numerical study of the moments is also presented at the end of section. We prove here a 

Lemma 1 with the help of result provided by Nadarajah et al., (2011) in their published paper. 
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(2) If the value of m is an integer type, we have 
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(2)  When the value of m is of an integral type number, the counter l in (10) stops at number m − 1, so that, 
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The sth moment expression of the BEME distribution denoted as s  is found from the equation 
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If the parameter α is of non-integer type number, then the value of the number (a + i)α is also non-integer type 
number, and  
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If the value of parameter α is of an integer type, then the expression (r +1) α is also a number of integer type, 
such that the value of the counter l in (13) completes at value (r + 1)α – 1. 
 

Table 1. Moments and related measures of the BEME distribution for fixed parameters’ values i.e 
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2.413785 4.014563 5.342733 6.5798 

2  0.61945028 0.38842004 0.3344994 0.503259 

S.K 2.10307249 2.28870354 1.17199915 0.226493 
Kurtosis 18.36157 7.245834 5.577122 3.212824 
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Applying the Lemma 1 on above integral, with m =(r+1)α is a non- integer type number, then we have the sth 
moment expression as  
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4 Reliability 
 
In this section, we derive the expression of reliability R when the random variables X and Y have independent 

BEME distributions and their set of parameters are 1 1 1 1 1( , , , )a b    and 2 2 2 2 2( , , , )a b  
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So the reliability measures R, we obtain its expression from the following formula 
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After simplifying we have the value of R 
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After applying the basic definition of the usual gamma function, we have the result as that  
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Secondly, we obtain 
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5 Mean Deviations of BEME Distribution 

 

The expressions of mean deviations about mean (µ = E(X)) and about the median (M = Median(X)) are defined 

by  
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respectively. And by using the expressions of arithmetic mean for BEME distribution and of the lower truncated 

arithmetic mean are 
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6 Bonferroni and Lorenz curves of BEME distribution 
 
The Bonferroni and the Lorenz curves are usually based on incomplete moments and are defined in the 
following expressions as  

0

1
( ) ( ) ,

q

B P xf x dx
p

 
         0

1
( ) ( )

q

L P xf x dx


 
 

respectively, where   µ is the mean of BEME distribution and q   is the inverse percentile function. Now, the 
expressions of the Bonferroni and the Lorenz curves for the BEME distribution respectively are as under:  
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respectively. 
 

7 Order Statistics and Different Measures of Uncertainty 
 
The following section comprises the distribution of kth order statistics and measures of uncertainty such as 
Renyi’s Entropy and s-Entropy for the BEME distribution are presented. In information theory we usually use 
the concept of entropy when we have to measure the uncertainty and its value will be maximum when the 
outcome of the random variable half chance of appearing. 
 

7.1 Distribution of order statistics 
 
Suppose that random sample of size n are taken from BEME distribution and the related order statistics are 
arranged increasing with usual notations then probability density function of this kth order statistics, say YK 
=Xk;n  is derived as under. 
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Where H(yk) = 1 – (1+ βyk)/exp(–βyk) and GEME (yk;α,β) = Hα (yk). 
 
The cdf of this order statistics yk is written as 
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7.2 Renyi’s  entropy 
 
Renyi entropy [9] (RE) is the general form of the Shannon entropy [10]. The RE is defined in the following 
form of measurement 
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where γ > 0   andγ ≠1.  Moreover, Renyi entropy provides the value of Shannon entropy when  γ→1. Now   
 

2

0 0

( ; ) exp( )[ ( )] [1 ( )] .
( , )

b
BEMEf x dx x x H x H x dx

B a b



      
 

 
  

   
 

 
 

 
 Note that  
 

             
[ ( )] [ exp( )]H x x x      

 

                     0 0

( 1) exp( )
k

k j

k j

k
x kx

k j

 
 



 

   
     

   
 

                                            
And  
 

       0 0

[1 ( )] ( 1) ( 1) exp( )
n

b m n t

m n t o

b m n
H x x nx

m n t
     

 
 



  

     
          

     
  

               
 
