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ABSTRACT 
 

Plant breeding program depends on its ability to provide farmers with genotypes with guaranteed 
superior performance (phenotype) in terms of yield and/or quality across a range of environmental 
conditions. To achieve this aim, it is necessary to have an understanding of the model suitable for 
or leading to a good phenotype. In this study, two cases of scenarios were considered to have a 
clearer view of the performance of Genotype by Environment Interaction on the following four 
models; Additive Main Effect and Multiplicative Interaction (AMMI), Finlay Wilkinson (FW), 
Genotype and Genotype by Environment Interaction (GGE) and Mixed Model. We experiment the 
inference behind the violation of the assumption of normal distribution by observing the data 
contamination of two case scenarios (Lowest and Highest outlying observations). It was observed 
on the two data Types of Balance and Unbalance designs with different Levels of generations. We 
achieved that by comparative performance of the data contamination techniques under the two 
case scenarios; Case I scenario was done for Lowest Outlying Observations where 50%, 100% 
and 500% data contamination on the First Quarter (P1), Mid quarter (P2) and Last Quarter (P3). 
We then deduced from the result of the model evaluation that, at each levels of data contamination 

for Balance and Unbalance design, Mixed model was the ideal model for G E  interaction. Case II 
scenario was done for Highest Outlying Observations where 50%, 100% and 500% data 
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contamination on the First Quarter (P1), Mid quarter (P2) and Last Quarter (P3) were examined on 
each levels of generations. We then observed from the result of the model evaluation that, at each 
levels of data contamination for Balance and Unbalance design, Mixed model also outperformed 
the other three models. 

 
 
Keywords: Plant breeding; genotype-by-environment interaction; AMMI; FW; GGE and mixed model; 

simulation. 

 
1. INTRODUCTION 
 
Despite the enormous work done by plant 
breeders in developing high yielding crop 
varieties the changes in climate may limit the 
gains as this is tantamount to a shifting target. 
One of the remedies may be to breed new and 
adapted as well as the preservation of traditional 
locally adapted varieties that can tolerate climate 
variability and are suitable for changed climatic 
conditions [1]. Legumes in particular have many 
advantages. In addition to being a rich source of 
soil proteins, they enrich soil through biological 
nitrogen fixation. Studies have shown that the 
rotation of chickpea and pigeon pea reduces the 
use of chemical fertilizers and also enhances the 
output of paddy and wheat significantly [2]. 
 

1.1 Phenotype, Genotype and 
Environment 

 
Genotype is the part (DNA sequencing) of 
genetic make-up of a cell and therefore of an 
organism or individual, which determines a 
specific characteristic (i.e. Phenotypes) of that 
organism or individual. Organism frequently 
encounter different environmental conditions 
because the physiological and behavioral 
responses of these conditions depend on the 
genetic make-up of individuals [3]. 
 
Genotype generally remains constant from one 
environment to another, although occasional 
spontaneous mutations may occur which caused 
it to change. However, when the same genotype 
is subjected to different environments, it can 
produce a wide range of phenotypes.  
 

1.2 Genotype-By-Environment Interaction 
(G E ) 

 
In 1902, Garrod was one of the first scientists to 
note that the effect of genes on phenotype could 
be modified by the environment. Tumuhimbise et 
al. [4] also demonstrated that the development of 
a plant is often influenced by its surrounding. 
However, many years ago, the prediction of 

phenotypes from high-density marker information 
was recognized as a potential game changer in 
animal breeding [5].  
 
In plant breeding, the current development of 
high throughput genotyping techniques alongside 
with similar techniques for phenotyping and 
envirotyping [6,7] provides opportunities for large 
scale phenotypic predictions of new, and 
therefore, untested genotypes in new 
environments under a wide spectrum of 
genotype-by-environment interaction ( G E ) 
scenarios [8,9,10,11,12]. The increased volumes 
of phenotypic, genotypic and environmental data 
give a stimulus to the development of new 
statistical approaches for more precise 
description and prediction of G E phenomena. 
A better modeling of G E  will undeniably 
contribute to a higher efficiency of breeding 
programs. In the light of the current 
developments, it is obvious that the study of 
G E will become even more important in the 
near future than it was already in the past. 
 
