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ABSTRACT 

Vibration failure of piping is a serious problem and a matter of concern for safety and reliability of plant operations. 
Fatigue is the main cause of such failures. Due to the complexity of the phenomenon no closed form design solutions 
are available. In our study an analytical technique based on the theory of vibrations in the time domain has been pre-
sented. Using the inverse theory, the problem has been reduced to a system of Volterra Integral equations to be solved 
simultaneously at every time step. The solution of the inverse problem may be used in the conventional method to cal-
culate stresses and end reactions which are important from the perspective of engineering design and condition moni-
toring. The method is robust, simple and can be easily adopted by practicing engineers. 
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1. Introduction 

Piping witnesses various vibratory loads throughout its 
life cycle. These vibrations if not controlled will lead to 
fatigue failures at points of high stress intensity or could 
even damage the supports. All these could lead to plant 
outage or even have more severe consequences like fire 
and loss of human lives [1]. Thus it is imperative that the 
piping system is to be safeguarded against such hazards. 

For the standpoint of engineering design adequacy 
check, dynamic analysis has to be carried out for the 
piping system for which the forcing function has to be 
known. This is the conventional method of analysis, 
which is also termed mathematically as the direct prob-
lem [2-4]. But the major difficulty in the dealing with the 
vibration problems lies in the estimation of the forcing 
function. If the exciting forces can be quantified pre-
cisely, the system response can be determined with great 
accuracy by the existing analytical methods. Thus the 
estimation of the forcing function is essential for carrying 
out the dynamic analysis and subsequent engineering 
design check. 

Unfortunately this is not readily possible in most cases 
since the vibrations in an operating pipeline are flow in-
duced. The complexity of flow patterns and the mecha-
nism of force coupling render the determination of the 
forcing function extremely difficult. In such a scenario 
data in the form of field vibration measurements in con-
junction with some analytical methods can provide a  

basis for estimating the dynamic force and stress [5-9]. 
The theory of Inverse Problems [2-4] invariably forms 
the basic theoretical framework for such studies. Inverse 
Theory has found wide applications in the fields of engi-
neering and mathematics. It has become indispensible 
where the problems are ill-posed in absence of data. In 
this sense Inverse Theory has got tremendous practical 
value. 

The vibration problems can be studied in both the fre-
quency and the time domains. In the frequency domain 
the frequency response of the system is studied for the 
determination of various parameters of interest [7-10]. 
For a recent work in the frequency domain for a closely 
related application, one may refer to [8]. In the time do-
main the response time history of different points in the 
form of observations are taken as the input for the study. 

Some good amount of work has been done in the ap-
plication of inverse problems in the field of hyperbolic 
partial differential equations or wave equations [5,11- 
14]. The determination of point sources from observa-
tions has been the main theme of their studies. The pre-
sent study may be considered as a special case of such 
applications. However there are some major differences. 
Concentrated forces in the form of point loads at interior 
points in the domain have been considered in the previ-
ous works, whereas in our case the point sources are the 
end moments at the boundaries. Also we have considered 
damping in the system which simulates the real case and 
thus the treatment is to a great extent different from the  
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previous ones. According to us such study in the time 
domain has not been done. A few references [7] can be 
found wherein dynamic stresses have been computed 
from displacement measurements in the time domain. 
The method for computing stresses from the displace-
ment measurements has been shown. However the method 
of force estimation is not provided. Also the topics on 
existence and uniqueness of the solution which are the 
key issues for inverse problems have not been addressed.  

In our paper we shall present the theory in the time 
domain and also the numerical scheme for the problem. 
The numerical algorithm is simple and it can be easily 
built into any of the common spreadsheet programs with 
the help of macros. This we believe will find wide appli- 
cation amongst the practicing engineers. 

2. Current Practice—Vibration Screening 
Criteria 

The current practice is the vibration screening criteria 
method. In this method the vibration response parameters 
like velocity or displacements are measured in situ and 
compared against some acceptance criteria. These are in 
the form of graphs known vibration severity charts [15]. 
For refinery and petrochemical industries, these charts 
are being extensively used. They are normally found to 
be conservative. 

Another widely used criterion is of ASME OM Code 
[16] a standard followed for nuclear piping. Here the 
vibration velocity for a piping span between nodes is the 
criterion. The limiting value of the velocity is determined 
by the empirical relationship involving coefficients which 
depend on several parameters like weld arrangements, 
mass lumping etc. When the peak value of velocity is 
less that 12.7 mm/sec, it may be assumed that the piping 
has sufficient dynamic capacity. If the vibration exceeds 
this level, the guide recommends reviewing the same 
with more information on the potential reasons of vibra-
tions and improving the vibration levels. 