After substituting values in definaion we obtain 
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And finally the Renyi entropy for BEME distribution is 
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For we obtain the expression of Shannon entropy for BEME distribution which is as fol1 ws, lo 
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By using the expansion of density function, When the values of a and b are real and non-integer type, then we 
have the expression of Shannon entropy as 
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7.3 s – Entropy 
 
Another general form of entropy measure is the s-entropy for the BEME distribution is defined by 
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After some simplification we have  
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Finally, we obtain for s ≠ 1 and s > 0 
 

 
1

, , 0 0 0

1
( ; )

1 ( 1)[ ( , )]

s s k n

s BEME s
k m n j t

s s k bs s m n
H f x

k j m n ts s B a b


  


 

  

            
             

            
 

 

                         

( )

1

( 1) ( 1, ( ))

( )

k m n s K n

s j t

e s j t s k n

s k n

    

  

      


   
 

8 Maximum Likelihood Estimation 
 
This section contains the expressions of maximum likelihood expressions and its applications to some real data 
sets which shows the applicability of this new model on various fields. If a random sample of size n is taken as 
x1,...,xn from BEME distribution, we obtain the likelihood function as follows:    
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The log-likelihood function is given by 
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The partial derivatives of log ( ) areL   
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Since all the expressions of derivatives are non linear therefore to find numerical estimates of the parameters can 
be found through Newton- Raphson procedure. We can use here also computer techniques such as MAPLE or 
MATLAB to find the solution set of equations (∂logL/∂α, ∂logL/∂β, ∂logL/∂a, ∂logL/∂b )T = 0 
 

8.1 Application on real data  
 
In this section, we report the flexibility and potentiality the BEME distribution in modeling real data from 
engineering sciences. For this, we consider three suitable lifetime data sets and find numerical estimates of the 
parameters with their standard errors. We compare here the BEME distribution with its own sub-models and 
some other competitor’s models.  The R Software version 3.3.4 are used to find the following tables and graphs. 
Tables 2, 3, and 4, show the estimates and their standard errors (in parenthesis) as well as the goodness-of-fit 
criterions of the proposed BEME model and competing models, for the three data sets, respectively. 
Furthermore tables contain - maximized log-likelihood (-LL), and Kolmogorov Smirnov test (KS).  
 

Eventually, the performance of the BEME fulfills the criteria of a better fit based on the results in Tables 2-4. 
Consequently, we declare that the BEME distribution provides a better fit among all competing models for the 
three lifetime data sets.  
 

Moreover, the plots of fitted PDF (Figs. 3, 6, 9), CDF (Figs. 4, 7, 10) and Q-Q Plot (Figs. 5, 8, 11) of the BEME 
distribution for the three data sets are presented in Figs. 9, 10 and 11, respectively. These plots reveal that the 
BEME distribution provides close fits to the three real datasets.  

 

First Data Set: The following censored (in Gba) values about the breaking stress of carbon fibers discussed by 
Nicholas and Padgett [11], present almost the symmetric trend of data and the values are: 3.70, 2.74, 2.73, 2.50, 
3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 
3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 
1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 
1.80, 2.53. 
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Table 2. Parameters estimates, log-likelihood 
 

Data set 
size 

Model   β  A B -2ln(L) k-s 
value 

 
 
 
 
n=66 

BEME 
(α,β,a,b) 

2.4568 
(1.6317) 

0.154 
(0.070) 

0.567 
(3.4×10-1) 

407.5 
(1.68×10-4) 

168.4 0.04 

GL 7.0411 
(1.673) 

1.2461 
(0.109) 

1 2922.5 
(8.9×10-6) 

187.6 0.15 

BL 1 0.590 
(0.053) 

1 1 244.8 0.18 

BE 4.070 
(1.273) 

0.092 
(0.022) 

0.759 
(0.368) 

120 
(7.09×10-6) 

171.8 0.20 

Weibull 3.441 
(0.330) 

0.326 
(0.0122) 

1 1 172.1 0.20 

L 1 0.023 
(4.6×10-3) 

7.509 
(1.279) 

111.3 
(8.04×10-6) 

182.3 0.24 

 EE 3.1524 
(0.152) 

0.1561 
(0.112) 

-- -- 190.04 0.14 

 EME 
(α,β,1,1) 

4.2139 
(0.183) 

0.273 
(0.061) 

 
-- 

 
-- 

 
188.12 

 
0,13 

 

 
 

Fig. 3. PDF graphs for first data set 
 

 
 

Fig. 4. CDF graphs for first data set 
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Fig. 5. p-p graphs for first data set 
 
Second Data Set The following set of data, introduced by Kundu and Raqab [12], presents the moderately 
skewed to left trend of the gauge lengths of 20 mm, and the observations are: 1.312, 1.314, 1.479, 1.552, 1.700, 
1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 
2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 
2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 
2.809, 2.818, 2.821, 2.848, 2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 
3.128, 3.233, 3.433, 3.585, 3.585. 
 