Future generations of students and researchers 
in plant breeding will require substantial training 
in the statistical aspects ofG E . Environmental 
factors such as rainfall amount, soil structure, 
temperature and altitude may impact genotypes 
positively or negatively.  
 
When genotypes performance rank differently in 
different environments this is what is known as 
genotype by environmental interaction [13]. It is 
the association between the environment and the 
phenotypic expression of a genotype that is 
known as G E interaction. This interaction that 
determines whether a genotype is adapted to a 
whole range of environmental conditions or 
separate genotypes is manifested through 
growing the genotypes in different sub-
environments. 
 
Nigeria with its very diverse climatic conditions 
and soil types escalates the problem of G E  
even further. To overcome this problem, the 
universal practice of scientists in most crops 
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when selecting genotypes, is to plant them in 
yield (performance) trials over several 
environments and years to ensure that the 
selected genotypes have a high and stable 
performance over a wide range of environments. 
The assessment of genotype performance in 
genotype by environment and by year 
experiments is often difficult because of the 
presence of environment by year interaction (i.e. 
environmental effects). 
 

The general aim of this study is to determine 
which of these models’ best suits G E
interaction using Monte Carlo simulated data and 
also discuss certain statistical and biological 
limitations. 
 
The specific objectives are: 
 

i. To compare the various statistical methods 
of analysis to determine the most suitable 
parametric procedure to evaluate and 
describe genotype performance under 
multi-location trials, 

ii. To determine the efficiency of each 
method (AMMI, Finlay-Wilkinson, GGE and 
Mixed model) in detecting G E  and 

iii. Also, to determine the adaptability and 
specificities of the methods. 

 

2. MATERIALS AND METHODS 
 
A combined analysis of variance procedure is the 
most common method used to identify the 
existence of G E from replicated multi-location 
trials. If the G E  variance is found to be 
significant, one or more of the various methods 
for measuring the stability of genotypes can be 
used to identify the stable genotype(s). A wide 
range of methods is available for the analysis of 
G E  and can be broadly classified into four 
groups: the analysis of components of variance, 
stability analysis, multivariate methods and 
qualitative methods. 
 
The methods to be adopted in this study are 
suitable for the plant breeders in estimating 
Genotype by Environment Interaction ( G E ) 
parameters. The methods are as follows; 
 
A. Additive Main Effect and Multiplicative 

Interaction (AMMI) Model 
 

The AMMI model combines the features of 
ANOVA and SVD as follows: first, the ANOVA 
estimates the additive main effects of the two-
way data table; then the SVD is applied to the 

residuals from the additive ANOVA model, 

estimating min( 1, 1)N I J   interaction 

principal components (IPCs). The model can be 
written as [16]: 
   

       (1) 
 

where ijky  is the phenotypic trait (yield or some 

other quantitative trait of interest) of the ith 
genotype in the jth environment for replicate k; 
model 
 

  is the grand mean; 

i  are the genotype deviations from  ; 

j  are the environment deviations from  ; 

n is the singular value of the IPC analysis axis 

n; 

,n i  and ,n j  are the ith and jth genotype and 

environment IPC scores (i.e. the left and right 
singular vectors, scaled as unit vectors) for axis 
n, respectively; 

,i j  is the residual containing all multiplicative 

terms not included in the model; 

ijke  is the experimental error; and N is the 

number of principal components retained in the 
model. 
 