It is seen that all the above methods are conservative 
and provide a cook book or a go/no-go approach. They 
only tell us whether the vibrations are within the accept-
able levels or not. It is not possible to have a quantitative 
estimation of the forcing function and the actual stress 
levels which are essential for a design check. In our work 
this problem has been studied on the framework of In-
verse Theory as mentioned earlier. 

3. Mathematical Background 

It has been shown that for a simply supported pipe [vide 
Figure 1] the response at any location in the span may be 
determined by the vibration measurements at two distinct 
points in the span. For the straight span, the excitation 
source is through moments from the adjoining segments 

as there are no points of excitation by forces in the span. 
A distinguishing feature of this method is that no infor-
mation is required on the natural B.C’s. This is remark-
able since in the direct formulation, the B.C’s govern the 
solution, whereas in this case they are not playing a role. 
This is also significant for the fact that practically it is 
impossible to measure the B.C’s. 

3.1. Notations 

In this section we will describe the notations used in the 
sequel. Please refer to Table 1. 

3.2. Problem Formulation 

The basic configuration is shown in Figure 1 in which 
the simply supported pipe is excited by moments ( )0M t  
and ( )LM t  at the ends. The length of the span is L. 
Considering Bernoulli-Euler formulation and viscous 
damping, the dynamic equation of motion in the time 
domain [17,18] is as follows: 

( ) ( ) ( )4, , , 0
c EI

u x t u x t D u x t
m m

   + +   =
   

      (1) 

 
Table 1. Nomenclature. 

Symbol Description 

x Space variable. 

T Time variable. 

T Total time. 

L Length of the pipe span. 

  Spatial derivative operator. 

f  Time derivative of f (t). 

0 , LΥ Υ  Shape functions. 

m Mass per unit length. 

c Viscous damping coefficient. 

E Modulus of elasticity. 

I Moment of inertia. 

( ),u x t Total displacement variable. 

( ),v x t Dynamic displacement variable. 

0 , Lθ θ   Rotational accelerations. 

0 , LM M End moments. 

nω  Undamped natural frequency (nth mode). 

dnω  Damped frequency (nth mode). 

nφ  Mode shape (nth mode). 

nξ  Modal damping. 

( )nq t  Generalized modal displacement. 

0 ,n nLΓ Γ Modal participation factors. 

[ ]0,T  Closed interval between 0 to T. 

[ ]0,C T Space of continuous functions in [0, T]. 

u  Acceleration measurement time history. 

0 , LK K Kernel of the integral equation. 

TH. Time History. 
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Figure 1. Piping configuration. 
 

Boundary Conditions (B.C’s): 

( ) ( ) ;0, 0 , 0u t u L t= =             (2) 

( ) ( ) ( ) ( )2 2
0 ;0, , LEI u t M t EI u L t M t= =D D    (3) 

Equation (1) pertains to vibrations without any exter-
nal loading in the span. It is similar to the free vibration 
equation. However for our case the excitations are through 
end moments. This is shown in B.C’s (3). In absence of 
any forcing function in the span the sources of vibrations 
are through the ends. As mentioned earlier, this is a sig-
nificant development, since in the earlier studies the 
point sources of excitation forces have been dealt with. 
Our study is aimed at the determination of the end mo-
ments by observation of the response of some internal 
points. Then the response at any point in the span can be 
determined. It also assumed that the system starts from 
rest (i.e. it has zero initial conditions). 

We now express the total displacement function in 
terms of dynamic and quasi-static components as below. 

( ) ( ) ( ), , ,u x t v x t g x t= +            (4) 

The quasi-static part can be written in terms of the 
shape or participation functions ( )0 xΥ  and ( )L xΥ  as 

( ) ( ) ( ) ( ) ( )0 0, L Lg x t x t x tθ θ= +Υ Υ       (5) 

The function ( )0 xΥ  (respectively) ( )L xΥ  is de-
fined as the displacement of the points in the span with a 
unit positive rotation at end at 0x =  and x L=  re-
spectively. Since the system starts from rest we haves 

( ) ( )0 0 0 0 0Lθ θ= =             (6) 

( ) ( )0 0 0 0 0Lθ θ= =              (7) 

The following can be easily verified. 