Table 3. Parameters estimates, log-likelihood 
 

Model   
(S.E) 

β  
(S.E) 

a 
(S.E) 

B 
(S.E) 

-ln(L) k-s value 

BEME 
(α,β,a,b) 

1.56 
(1.72) 

0.1734 
(0.089) 

3.175 
(6.56) 

216.67 
(7.37) 

 
101.56 

 
0.0595 

GL 64.83 
(23.45) 

2.29 
(0.177) 

 
1 

 
1 

 
116.48 

 
0.092 

BL 0.184 
(0.074) 

 
-- 

13.45 
(2.58) 

95.14 
(61.03) 

104.88 
 

0.064 

 
BE 

1.36 
(1.01) 

 
-- 

84.97 
(138.13) 

1.81 
(2.22) 

 
112.62 

 
0.77 

Weibull 5.74 
(0.507) 

0.371 
(0.0079) 

 
1 
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103.06 

 
0.084 

L 0.648 
(0.087) 

 
1 
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1 

 
256.38 

 
0.388 

EE 2.019 
(0.132) 

89.44 
(0.690) 

 
1 

 
1 

 
117.6 

 
0.095 

EME 
(α,β,1,1) 

32.31 
(10.73) 

2.32 
(0.183) 

 
1 

 
1 

 
115.9 

 
0.094 
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Fig. 6. PDF graphs for Second data set 

 

 
 

Fig. 7. CDF graphs for Second data set 
 

 
 

Fig. 8. p-p graphs for Second data set 
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Third Data Set: The following extreme skewed to right data, discussed by Murthy et al. [13], presents the 
failure times of 50 components and the observations are: 0.102, 0.061, 0.074, 0.192, 0.254, 0.262, 0.379, 0.590, 
1.228, 1.600,0.381, 0.538, 0.570, 0.574, 8.022, 9.337, 0.618, 0.645, 0.961, 10.940, 11.020, , 3.147, 3.625, 3.704, 
3.931, 4.073, 4.393, 4.534, 4.893, 6.274, 6.816,13.880, 2.006, 0.078, 0.086, 0.148, 0.183,7.896, 7.904, 14.730, 
15.080, 2.054, 2.804, 0.103, 0.114, 0.116, 0.036, 0.058, 3.058, 3.076 [14-15]. 
 

Table 4. Parameters estimates, log-likelihood 
 

n = 50 
Model 

  
(S.E) 

β  
(S.E) 

a 
(S.E) 

B 
(S.E) 

 
-2 ln(L) 

 
k-s value 

BEME 
(α,β,a,b) 

4.61 
(0.016) 

2.25 
(0.013) 

0.088 
(0.015) 

0.0959 
(0.017) 

196.1  
0.0862 

GL 0.411 
(0.071) 
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1 

 
1 
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0.163 

BL 0.424 
(0.076) 

 
-- 

0.426 
(0.364) 

0.281 
(0.53) 

207.3  
0.163 

BE 0.523 
(1.01) 

 
-- 
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Fig. 9. PDF graphs for third data set 
 

 
 

Fig. 10. CDF graphs for third data set 
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Fig. 11. P-P graphs for third data set 
 

9 Conclusion 
 
A new generalization of EME distribution is derived and studied. We obtain the structural properties including 
moments, quantile expression, reliability measures such as hrf and the other reverse hrf, the Bonferroni and the 
Lorenz curves and mean deviations. We have also conducted some numerical study. We have also found the 
important measures of entropy such as the measure of Renyi’s entropy and the measure of s-entropy. We check 
the flexibility of model by applying this new model to three real data sets of different fields.   
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