In matrix formulation the AMMI model can be 
written as:  
 

1 1 1 1T T T T
I j I J I JY UDV                  (2)  

 

where Y is the ( )I J  two-way table of 

genotypic means across environments. The 
interaction part of the model 
* 1 1 1T T T

I j I J I JY Y        is approximated 

by the product of matrices
TUDV , with U an 

( )I N matrix whose columns contain the left 

singular vectors interactions of n, D a ( )N N
diagonal matrix containing the singular values of  
*Y , and V a ( )J N matrix whose columns 

contain the right singular vectors of 
*Y  

 

B. Finlay-Wilkinson Model 
 
A more attractive alternative is to extend the 

additive model: ij i j ijy e             (3) 
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by incorporating terms that explain as much as 
possible of the G E . A popular strategy in 
plant breeding is that proposed by [14], which 
describes G E  as a regression line on the 
environmental quality. In the absence of explicit 
environmental information, the biological quality 
of an environment can be reflected in the 
average performance of all genotypes in that 
environment. The G E  part is then described 
by genotype-specific regression slopes on the 
environmental quality, and the model can be 
written in the following equivalent ways: 
 

ij i j i j ijy b e                               (4) 

 
' '

iij i j ijy b e                                           (5) 

 

Model (5) follows from model (4) by taking
'

i i     and
'(1 )
ij i j i j jb b b       . 

Model (5) is easier to interpret because it looks 
as a set of regression lines; each genotype has a 

linear reaction norm with intercept 
'
i  and slope

'

i
b . The explanatory environmental variable in 

these reaction norms is simply the environmental 

main effect j . Model (4) shows more clearly 

how G E  is captured by a regression on the 
environmental main effect, with the hope that as 
much as possible of the GEI signal will be 

retained by the term i jb  . Note that in model (5) 

the average value of 
'b is 1, meaning that 

' 1b   
for genotypes with a higher than average 

sensitivity, and 
' 1b   for genotypes that are less 

sensitive than average. 
 

C.  Genotype and Genotype by Environment 
Interaction (GGE) Model 

 

Plant breeders are interested in the total genetic 
variation and not exclusively in the G E  part. 
For that reason, it is useful to have a modification 
of model (1) that considers the joint effects of the 
genotypic main effect and the G E as a sum of 
interpretation procedures hold as for model (1). 
Because genotypic scores now describe 
genotypic main effects G and GE together, this 
type of model is also known as the "GGE model" 
and the Biplots are called "GGE Biplots" [15]. 
The model reads: 

 

, , ,
1

N

ij j n n i n j i j ij
n

y e     


              (6) 

In GGE, the result of SVD is often presented in a 
"Biplot illustration". Its approximate overall 
performance (G + GE). 
 

D. Mixed Model 
 

The REML/BLUP method allows the 
consideration of different structures of variance 
and covariance for the genotypes by 
environments effects, which makes the model 
more realistic. For the G E  evaluation by 
mixed model, the following statistical model was 
used: 
 

y Z X W                              (7) 
 

Where, y is the vector of observed data; is the 
vector of genotype effects (assumed as random);

 is the vector of block effects within each 

environment (assumed as fixed);  is the vector 

of GEI effect (assumed as random); and  is the 
error vector (random). The uppercase letters 
represent the matrices of incidence for the 
referred effects. See below the distribution of the 
random effects: 
 

2 2| ~ (0, )N I    ,
2 2| ~ (0, )N I     

and 
2 2| ~ (0, )N I     

 

E. Simulation study 
 

We simulate two-way data tables for balanced 
and unbalanced design with 3 replications each, 
where the interaction is explained by two 
multiplicative terms (i.e. two IPCs; k = 2 
components to be retained). Without loss of 
generality, the two-way data tables are simulated 
in the following way: 
 

1. Balance and Unbalance Design 
 

Create a matrix X with ( )n p data design; 
 

 (3 3) data design, where n = 3 rows 

(Genotypes) and p = 3 columns 
(Environments) 

 (7 7) data design, where n = 7 rows 

(Genotypes) and p = 7 columns 
(Environments). 

 (10 10) data design, where n = 10 rows 

(Genotypes) and p = 10 columns 
(Environments). 

 (3 7) data design, where n = 3 rows 

(Genotypes) and p = 7 columns 
(Environments) 



 
 
 
 

Oyamakin and Durojaiye; AJRAF, 5(2): 29-45, 2020; Article no.AJRAF.53958 
 
 

 
33 

 

 (7 3) data design, where n = 7 rows 

(Genotypes) and p = 3 columns 
(Environments). 