( ) ( )0, 0 , 0v t v L t= =            (8) 

( ) ( )0, 0 , 0v t v L t= =D D           (9) 

( ) ( )0 0 1 0 1L= =Υ ΥD D          (10) 

( ) ( )4 4
0 0 0Lx x= =Υ ΥD D          (11) 

( ) ( ),0 0 ,0 0v x v x= =           (12) 

Using (7) to (10) we can recast (1) as follows: 

( ) ( ) ( )

( ) ( )( ) ( )

4

0 0

, , ,

,L L

c EI
v x t v x t D v x t

m m

c
t t g x t

m
θ θ

   + +  

=


   

 + −


−  


 

  Υ Υ      (13) 

It is customary to consider damping in terms of dy-
namic displacements only and hence the last term in (13) 
may be dropped. Equation (13) represents a forced vibra-
tion problem with a distributed loading for a pipe with 
clamped ends. Equation (12) represents the initial condi-
tions. However this being an inverse problem, the forcing 
function 0θ  and Lθ  (the rotational accelerations) be-
come the unknown quantities which are to be determined. 
Once they are found out, the problem is transformed into 
a direct problem and is solvable using commonly used 
numerical methods. The modal superposition method 
will be the basis of our study in the sequel. 

In line with the modal superposition theory the dy-
namic displacement may be expressed as the sum of 
modal components as below: 

( ) ( ) ( )
1

, n n
n

v x t x q tφ
∞

=
= ;           (14) 

Here ( )n xφ  is the Eigen-function for the thn  mode 
for the clamped pipe. ( )n xφ  satisfies the B.C’s (7) and 
(8). In addition we have the orthonormal properties: 

0

 ord ; f0
L

n m x n mφ φ = ≠           (15) 

0

d 1
L

n m xφ φ =                (16) 

Further we define : 

( ) ( )0 0
0

d
L

n n x x xφ=Γ  Υ            (17) 

( ) ( )
0

d
L

L n Ln x x xφ=Γ  Υ            (18) 

With the above properties we get modal equation from 
(12) as below: 

( ) ( ) ( )
( ) ( )

2

0 0

2n n n n n n

n nL L

q t q t q t

t t

ω ξ ω

θ θ

+ +

= Γ + Γ

 
        (19) 

Equation (19) is the differential equation for the gen-
eralized modal displacement ( )nq t . This is a second 
order differential in time variable. Two initial conditions 
are required for its solution. In our case we have zero 
displacement and zero velocity at time 0t = . The solu-
tion for ( )nq t  is: 
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( ) ( ) ( ) ( )( )

( )( ) ( )( )

0 0
0

1

exp sin d

t

n dn n nL L

n n dn

q t

t t

ω θ τ θ τ

ξ ω τ ω τ τ

= Γ + Γ

⋅ − − −

  
 (20) 

Here 21dn n nω ω ξ= − . It is also known as the 
damped natural frequency. 

It is clearly seen that we need to get estimates of the 
rotational accelerations to obtain ( )nq t . The modal ac-
celeration is obtained differentiating (20) twice and using 
the below identity: 

( ) ( ) ( ), d ,
t

u t u t u t ττ τ τ
=

= +          (21) 

We now define the following terms: 

( ) ( ) ( )0 0n nL Lh τ θ τ θ τ= Γ + Γ 
         (22) 

( ) ( ) ( )( )2 2 2
1 , sinn n n dn dnf t tτ ξ ω ω ω τ= − −

     
 (23) 

( ) ( )( )2 , 2 cosn n n dn dnf t tτ ξ ω ω ω τ= − −
     

 (24) 

( ) ( ) ( ) ( ) ( )( )1 2, e , ,n n t
n n nt h f t f tξ ω τψ τ τ τ τ− −= +     (25) 

1n dnα ω=                  (26) 

The expression for generalized modal acceleration is 

( ) ( ) ( )
0

, d
t

n n nq t t h tα ψ τ τ= +         (27) 

( ) ( ) ( ) ( )
1 0

, , d
tN

n n n
n

v x t x t h tφ α ψ τ τ
=

 
= + 

 
   (28) 

The total acceleration which is a sum of dynamic and 
quasi-static components can be written as 

( ) ( ) ( ) ( ) ( ) ( )0 0, , L Lu x t v x t x t x tθ θ= + +   Υ Υ   (29) 

Substituting (19) in (20) for ( ),v x t  we have 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 0

0 0

, d

,

tN

n n n
n

L L

x t h t

x t x t u x t

φ α ψ τ τ

θ θ

=

 
+ 

 

+ + =

 

  Υ Υ     (30) 

Equation (30) is the fundamental equation for our 
study. It is an integral equation of the second kind [11, 
19]. The right hand side (RHS) quantity represents the 
acceleration which is the observation. The left hand side 
(LHS) contains the unknown forcing functions in form of 
rotational accelerations. Our study will focus on the 
method of solution for the unknown rotational accelera-
tions. 

