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Abstract

A new BEME distribution known as beta Exponentiated moment exponential (BEME) distribution is
proposed. We provide here some shape properties, moments in the form of special functions, mean deviations
of BEME distribution. We derive mathematical properties of the BEME distribution including the reliability
measures, the Bonferroni and the Lorenz curves, rth order statistics, measures of uncertainty: the Shannon
entropy measure and the s-entropy measure. The parameters of the BEME distribution are estimated by the
method of maximum likelihood estimation and estimated non-linear equations for these estimates are
presented. The application of BEME distribution is explored in three different fields of engineering.
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1 Introduction

The class of Beta generalized distribution was first time presented by Eugene et al. [1] and they developed it
through the logit of the beta random variable. They found the properties of the beta-normal distribution (BND)
and showed a great flexibility in modeling. Jones [2] discussed a number of properties of beta generalized
distributions.

Nadarajah and Kotz [3] suggested the beta-Gumbel distribution with a fact that it is a more tractable than the
BND and found the moments in closed-form. The Beta Fréchet (BF) distribution was developed by Nadarajah
and Gupta [4] by taking the baseline cdf of Frechet distribution in beta distribution and it is the generalization of
the form of the Fréchet and exponentiated Fréchet (EF) distributions. Pescim et al. [5] proposed beta-
generalized half normal distribution and derived expressions for the cdf and pdf which depends on simple
functions. Barreto-Souza et al. [6] found the moments of BF distribution in terms of the moments of base line
distribution.

The paper is organized as follows. Section 2 comprises of the general expansion of BEME® pdf, the hazard rates
function with their graphical illustration, sub-models, and monotonicity of BEME distribution. Some structural
properties of BEME distribution including moments’ expressions with some numerical illustrations, reliability,
the mean deviations about arithmetic mean and central value as median are described from Section 3 to Section
5. Further, in Section 6, we find the expressions for Bonferroni and Lorenz curves of BEME distribution. In
Section 8, the method of maximum likelihood is used to estimate the unknown parameters of BEME
distribution. We illustrate the application of this new distribution by applying it on three data sets. Finally, in
section 9, some concluding remarks related to this distribution are given.

2 The BEME Distribution

In 2012, Dara [7] developed the moment exponential (ME) distribution and used it in reliability analysis. The
cdf of ME distribution has the following expression

. — 1 _ -Bx
Hyp(xp) =1-(0+px)e : x,ﬂe(O,oo) (1)
Hasnain et al. [8] introduced EME distribution as
GEME(x;a;ﬂ) = (HME(x;ﬂ))a 5 X’a,ﬂE(O’OO) (2)

where GEME (x;; B) be the cdf of EME r.v. X and we define the cdf for BEME r.v. as

F(x)=1(G(x),a,b),; x,a,b,a,p e(0,) 3)
| I -l I'mIn
I(x,mn)=————|t"" (1—-t) dt B(m,n)=———.
where (x m n) B(m,n)-[ ( ) and (m n) F(m+n)
(3) implies that the four-parameter BEME cdf is given by
1 G (X,a,B)
Fopve(x;0) = (1) dt 4

B(a,b)

0
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for x,a,b,a,ﬂe(O oo) , where 8 = (a,ﬂ,a,b) and the BEME distribution pdf is given by

fBEME(X; Q) = B(a b)[ G (][ 11 GEME(X)]b lgEME(x)
Freu (% Q)=%xexp(—ﬂx>x( Hys (5 B)) ™ (1= (H e ) )

for ; x,a,b,a,p e (0,oo)
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Fig. 1. pdf graphs of beta exponentiated moment exponential distribution

)

When product ao approach to zero the graph of function is reversed j-shaped. As aa = 1 distribution is unimodal.
As aa >1 increase to infinity the distribution approaches positively skewed. Whena <0.5 and a = =b =1 the
pdf of distribution is reversed j-shaped and a > 0.5 the distribution is unimodal. For increasing the value of a >
0.5 the mode of BEME increases. For o > 1 and a approaches to co then the BEME approach to symmetrical

distribution.