 (7 10) data design, where n = 7 rows 

(Genotypes) and p = 10 columns 
(Environments). 

 (10 7) data design, where n = 10 rows 

(Genotypes) and p = 7 columns 
(Environments). 

 with observations drawn from a Unif[0, 0.5] 
distribution. Do the SVD of X and obtain 
the matrices U, V and D, containing, 
respectively, the left and right singular 
vectors and the singular values of X; 

 Simulate the grand mean, the genotypic 
and environmental main effects, 

considering: ~ (15,3)N , ~ (5,1)N

and ~ (8, 2)N (Rodrigues et al.(2015)). 
 

2. Data Contamination Experiment 
 

The procedure is to experiment the inference 
behind the violation of the assumption of normal 
distribution by observing the data contamination 
of two case scenarios (Lowest and Highest 
outlying observations). And it would be observed 
on the two data Types of Balance and Unbalance 
designs as generated above. 
 

Case I scenario (Lowest Outlying 
Observation):  
 

The data type of balance and Unbalance design 
for each of the levels considered in the study              
( 3 3 , 7 7 , 10 10 and 3 7 , 7 3 , 7 10 , 

10 7 ) would be contaminated at 50%, 100% 

and 500% on each data point of the first (
1P ), 

mid (
2P ) and last (

3P ) quarters of the data 

design. At every point of contamination, we 
would subtract the value from the original to 
lowering the outliers of each of the quarters 
observed in the process and take the inference. 
We would then proceed to the next step by 
returning the original quarter's data point and 
move to the next quarter for contamination. The 
rigorous procedure would continue till we 
exhausted all the data levels. 

 
Case II scenario (Highest Outlying 
Observation):  

 
The data type of balance and Unbalance design 
for each of the levels considered in the study (
3 3 , 7 7 , 10 10 and 3 7 , 7 3 , 7 10 ,

10 7 ) would be contaminated at 50%, 100% 

and 500% on each data point of the first (
1P ), 

mid (
2P ) and last (

3P ) quarters of the data 

design. At every point of contamination, we 
would add the value to the original data point to 
increase the outliers of each of the quarters 
observed in the process and take the inference. 
We would then proceed to the next step by 
returning the original quarter's data point and 
move to the next quarter for the same process of 
contamination. The rigorous procedure would 
continue till we exhausted all the data levels in 
the study. The cases structure summarized 
below; 
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3. Assessment of Genetic Stability 
 

Various techniques are available for evaluation of 
adaptation and genetic stability of genotypes in 
different environments. These include regression 
[14], AMMI [16], GGE-biplot [15] and Mixed 
model. 
 

 Stability evaluation using Finlay-
Wilkinson model 

 

The regression of each genotype in an 
experiment on an environmental index and a 
function of the squared deviations from this 
regression would provide estimates of the 
desired stability parameters. Parameters are 
defined with the following model [14]. 
 

ˆˆˆ
i j i i jy b  

 
 

where ˆijy is the phenotypic trait of the ith 

genotype in the jth environment, each genotype 

has a linear reaction norm with intercept ˆ
i  and 

slope ˆ
ib and j are the environment deviations 

from μ 
 

a.  Computation of Environmental Index ( j ) 

was done as follows: 
 

The environmental index j obtained as the 

mean of all yields at the jth environment minus 
the grand mean. 
 

 
 

                    
 

Where 0j j   

 

b. Computation of Regression Coefficient (
ib ) 

 
The first stability parameter is a regression 
coefficient estimated as follows: 
 

2

j ij j

i

j j

Y
b









 

where, j ij jY   is the sum of products of the 

environmental index with the corresponding 
mean of that genotype at each location and 

2
j j is the sum of squares. 

 
c. Computation of Mean Square deviation                

( 2

id
S ) 

 

 

2

2 2

2i

j ij

d e

j

S S r
n


 


 

 

Where 2
j ij  is pooled deviation, jn  is the 

number of environments and 
2
eS r  is the mean 

sum of squares from ANOVA. 
 