4. Solution Method 

We will now address the aspects of existence and unique-
ness by means of the following propositions. 

4.1. Proposition 1 

For a system as defined by the governing differential 
Equations (13) with B.C’s (8), (9) and initial conditions 
(12), the response (i.e. displacement, velocity etc.) at any 
location x can be obtained from the measurement of ac-
celeration time history at any two interior points.  

Proof: We begin with the assumption that ( )0 tθ  and 
( )L tθ  belong to the function space ( )0,C T  (i.e. the 

space of continuous functions). 
It is shown in Appendix A1 that (29) may be reduced 

to 

( ) ( )

( ) ( ) ( ) ( )

0

0 0
0 0

, d , d

L

t t

L L

t t

K t K t

ϕ ϕ

τ ϕ τ τ τ ϕ τ τ

+

= + 

 

 
   (31) 

It is seen that (31) represents a pair of Volterra Integral 
equations [11,19,20] (one for ( )0 tϕ  and the other for 

( )L tϕ ). 
For the first part of the assertion we need to show that 

the trivial solution is the only solution. It has been proved 
in Appendix A2 that both the integral equations have 
unique fixed points. It is also seen that the trivial solution 
exists. Hence it is also the unique solution. 

As the existence and uniqueness of (31) has been es-
tablished, we can solve for the individual forcing func-
tions at any time t from the below system: 

( ) ( ) ( ) ( ) ( ) ( )1 1 0 1 0 1, , L Lu x t v x t x t x tθ θ= + +   Υ Υ   (32) 

( ) ( ) ( ) ( ) ( ) ( )2 2 0 2 0 2, , L Lu x t v x t x t x tθ θ= + +   Υ Υ   (33) 

Equations 32 and 33 represent a system of integral 
equations. The numerical solution method for a single 
equation may be found in standard texts on numerical 
methods [20]. Thus Equations (32) and (33) may be ex-
pressed in the matrix form as 

( ) ( ) ( )t t tA X U=                 (34) 

In an expanded form (34) can be written as 

( )

( ) ( )

11 12 1 10

21 22 2 2

t

L tt

A A u h

A A u h

θ
θ
   −    =     −     

 
 

       (35) 

The elements of the matrix are as below 

( ) ( )
1

N

ij nj n i j i
n

A x xφ
=

= Γ + Υ           (36) 

( ) ( ) ( ) ( )

( ) ( )( )
0

1

1 2

e e

, , d

n n n n
N t t t

i n i nj n j
n

n n n

h x

f t f t

ξ ω τ ξ ω τφ α θ τ

τ ξ τ τ

− − − −

=
= Γ

+

 
  (37) 

t
i i iU u h= −                 (38) 

where 1, 2i =  and 0,1j =  and N is the number of 
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modes. The solution tX  is obtained from (30) as be-
low. 

( ) ( )( ) ( )1
t t tX A U

−
=            (39) 

( ( )tU  is the RHS vector of the measurements). 
From the existence of the solution we know that op-

erator ( )tA  is invertible and hence ( )tX  is the unique 
solution. 

4.2. Proposition 2 

The response obtained at any point is unique and inde-
pendent of the observation points. This means that if 

( )1 ,v x t  is the response calculated on the basis of obser-
vations for the set of points ( )1 2,x x  and ( )2 ,v x t  be 
for the set ( )3 4,x x  we have 1 2v v= . 

Proof: From Proposition 1 we know that the rotational 
accelerations are determined uniquely. The response is 
calculated on the basis of the solution of the direct prob-
lem (12) which is also unique. The forcing function is the 
same for all cases. Hence we have 1 2v v= . 