2.1 Expansion of BEME density

We provide here the expansion for the probability density function of the BEME distribution depending if the

parameter value is b > 0 is a real non-integer number or integer.

ia b—
[1 ( H e (x; ,B) Zrlbl ME(XQ,B)) where T, =(- 1)(

The BEME density can be written in the following form

00

Foue (60 =g, ()2 B'“ H oy (i )
= afx exp(—Bx) (Hyp (x: )" Z Bf('b;)( Hope ()
— afxexp(—fix) % Z B(’ 5 (e x:B))"

)
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Frons (6:0) = @ xexp(~x) 31, (H oy (3:0))

such that z ;=1 forx>0,
s i=0

and the weights /; are of the form [, =1.(a,b) =

[GEME (x)]HH can be expanded as follows:

(G (1" = {1= [1= G (0]}
:i (a-i_l_ J[I_GEME(X)]js

with [1=-Grp ()] = zfr,j (HME (X;Q))r7

. w ® r+j i1 .
(G (D7 = S (=) (“}’. ](j j[GEME(xn",

j=0 r=0

The BEME density can be written in the form such as

Ssene(%:6) = gEME(x)z z i /r[GEME(x)]r

i,j=0 r=0

—afrexp(-p0) Y. i, (e (x.8)) ™.

i,j=0 r=0

where the weight Zi i is of the form

7
B

Ly b—ﬂ a+i—-1\(b-1\(
ijr i,j,r(a’ )— B(a,b) ] ; -

with i ili,” =1, for x,a,b,a, f €(0,).

i,j=0 r=0

Clearly, the BEME density has the three different finite and infinite weighted power series sums of the baseline
cdf of EME(x) for any real non-integer values of the parameters. After some rotational changing in limits we
obtain

Soene (630) = gy (X) i PlGry ()]

i,r=0
(r+l)a—1

= aff’xexp(- ﬁx)Zp( e (%)) (6)

i,r=0

-1 -1
where the weights p;is of the form p, = p; (a,b) = B((a,)b) ( ; ]qr (a +i —1)

© L fa+i-1\(]
with g, =q (a+i—1)= Z(—l)]“ ( ) ](]J, for x,a,b,a,f € (0,00) , respectively.
] r

J=r
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It can be seen that the BEME density is given in the form of weighted sums of the EME distribution function.
Now, we deduce the sub-models of the BEME distribution by fixing parameters values.

(1) If the parameter value a = 1, this is a new beta-ME (BME) distribution. The cdf of BME distribution is of the
following form

Fypp (X;®)=1(H . (x; 8),a,b) where ® = (f,a,b) e (0,)

The BME pdfis given by
2

" B(a.b)

a-1

Fons (@) x(1+ fx) " exp(=bpx) (H,p (x, B))

(2) If @ = a =1, then we have the cdf'is of the form
Hyg (x:8)
Fpp(sb,)=b [ (-0""dt

Fp (53 8,0) = 1= (1+ Bx) exp(~bx) for ;x,a,b, B € (0,).
and its pdfis £, (x; B,0) = b*x (14 fx) " exp(~bfx)

3) Ifa=b=o0a=1, then BEME cdfreduces to the ME cdf and its form is given by

E . (x; ) :1—(1+,Bx)exp(—ﬂx) for ; x,e(0,0)

The ME’s pdf has the following function
S (x3 8) = BPxexp(—px) for 5 x, 3 &(0,00), which is the ME pdf.

2.2 Reliability functions

We introduce the hazard and reverse hazard functions of the BEME distribution with graphical illustrations.

(x;0) = Joove (X3:0)
Fopve (x;0)
8 seme (X)[GEME (x)]"“ [1 — GEME (x)]b—l

hBEME

_ (7
B(a,b) - BGEME(x) (a,b)
p (x;0) = fBEME(X;Q)
BEME\X> Y Fopue (x:0)
(3

8sene G e (x)]‘H [1- Gy (x)]bi1
BGEME(x)(a’b)

for x > 0,and for positive parameters’ values. The function Gpumg(x) is defined in (2) and gz (x) is the pdf of
the (2).
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Fig. 2. Graph of HRF of BEME distribution
2.3 Monotonicity property

The monotonicity property of the BEME distribution.

off

B(a,b)