 Stability evaluation using AMMI model 
 

AMMI stability value (ASV) was calculated for 
each genotype according to the relative 
contributions of the principal component axis 
scores (IPCA1 and IPCA2) to the interaction sum 
of squares. Stability analysis was then done 
placing the seven varieties as genotypes in the 
Additive Main Effects and Multiplicative 
Interaction effects of principal components 
analysis (PCA) model. Genotype means and 
scores were generated and used for ranking 
genotype stability. The AMMI model does not 
make provision for a quantitative stability 
measure, such a measure is essential in order to 
quantify and rank genotypes according their yield 
stability, The AMMI stability value (ASV) as 
described by [17] was calculated as follows: 
 

���  

= ��
����1������������

����2������������
(����1�����)�

�

+ [����1�����]� 

 
In effect the ASV is the distance from zero in a 
two-dimensional scatter gram of IPCA1 
(Interaction Principal Component Analysis axis 1) 
scores against IPCA2 scores. Since the IPCA1 
score contributes more to G×E sum of squares, it 
has to be weighted by the proportional difference 
between IPCA1 and IPCA2 scores to 
compensate for the relative contribution of IPCA1 
and IPCA2 total G×E sum of squares. The 
distance from zero is then determined by using 
the theorem of Pythagoras. 
 
AMMI Stability Value (ASV) refers to a statistical 
measure to determine the Stability and 
Adaptability of the various genotype. The larger 
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ASV indicates that a genotype is adapted 
specifically to a certain environment while a 
smaller ASV indicates that a genotype is more 
stable across environment [18]. Yield stability 
index was also calculated using the sum of the 
ranking based on yield and ranking based on the 
AMMI stability value. 
 

YSI = RASV + RY 
 

where  
 
RASV is the rank of the genotypes based on the 
AMMI stability value;  
RY is the rank of the genotypes based on yield 
across environments (RY). 
YSI incorporates both mean yield and stability in 
a single criterion. Low values of both parameters 
show desirable genotypes with high mean yield 
and stability [19] 
 

 Stability evaluation using GGE biplots 
 
Comparison biplots, scatter biplot, and ranking 
biplots would be generated for genotype  
ranking. 
 

 Stability evaluation using Mixed Model 
 

Environmental variance for each genotype would 
be used to determine the stability evaluation of 
mixed model as outlined in [20], following his 
published SAS code. Each unique combination 
of environment and design level would be 
considered. 

Furthermore, again for computational feasibility, 
the genotype means dataset would be split into 
two subsets and then analyzed. The SAS PROC 
MIXED code [20] specifies an unstructured 
variance-covariance R matrix, which provides a 
unique environmental variance estimate for each 
genotype [21]. This allowed subsets of the data 
to be processed without influencing 
environmental variance estimates because of  
the presence or absence of certain genotypes in 
a specific data subset. All environmental 
variance estimates would be inspected to 
determine if they appeared to be reasonable as 
compared to a median value for the dataset. 

 
3. RESULTS AND DISCUSSION 
 
The analysis an interpretation of the simulated 
data was presented. We intentionally 
concentrated on the interface of the four models 
considered in the methodology, basically for 
checking the robustness of the models. 

 
Understanding the implication of Genotype-by-
Environment (G×E) interaction structure is an 
important consideration in plant breeding 
programs. Traditional statistical analyses of yield 
trials provide little or no insight into the particular 
pattern or structure of the G×E interaction. In this 
study, efforts were made to solve these problems 
under different level of data occurrence. We 
employed the simulation process of Monte Carlo 
in generating the data, since adoption of real-life 
data might pose a serious difficulty. 

 

 
 

Fig. 1. Case 1 - Rank Performance 
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Fig. 2. Case 2 - Rank performance 
 

3.1 Data Contamination 
 
In this phase, we were able to justified our 
inference on the simulated data using data 
contamination approach and model evaluation 
criterion to check the robustness of the outlying 
observations. We therefore examined different 
cases of data contamination. 
 