4.3. Numerical Method 

In this section we shall describe the numerical scheme 
for the calculation of acceleration forcing function. Let T 
be the total time interval for our study and TN  the num-
ber of time steps and N the number of modes. The objec-
tive of the scheme is to obtain tX  for all the time in-
stants t1, t2,···etc. up to T. For convenience ( )itX  will be 
denoted as iX . The steps are described below: 

1) Start with 

( ) ( )00X U=                 (40) 

2) For any rt  we define the following quantities 

( ) ( ) ( ){
( ) ( )( ) }

0

1 2

, , e

, ,

n n r k
r

t
ni nj n j k

k

n r k n n r k

H n i j

f t f t t

ξ ω τφ α θ τ

τ ξ τ

− −

=
= Γ

+ Δ

 
  (41) 

( ) ( ),
N

j i nj ni
n

C i j x φ= + ΓΥ        (42) 

The components of the matrix A in (35) is constructed 
as 

( ),ij ijA A i j C= =             (43) 

The RHS vector U is 

( )
1

0 1

, ,
N

i i
j n

U u H n i j
= =

= −         (44) 

(Here i = 1 and 2) 
3) Solve for rX  from (39). 
4) Repeat Steps 2 to 3 till Tr N=  

4.4. Determination of Response Variables 

We obtain the rotational accelerations as a solution of the 
inverse problem. Now we can determine the forcing 
function completely. Thus the problem is transformed 
into a direct one, which may be solved using existing 
methods for determining various response quantities like 
displacement, velocity and stress time histories. 

For example, Bending Moment, Shear Force and the 
Bending Stress are calculated as below. 

( ) ( )2, ,M x t EI u x t=              (45) 

( ) ( )3, ,F x t EI u x t=              (46) 

Bending Stress M Z=             (47) 

As a measure of structural integrity a mechanical de-
sign check against fatigue is required to be carried out 
using the stress distribution. In the time domain it is cus-
tomary to apply Rain-Flow Counting Method [21] to 
determine cumulative usage factor. The value of the us-
age factor should be less than unity which indicates that 
the system is safe and no failures from fatigue are ex-
pected to occur in its design life. A value of the factor 
greater than one is an indication of a possibility of failure 
due to fatigue. However as a crude estimate we may con-
sider maximum zero to peak value of the stress and 
compare it with the endurance limit. It should be less 
than the endurance limit to designate a system as safe. 

The time histories of velocities and the end reactions 
can be computed through the direct problem. The end 
reaction forces should be used for checking mechanical 
design of the support structure. This will ensure integrity 
of the pipe supports thereby accounting for an important 
hazard of a vibrating piping system. 

The velocity at a point may be compared against the 
maximum permissible velocity as per common practices 
as mentioned earlier. However in view of our detailed 
analytical method they are not the essential parameters 
and may be taken as an additional piece of information. 

4.5. Numerical Simulation and Validation 

In order to validate the theory some numerical experi- 
ments have been carried out. The problem considered is 
as follows. 

A simply supported pipe is excited through end mo- 
ments. Two cases have been considered. In case 1 the 
excitation moment is applied at only one end. In case 2 
excitation moments are applied at both ends. For sim- 
plicity the harmonic excitation comprising of sine and 
cosine terms for a few frequencies have been considered 
for the forcing functions. However any continuous time 
varying function is permissible. The total time T consid- 
ered is 200 seconds. The pipe material is steel, size 219  
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mm outer diameter (O.D), thickness 8.18 mm and the 
span is 8 m. A fixed damping ratio of 1% has been as- 
sumed. Five points numbered 1 to 5 have been defined in 
the span. Points 1 at x = 0 and 5 at x = L are the boundary 
points. Points 2, 3 and 4 are interior points at locations 
0.25 L, 0.5 L and 0.75 L respectively. These points have 
been defined for the purpose of specifying the input and 
output locations. 

The direct problem is first solved using the forcing 
function as the moments using standard software. The 
dynamic analysis time history module of general purpose 
Finite Element Analysis (FEA) software has been used 
for the direct problem. This analysis model will be 
termed as model D in the sequel. The results of the 
analysis have been treated as the benchmark. The accel- 
erations from model D have been considered as meas- 
urements which are the inputs for our proposed method 
which is based on Inverse Theory and denoted as model I 
for reference. Displacements, stresses and end reactions 
have been considered as the response parameters for 
comparison with the benchmark. 

5. Results and Discussions 

The time step interval has been fixed based on the high- 
est natural frequency. This is done for the purpose of 
minimizing errors due to integration. For the details on 
the theory one may refer to standard texts [17,18]. Five 
modes have been considered for the problem. 

Figures 2 and 8 show the moment time history for 
Case 1 and Case 2 respectively. Graph D denotes the 
input for direct problem model whereas graph I denotes 
the calculated response for the Inverse Problem. It is seen 
that the two graphs coincide implying unique correspon- 
dence between the Inverse and Direct Problem for our 
case. 