108 e (%5 6) =10g(

and

] +Log(x)+ (b—1)logfl —H (X; ]~ fx+{ace—1) log[ H, . (X: )]

d10g [y (%) =l_ﬁ+aa_1+[1+(1_b_a)aHaME(X;ﬁ)

dx * H, (X;P-H",,.(X;P)] H (X5 5)

with H]'ME (X; ,B) = dHME (X; ﬂ)/dx = B*x exp(-Px) in above , we have

d10g fy (¥) _ 1

ﬂ+ﬂ2xexp(—ﬁx){aa_l+[1+(1—b_a)aHaME(X;ﬂ)}

. x VW-H (X B)]
And
d’ log e () __i 132 _

& x B H KT

So that the value of g(x) is as

q(x)=(p+1=p0l(1+(A-b-a)a)H",;(X; )+ aa —11H ,; (X; 1 - H" ;. (X; F)]
+x7 B exp(=fx)[1+ (1 +(1-b—a)a) H" \,p (X; B)l[a —=11H“ s (X; B)
—x* B exp(=fx)(ac —D[1-(1+a) H ,;, (X; B)]. ©)

Analysis: For all positive values of the parameters generate such that
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, dH, (X,
H. (X, ) = %ﬂ) = Fxexp(—fx) > 0,Y;x, B e(0,00).

1f x tends to 0, then the value of H . (X; /) also tends to 0.
If xtends to oo, then H,, (X;/)is also move to 1.

Therefore, we have the function £, (X; B) is increasing monotonically from the interval 0 to 1. This implies

that the functions H* . (X; ) and 1 - H”,,(X; ) are also contain values from interval 0 to 1. If #> 1,
aa—1 <1land(a+b-1)a> 1, we deduce the following

d10g fypm(X) :l_ﬂJr{aa—1+[l+(1—b—a)aH“ME(X;ﬂ)

dx * H,, (X;P1-H, . (X;P)] YL (X B) <o,

because 1 — xf < 0 and [I+(1-b —a)e] H”,,(X;8) <1 —aa and H,,(X;0)/H, (X;p) [I-
H*, (X;8)1>0.

In this case the function fBEME (x;0) is always monotonically decreasing function for all x.

If B < 1, the density function fBEME (x;6) could attain the maximum point value, the minimum point value or
the point of inflection if the following conditions holds

2 2 2
Dlonl® oo Do o Lon g

3 Moments of the BEME Distribution

We find here the moments expressions of the BEME distribution and express them into special function used by
Nadarajah et al., (2011). This section also comprises of the moments expressions of sub-models of BEME
distribution Some numerical study of the moments is also presented at the end of section. We prove here a
Lemma 1 with the help of result provided by Nadarajah et al., (2011) in their published paper.

LEMMA 3.1 Let

K(s)= Tx”x[HME (x;n)]"" exp(—qux)dx where = (m, n, p, q)
& (m-N\ () AT (p+k+2)
K@_;;( I j(kj (nl +q)"™

(1) If the value of m is a non-integer type, we have

K(o)- ii(ml—lj[ ]i j (=1)' n*I( p;kl+cl+ 1)

i=0 k=0 (nl+q)
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(2) If the value of m is an integer type, we have

GG (m=0 () A T(p+k+1)
K(E)_ZZ( Ji ](k] (nl+q)p+k+l

i=o k=0

Proof (1) When the m is of non- integer type number, then

[H,,(x;n)] '”': ( ; j( 1 x[(1+nx)exp( nx)|
and  K(g)= Z( ; j 1)’><Ix x(1+ nx)" exp[—(nx + q)x]dx.

Furthermore, since the number / is of an integer type , so we have the series as

L1
(1+nx) = Z (nx)* = Z Xt
k=0 k=0 k
and  K()= Z j( ) Z( }.k j xPx* exp[—(nl + q)x]dkx.
k(g) = Z(m j( 1) Z( j j Pl o ol (nl + ) x)dx
1=0
‘ii m—1\(1)(- l)lnkr(p+k+2)
[ Nk (nl +q)r"*
(2) When the value of m is of an integral type number, the counter / in (10) stops at number m — 1, so that,

G (m=1 1\ (-Dn'T(p+k+2)
k(g)—k_OZ( Z j(kj T (11)

=0

(10)

The sth moment expression of the BEME distribution denoted as ,u; is found from the equation