- Case 1 - Lowest Outlying Observation: 
Case 1 scenario revealed the lowest 
outlying observations of the type balance 
and unbalance design with (50%, 100% 
and 500%) different levels of 
contamination. Table 1 for Type I 
explained that among all the four models, 
mixed model is more sensitive to outlying 
observations due to the minimum values 
presented by the Root Mean Square, 
Mean Square Error and Absolute Bias. 
Similarly, Table 2 for Type II also reported 
the robustness of Mixed model. 
 

- Case 2 - Highest Outlying Observation: 
Case 2 scenario revealed the highest 
outlying observations of the type balance 
and unbalance design with (50%, 100% 
and 500%) different levels of 
contamination. Table 3 and Table 4 shown 
the model evaluation for the Type I and II 
at different levels of contamination and the 
mixed model still prove to be more 
influential. 
 

4. SUMMARY OF FINDINGS 
 
In the findings, we simulated for two data Types 
of Balance and Unbalance designs with           

different Levels of generations (3×3, 7×7, 10×10 
and 3×7, 7×3, 7×10, 10×7 respectively). We 
therefore check the performance of G×E 
interaction on four different models (AMMI, FW, 
GGE and Mixed model), and also their               
stability and adaptability. The findings              
revealed that, when the assumption was 
maintained, AMMI outperformed Finlay- 
Wilkinson model, GGE Biplot model and Mixed 
model.                                                           
 
However, in this same study, two case scenarios 
were considered to have a clearer view of the 
performance of Genotype by Environment 
Interaction on the four models. We              
experiment the inference behind the violation of 
the assumption of normal distribution by 
observing the data contamination of two case 
scenarios (Lowest and Highest outlying 
observations). It was observed on the                    
two data Types of Balance and Unbalance 
designs with different Levels of generations.              
To achieve that, comparative performance            
of the data contamination techniques under              
the two case scenarios were assessed as     
follow; 
 
Case I scenario was done for Lowest Outlying 
Observations where 50%, 100% and 500% data 

contamination on the First Quarter ( 1P ), Mid 

quarter ( 2P ) and Last Quarter ( 3P ) were 

examined on each levels of generations. We 
then deduced from the result of the model 
evaluation that, at each levels of data 
contamination for Balance and Unbalance 
design, Mixed model was the ideal model for 
G×E interaction. 
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CASE 1 - Table 1. Type I: Balance design 
 

LEVEL I 

3 3 Design RMSE MSE Abs. Bias 

Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 
 
50% 

1P  3.9776 6.2548 3.6947 2.5305 2.5965 3.0219 4.4741 1.7210 2.6147 3.2535 4.8600 1.5760 

2P  4.4662 0.7659 2.3932 0.1986 2.1370 1.3478 3.4552 0.4613 2.9730 1.4564 0.2559 0.1322 

3P  0.6618 5.3054 2.1046 0.6250 3.9005 3.3206 1.0023 0.1564 3.4524 0.1712 1.4008 0.0987 

 
100% 
 

1P  0.8302 0.4066 0.5978 0.0089 3.6864 1.8896 2.7429 1.1382 2.5447 2.6244 0.7718 0.5997 

2P  3.5122 3.1019 4.5554 1.0005 0.5478 4.1373 1.9141 0.1382 2.3389 3.7763 5.7263 0.4829 

3P  1.3398 2.0190 2.3720 1.4642 4.4850 2.3743 1.1382 0.0189 0.2779 0.3519 3.7643 1.5014 

 
500% 

1P  3.3975 4.0813 2.1924 1.5235 1.3683 0.7436 4.4258 0.5622 0.9487 2.9123 2.2130 0.2806 

2P  3.2508 1.5987 1.2958 0.5324 0.7822 2.7938 2.3045 0.3631 1.1823 3.7015 2.0555 1.1224 

3P  3.5083 2.9215 4.4020 0.0023 2.1172 3.0717 3.0969 1.9522 2.8421 1.8497 2.2907 1.0119 

LEVEL II 

7 7 Design RMSE MSE Abs. Bias 

Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 
 
50% 

1P  2. 5228       2.1134      4.7115     1.6252    1.1442    0.4274    2.4918    0.2412    2.6295    2.0625    1.4434    1.3116 