The observation points are 2 and 4 where the accelera- 
tion time histories are measured [see Figures 3 and 9]. 
The rotational accelerations are calculated from Equation 
37 as per inverse theory. It is seen from Figure 4 that the 
rotational accelerations are shown at point 1 only. This is 
due to the fact that in Case 1 the excitations are applied 
at one end. The other response quantities like end reac- 
tions, displacements and stresses are shown in Figures 5- 
7. In all cases there is no difference between the results 
of the two models. In the sequel we shall use the abbre-
viations TH for time history, ATH for acceleration time 
history and RTH for rotational time history. 

The results for Case 2 are given in Figures 9-13. In 
this case we have rotational accelerations for both the 
ends unlike Case 1. Also a very close match between the 
results of direct and inverse problem is observed similar 
to Case 1. This is expected since the theoretical solution 
for the two methods is essentially the same. The differ- 
ence is basically due to the round off errors. 

Plot of End Moments 

 

Figure 2. TH. of end moment excitations (Case 1). 
 

Accln. Measurement 

 

Figure 3. ATH. at measurement points (Case 1). 
 

Plot of Rotational Accln. 

2 

 

Figure 4. RTH. at end points (Case 1). 
 

End Reaction Plot 

 

Figure 5. TH. plot of end reactions (Case 1). 
 

As mentioned earlier, the distinct advantage of the 
method over the current ones is that quantitative estimate 
of the stresses and the end reactions are obtained in this 
method. This is significant from the aspect of condition 
monitoring and engineering design. The reaction force  
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Stress Plot 

 

Figure 6. Stress TH. at interior points(Case 1). 
 

Displacement Plot 

 

Figure 7. Displ. TH. at interior points (Case 1). 
 

Plot of End Moments 

 

Figure 8. TH. of end moment excitation (Case 2). 
 

Accln. Measurement 

 

Figure 9. ATH. at measurement points (Case 2). 
 

estimates will enable us to design the pipe supports, 
whereas the stresses and displacements will be useful for 
condition monitoring of the system. 

Plot of Rotational Accln. 

2 

 

Figure 10. RTH. at end points (Case 2). 
 

Plot of End Reactions 

 

Figure 11. TH. plot of end reactions (Case 2). 
 

Displacement Plot 

 

Figure 12. Displ. TH. at interior points (Case 2). 
 

Stress Plot 

 

Figure 13. Stress TH. at interior points (Case 2). 

6. Conclusion 

Vibration failure in operational piping is a serious prob-
lem and there is a need for a comprehensive study and 
analysis for its remedial measures. In this sense the pro-
posed study has got a tremendous practical value. A 
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quantitative method with proper mathematical basis has 
been provided in contrast to the cook book approach. By 
this method it is possible to quantify stresses, velocities 
and reaction forces. This gives us a basis for a proper 
engineering design. The method being simple can be 
easily adopted by engineers involved in trouble-shooting. 
Several improvements in the model are in line and 
planned for future work. These are like inclusion of 
lumped mass in the span or pipe bends. These will widen 
the range of application of the method and will be of 
greater practical use. 
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Annexure 1: 

This section deals with some mathematical details re-
quired for Proposition 1. We define the following terms. 
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n n n
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x xβ α φ
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( )

( ) ( ) ( )( )( )
0

0 1 2
10

,

1
, ,

N

n n n n n n
n

K t

x f t f t

τ

φ ω α τ τ
β =

 
= − Γ + 
 


 (A-5) 

( )

( ) ( ) ( )( )( )1 2
1

,

1
, ,

L

N

n n n nL n n
nL

K t

x f t f t

τ

φ ω α τ τ
β =

 
= − Γ + 
 


 (A-6) 

Substituting the above in (29) we have 
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Lemma 1: 
The integral equation defined below has a unique triv-

ial solution. 

( ) ( ) ( )
0

, d 
t

K tf ft τ τ τ=          (A-8) 

(Here f(t) is a continuous function belonging to C (0, T) 
and the kernel K (t, τ) is also continuous in the domain 
( ) ( )0, 0,t X t  with K (t, τ) = 0 for t τ< .) 

Proof: We will provide the sketch of the proof. For 
details on may refer to any standard text on functional 
analysis (e.g. [19]).  

It can be proved that the operator T defined as 

( ) ( ) ( )
0

, d
t

Tf t K t fτ τ τ=          (A-9) 

is a contraction mapping. Hence it has a unique fixed 
point. Thus (A-8) has a unique trivial solution.

 