= J.xszEME (x;0) dx
0

When b > 0 is such that it is a real type non-integer number, and First, if the number a is of an integer type
number, from (10), so we have the sth moment expression as

Ius' = aﬁZZ[[J.xsxexp(_ﬂx) « [HME (X, ﬂ)](m—i)a—l dx
i=0

0

Now, using the above Lemma 3.1 with values m = (a + i)a, n =, p =, q = 5, we deduce the result as

= YK ((a+)a. f.5.q)
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If the parameter a is of non-integer type number, then the value of the number (a + i)a is also non-integer type
number, and

o ] (a+z)a 1 ( 1)z+lr(s+k+2)
H B(a b) l;);( j( / j[kj IBY k— 1(1+l)s+k+2 (12)

If the value of a is of an integer type number, then the expression (a + i)a contains also an integer number, such
that the counter 1 in (12) stops working at value (a + i)a — 1.

Second, if the number a is of real non-integer type number, then from (10), we can find easily
0 J ©

= aof’ Z Zli,r,jj.xs exp(—Bx)x[Bxexp(l—(1+ Bx))]" ™ dx

Applying the above Lemma 1, and with parameters values m = (r + 1)a, n = f , s = p, g = , we have the
following

=of’ ZZ L, K(r+De,p,s, )

i,j=0 r=0

If the parameter a is non- integer type number, then the expression (r +1) a is also non- integer type, and

i e Y

y ((Hl)a—l]( j (=) (s +k +1)
k

13
l ﬂs —k— 1(1+l)s+k+1 ( )

If the value of parameter a is of an integer type, then the expression (r +1) a is also a number of integer type,
such that the value of the counter 1 in (13) completes at value (r + 1)a — 1.

Table 1. Moments and related measures of the BEME distribution for fixed parameters’ values i.e

(. /) =(0.5.1)

o (a,0)=(1,1.5)  (ab)=(1.515) (a,b)=(2,25)  (a,b)=(2.5,2.5)
X 0.301234 0.591582 0.741137 1.32273
1
' 0.710192 0.738389 0.883784 2.25288
2
" 1.845821 2.348553 2.124572 5.07719
3
' 2413785 4.014563 5.342733 6.5798
4
& 0.61945028 0.38842004 0.3344994 0.503259
SK 2.10307249 228870354 1.17199915 0.226493
Kurtosis  18.36157 7.245834 5.577122 3.212824

By changing i 2 to i i in sth moment, we have

Jj=0 r=0 r=0 j
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=af’ Z )2 I x*x exp(—fx) x[ Bxexp(—Bx)]" " " dx.

i,r=0

Applying the Lemma 1 on above integral, with m =(r+1)a is a non- integer type number, then we have the sth
moment expression as

o & arj1Y b1 (r+Da—1)( 1\ (- 1)1*/**”r(s+k+2)
A R W

4 Reliability

In this section, we derive the expression of reliability R when the random variables X and Y have independent
BEME distributions and their set of parameters are Ql = (al , 131 , al,bl) and Qz = (Olz, ,32, az,bz)
distributions, respectively. And we use the (2) so that

1 Gy (X, a.p)

Foo o (x;0)= (-0 dt
BEME B(a,b) 0
1 S atj)a
= mz T,y [ H s (x3 )]
° Jj=0

So the reliability measures R, we obtain its expression from the following formula

R=P(X>Y)

_ j .(0)F, (x:0,)dx

_°° Clﬂ X “10‘1
jB( e AOXIH (v A)]

[1=H" (x, 5,)]""

0

B(a,,b, )(a2+] Z(;

(x, B, dx.

We apply the following series representations:

k
0 _l k
=Z(“I“; j(—l)"Zmﬂ’ﬂxm exp(—k )]
o bl_l 11 I+p pn _n
=ZZ[ Z J(O;j[p ](—1) Y exp(= )

2 -1
H(x,ﬂl)]“'““=z(“1“2 j(—l)"[(lwlx)exp(—ﬂlx)]k
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(et ep o) =S3[9 e e exo e

1,p=0 n=0 n

and

LH (x, 3, )] ZZ(( ”)“Zj(f](—n%xf exp(—/rqx)

q=0 t=0

After simplifying we have the value of R

R=| B‘Z‘f S Rials ZZ[“I“I j[ j( D B" " exp(— k)

S0P creonan
B(azab )(a2+])jzo [ j( 1)/
ZZ((%” )azj( j( 1 B exp(— )

< 2 2L )

x(pJ(bz -1 ((az +J)6¥2J(QJ (_1)k+l+p+j+qﬁlm+n+2ﬂ2t
N ¢ (a+))

XT x"" " exp(—-{ 1+ k + p)+ B,q]x)dx.

Q

B(ay,b)B(a,,b,)

where C =

After applying the basic definition of the usual gamma function, we have the result as that

K. t+1)!
xm+n+t+1 exp( ﬂ(l+k+p)+ﬂ q (m+n+ —

! 1 T Bk )+ g

A

fter replacing this result into R we obtain

LS00 i W L

x(pj(bz - j[(az +])052J[qj (_1)k+l+p+j+q ﬂlm+n+zﬂzt
" J q t (a,+))

(m+n+t+1)!
(ﬂl(l+k+p)+ﬂ2q)m+n+t+2

45



Igbal et al.; AJPAS, 15(3): 35-57, 2021; Article no.AJPAS.75919

Secondly, we obtain

K a =1\ k kgm m
R=| B‘Z‘fb)xe Xp(—/3,) % ZZ(“ j@(—l) B " exp(—fik)

xiZ( J( ][ j( 17 5" expl(—f )

) / (02+1)a2
B(az’b )(612 +])§ ( J( '[B,xexp(=/5,x)] dx

k ao, -1\ k\(b -1\l
i o 5% L)

X(pj(bz - j((dz + ])OL'ZJ (_l)k”*PJrj ﬂlm+n+2
AN g (ay + )

+nefﬂ1 (1+k+p)x [ﬂzxefﬂzx ](a2 +j)a, dx

X

2 (a0 —1
I

M=
—3

XX
3

W)
k,,p,j,q=0 m: m l P

b _1 _1\kH+ptj pmin+2
y pJ( 2" J( D B k((ay+ ), +1, Bomn, B (14K + p)).
n)\_ Jj (a,+))

al
B(a,,b)B(a,,b,)

n=0

N— 2

%

where C =

5 Mean Deviations of BEME Distribution

The expressions of mean deviations about mean (1 = E(X)) and about the median (M = Median(X)) are defined
by
5(X)= jy x—u| f(x)dx, and 8,(X) = j\ x—M | f(x)dx
0 0

The expressions of 9, (X) and 6,(X) can be found and results are presented here:

0,(X)= 2/1F(/1)—2y+2]?xf(x)dx

0,(X)=-u +ZT xf (x)dx

respectively. And by using the expressions of arithmetic mean for BEME distribution and of the lower truncated

arithmetic mean are
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H= TxfBEME (x)dx

= aff’ ZZZW ((r+Da, B,1,5)
and

j X porse ()elx = aff’ 2 Zl, A+ D B, B )

and
j e (¥)dx = aff? Z Zl,,,L<(r+1)a B, B, M)

So that

8,(X) = 24F 0 (1)~ 2uB( b)ZZI L((r+ D, .1, B, 1)

and

5,00 =20 Y YU, L+ Dar fLL f.M)

i,j=0 r=0
6 Bonferroni and Lorenz curves of BEME distribution

The Bonferroni and the Lorenz curves are usually based on incomplete moments and are defined in the
following expressions as

B(P)= l:i.xf(x)dx, L(P)= lj. xf (x)dx
p 0 lu 0

respectively, where u is the mean of BEME distribution and ¢ is the inverse percentile function. Now, the
expressions of the Bonferroni and the Lorenz curves for the BEME distribution respectively are as under:

B(p )—1 “ﬂ ZZ,,V ((+ Dt 8.1 Sq)

z]0r0

and L(p)zl—aﬁ2 .ii_i,j, ((r+Da,B.1,8.9)

U

respectively.

7 Order Statistics and Different Measures of Uncertainty

The following section comprises the distribution of kth order statistics and measures of uncertainty such as
Renyi’s Entropy and s-Entropy for the BEME distribution are presented. In information theory we usually use
the concept of entropy when we have to measure the uncertainty and its value will be maximum when the
outcome of the random variable half chance of appearing.

7.1 Distribution of order statistics
Suppose that random sample of size n are taken from BEME distribution and the related order statistics are

arranged increasing with usual notations then probability density function of this kth order statistics, say Yg
=Xy, 1s derived as under.
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_ n! “in—k ; BEME(yk;av,})(a’b) o
fk(yk)_(k—l)!(n—k)!;[ I J(_D{ B(a.b) J

2

X B(a.b) Ve exp(=By ) H (y, )]aa_l [1-H“(y, )]b_l
__afnly exp(-By,) LA (n-k)(b-1) .,
_B(a,b)k”(k—l)!(n—k)!g‘n;( I ]( m ]( D

X(BEME()’J(;M) (Cl, b))k*1+l[H(yk )](a+n1)a—1 ’

Where H(y) = 1 - (1+ By)/exp(-Byi) and Geue (Yisef) = H” (vi).

The cdf of this order statistics yj is written as

n n—j

Fe(v)= 22(2] Tl,n—j[F(yk)]jH

[=

nnip " y
= ,j/[B(a,b)]" : Tin-j (BEME(yka,ﬁ) (a,b))’ :
=k 1=0 \.J

7.2 Renyi’s entropy

Renyi entropy [9] (RE) is the general form of the Shannon entropy [10]. The RE is defined in the following
form of measurement

H,(fopn(3:0) =élogffy3m (x:0) dv

where y > 0 andy #1. Moreover, Renyi entropy provides the value of Shannon entropy when y— 1. Now

[ seus (30D = ( B‘Z‘ﬁ b)j [ expproH 0T T= H (01 .

Note that
[H ()7 =[ Bxexp(—px)]""
IS A (e
k=0 J

And ”
© b _ 0 n
[—H* ()] = Z(—l)’"( 4 . 4 ]xZ(—l)" (Qﬁzmﬂ’xexp(—ﬂnx)

After substituting values in definaion we obtain
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[ ) _aﬂzywkww”aajf—ykb}/—yamn
[rntsoar{ i) EEEEE( L)
x(—l)"*m+”ﬁ-’+th7+-’+‘ exp(—=B(y +k +n)x)dx

(aew) 2 22 LT

( 1)k+m+n ﬂ(y+K+n)l—w(7+J+t+l)
(7/+k+n)7+/+t+lﬁy+l

And finally the Renyi entropy for BEME distribution is

H}/(fBEME(x;Q)) = élog(]’f}/BEME(X; a, B, a,b)dx]

2w 2 ZEE LT

( 1)k+m+n ﬂ(]/+K+n)1—~(7+J+l+1)

(7/+k+n)]/+j+l+1ﬁ}/+l
For y =1, we obtain the expression of Shannon entropy for BEME distribution which is as follows

E[~1og [y (X;0)]= —10g(3?fb)j—E[10g x]+ BE(X)

+(1—aa)E[log H(X)]+(1-b)E[log(1- H*(X))]

Note that,

log(1— H*(X) = i H)™ k,and

Ellog(1 - H* (x))] = Z%E [H ()1

Also

log H(x) = Zz( j—x exp(—fkx),
So that k=1 1=0
E[log H(x)] = Zz( Jk E[ X' exp(—fkx)],

By using the expansion of density function, When the values of a and b are real and non-integer type, then we
have the expression of Shannon entropy as

b—-1
Aestion =533 33 (77 )
x(— 1)’” +r ,B’”k((r +Da, ,B, l, ﬂ(l +k))
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and

Bllogl1~H* (X)| = ¢ b)ZZZ(aH ](b IJU

k=11i.j=0 r=0

x(=)™* B k((r + k +Da, 3,0, B).

7.3 s — Entropy

Another general form of entropy measure is the s-entropy for the BEME distribution is defined by

R

H Sy (i) =1 *~ =1
_[1_E[_10ngEME(x;Q)] if s=1

S —

J.f e (6 0)dx]if s >0

After some simplification we have

() <2 23 )

( 1)k+m+n ,3(3+K+”)1"(S + ] +t—|—1 :B(S +k+ 7’1))
(S + k + n)g‘+j+[+1

Finally, we obtain for s # 1 and s > 0

R a’ B! yx = L& (as—s\(k\(bs—s\[am)(n
He U (500) =15 ((s—l)[ff(a,b)]sj 2, Z( " JU( m J{J(J

(=D LI (s 4 j 4t +1, f(s + k +n))
(S +k+n)s+j+t+1

X

8 Maximum Likelihood Estimation

This section contains the expressions of maximum likelihood expressions and its applications to some real data
sets which shows the applicability of this new model on various fields. If a random sample of size n is taken as
X1,...,X, from BEME distribution, we obtain the likelihood function as follows:

i=1

L) = {B( b)} [HxJexm ﬂZx)xH s ﬁ(l_(HME(x;ﬂ))“)b_l

The log-likelihood function is given by

logL(6)=n 10g{

}+Hlogxexp( ﬂZx)

i=1

B(a,b)

+(aa - 1)H log H(x,)+(b— 1)2 log[1—H* (x,)]
i=1 i=1 (14)

50



Igbal et al.; AJPAS, 15(3): 35-57, 2021; Article no.AJPAS.75919

The partial derivatives of logL(8) are

w n[y(a+b)—y(a)]+a log H(x,)

a i=1

Olog L(9) 1°§ bL@ = n[p(a+b)-yB)]+ ilog[l—H “(x,)]

dlogL(9) _n A" (x)log H(x,)
U0 Sy -

And

dlog L(9) _  Bla,b) dap’ | B(a,b)

op afp’ op
—Zx +(aa- 1)2 o <x W‘ﬂ a3 T ) 10)
i1 -H"(x))
o(ap’ | B(a,b)  2ap aH(x,.) _ ~
aﬁ - B(a,b)’ 8ﬂ ﬂxi exp( ﬂxi)
olog L(d) _n(2+p)

o PU+p) _ixi +lan:ﬁ(2+ﬁ+xi + Bx)xe "

| aa-1 al-n)HE)
H(xi) I_Ha(xi)

Since all the expressions of derivatives are non linear therefore to find numerical estimates of the parameters can
be found through Newton- Raphson procedure. We can use here also computer techniques such as MAPLE or
MATLAB to find the solution set of equations (dlogL/da, SlogL/dp, dlogL/da, dlogL/db )’ =0

8.1 Application on real data

In this section, we report the flexibility and potentiality the BEME distribution in modeling real data from
engineering sciences. For this, we consider three suitable lifetime data sets and find numerical estimates of the
parameters with their standard errors. We compare here the BEME distribution with its own sub-models and
some other competitor’s models. The R Software version 3.3.4 are used to find the following tables and graphs.
Tables 2, 3, and 4, show the estimates and their standard errors (in parenthesis) as well as the goodness-of-fit
criterions of the proposed BEME model and competing models, for the three data sets, respectively.
Furthermore tables contain - maximized log-likelihood (-LL), and Kolmogorov Smirnov test (KS).

Eventually, the performance of the BEME fulfills the criteria of a better fit based on the results in Tables 2-4.
Consequently, we declare that the BEME distribution provides a better fit among all competing models for the
three lifetime data sets.

Moreover, the plots of fitted PDF (Figs. 3, 6, 9), CDF (Figs. 4, 7, 10) and Q-Q Plot (Figs. 5, 8, 11) of the BEME
distribution for the three data sets are presented in Figs. 9, 10 and 11, respectively. These plots reveal that the
BEME distribution provides close fits to the three real datasets.

First Data Set: The following censored (in Gba) values about the breaking stress of carbon fibers discussed by
Nicholas and Padgett [11], present almost the symmetric trend of data and the values are: 3.70, 2.74, 2.73, 2.50,
3.60,3.11, 3.27,2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93,
3.22,3.39,2.81,4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03,
1.89, 2.88,2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56,
1.80, 2.53.
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Table 2. Parameters estimates, log-likelihood

Data set Model a B A B -2In(L) k-s
size value
BEME 2.4568 0.154 0.567 407.5 168.4 0.04
(a,B,a,b) (1.6317) (0.070) (3.4x10™ (1.68x10%
GL 7.0411 1.2461 1 2922.5 187.6 0.15
(1.673) (0.109) (8.9x10)
n=66 BL 1 0.590 1 1 2448 0.18
(0.053)
BE 4.070 0.092 0.759 120 171.8 0.20
(1.273) (0.022) (0.368) (7.09x10°)
Weibull 3.441 0.326 1 1 172.1 0.20
(0.330) (0.0122)
L 1 0.023 7.509 111.3 182.3 0.24
(4.6x107) (1.279) (8.04x10°)
EE 3.1524 0.1561 - - 190.04  0.14
(0.152) (0.112)
EME 42139 0.273
(0,,1,1) (0.183) (0.061) - - 188.12 0,13

A\

/)

WV
y

00
1

08
\

06

04

Fig. 4. CDF graphs for first data set
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Fig. 5. p-p graphs for first data set

Second Data Set The following set of data, introduced by Kundu and Raqab [12], presents the moderately
skewed to left trend of the gauge lengths of 20 mm, and the observations are: 1.312, 1.314, 1.479, 1.552, 1.700,
1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224,
2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511,
2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800,
2.809, 2.818, 2.821, 2.848, 2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096,
3.128, 3.233, 3.433, 3.585, 3.585.

Table 3. Parameters estimates, log-likelihood

Model a B a B -In(L) k-s value
(S.E) (S.E) (S.E) (S.E)
BEME 1.56 0.1734 3.175 216.67
(a,B,a,b) (1.72) (0.089) (6.56) (7.37) 101.56 0.0595
GL 64.83 2.29
(23.45) (0.177) 1 1 116.48 0.092
BL 0.184 13.45 95.14 104.88 0.064
(0.074) -- (2.58) (61.03)
1.36 84.97 1.81
BE (1.01) -- (138.13) (2.22) 112.62 0.77
Weibull 5.74 0.371
(0.507) (0.0079) 1 1 103.06 0.084
L 0.648
(0.087) 1 1 1 256.38 0.388
EE 2.019 89.44
(0.132) (0.690) 1 1 117.6 0.095
EME 32.31 2.32
(a,B,1,1) (10.73) (0.183) 1 1 115.9 0.094
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Fig. 8. p-p graphs for Second data set
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Third Data Set: The following extreme skewed to right data, discussed by Murthy et al. [13], presents the
failure times of 50 components and the observations are: 0.102, 0.061, 0.074, 0.192, 0.254, 0.262, 0.379, 0.590,
1.228, 1.600,0.381, 0.538, 0.570, 0.574, 8.022, 9.337, 0.618, 0.645, 0.961, 10.940, 11.020, , 3.147, 3.625, 3.704,
3.931, 4.073, 4.393, 4.534, 4.893, 6.274, 6.816,13.880, 2.006, 0.078, 0.086, 0.148, 0.183,7.896, 7.904, 14.730,
15.080, 2.054, 2.804, 0.103, 0.114, 0.116, 0.036, 0.058, 3.058, 3.076 [14-15].

Table 4. Parameters estimates, log-likelihood

n=50 a B a B
Model (S.E) (S.E) (S.E) (S.E) -2 In(L) k-s value
BEME 4.61 2.25 0.088 0.0959 196.1
(0,B,a,b) (0.016) (0.013) (0.015) (0.017) 0.0862
GL 0.411 0.296 207.96
(0.071) (0.054) 1 1 0.163
BL 0.424 0.426 0.281 207.3
(0.076) -- (0.364) (0.53) 0.163
BE 0.523 0.717 1.81 204.7
(1.01) -- (138.13) (2.22) 0.37
Weibull 0.661 0.395 204.72
(0.074) (0.089) 1 1 0.127
L 0.449 241.56
(0.051) 1 1 1 0.342
EE 0.194 0.537 204.74
(0.043) (0.090) 1 1 0.142
EME 0.263 0.259 204.54
(a,B,1,1) (0.0435) (0.055) 1 1 0.094
=1 — 2o
=Rl
Sl
= _| %‘ I  —

Fig. 10. CDF graphs for third data set
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Fig. 11. P-P graphs for third data set

9 Conclusion

A new generalization of EME distribution is derived and studied. We obtain the structural properties including
moments, quantile expression, reliability measures such as hrf and the other reverse hrf, the Bonferroni and the
Lorenz curves and mean deviations. We have also conducted some numerical study. We have also found the
important measures of entropy such as the measure of Renyi’s entropy and the measure of s-entropy. We check
the flexibility of model by applying this new model to three real data sets of different fields.
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