2P   0.3103       2.2304      2.0269      0.1085    0.6989    1.8319    3.0620    0.0355    3.0497    3.9320    1.0591    0.2233 

3P   5.6018       1.6197      1.8373      0.9898    4.1976    2.2632    3.4112    0.3249    1.7939    2.3588    1.8140    1.4978 

 
100% 
 

1P   3.6157       3.2979      3.5966      2.8638    0.5700    0.7666    3.9525    0.2491    2.2765    1.9725    1.6582    0.8749 

2P   1.7235       4.0381      5.0392      1.3917    1.5541    3.3197    1.1758    0.5311    2.6387    4.1457    4.9010    1.7073 

3P   1.1354       3.3110      4.0373      0.0570    1.4628    1.2515    4.9953    1.0603    1.8866    1.9557    4.7690    0.4723 

 
500% 

1P   3.2792       4.9483      5.4411      1.4781    0.2621    2.0341    0.7382    1.4152    3.3696    2.1861    1.9306    0.8074 

2P   2.6836       0.7433      0.1501      0.1281    2.6171    4.0042    5.1396    2.4191    4.7847    3.2553    0.3772    0.3705 

3P   0.7081       2.8018      1.1126      0.2695    3.7566    2.3057    2.5682    2.1408    0.8735    1.4241    0.2544    0.1423 
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LEVEL III 

10 10 Design RMSE MSE Abs. Bias 

Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 
 
50% 

1P  2.6331    6.8466    3.3917    2.7384    2.3036    4.1953    5.1651    1.6818    3.7856    0.4989    1.5320    0.2384 

2P  1.7304    3.7265    1.6823    0.2257    1.3571    3.6416    0.7979    0.1904    3.4438    3.2548    1.0151    1.0084 

3P  1.8348    1.9396    3.2759    1.3484    1.4645    1.0673    0.9434    1.0441    1.1193    4.2652    4.9487    1.0718 

 
100% 
 

1P  3.4321    3.9010    2.9753    1.6135    2.6769    1.2546    3.4052    0.5478    2.5582    3.4722    5.7779    0.4021 

2P  3.8016    0.8231    6.9347    0.2874    0.3907    5.6913    4.5928    0.2178    0.1965    1.9985    1.1985    1.1069 

3P  3.1948    1.3203    0.2859    0.7834    5.6026    2.6734    5.2994    2.0747    1.7705    3.3839    1.6280    1.4539 

 
500% 

1P  1.8984    0.3656    3.4270    0.8695    2.6337    1.8211    1.0579    0.6981    2.9803    3.5371    2.6059    2.3114 

2P  2.6904    6.4308    0.8105    0.1153    1.1072    0.7594    2.4406    0.1604    3.0310    1.8189    1.0580    0.8345 

3P  5.2746    4.5194    2.6493    0.8888    6.9412    0.7436    1.4775    0.1334    4.8001    0.9099    1.3112    0.3113 

 

CASE 1 - Table 2. Type II: Unbalance design 
 

LEVEL I 

3 7 Design RMSE MSE Abs. Bias 

Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 
 
50% 

1P  1.4331    3.3038 1.6479     0.0802     2.5712    1.1281     3.8669    0.1163     3.5897     5.4271    3.4941     0.5821 

2P  4.3363    2.9667    3.1024     1.3353     3.5751    1.4086     1.6537    0.7040     2.5093     0.1848    4.8575     0.0897 

3P  4.5918    2.2218    6.0176     1.1560     0.9795    0.0624     3.2998    0.0107     0.9922     2.3163    1.0737     0.1273 

 
100% 
 

1P  4.0520    3.6855    0.1328     1.3320     3.2455    0.5320     0.6503    0.1100     1.8847     5.7815    5.9015     1.2300 

2P  1.1294    1.1693    2.6496     0.2270     3.7697    2.4334     2.8743    1.4469     2.5685     2.7443    2.3418     1.2508 

3P  3.7103    5.4663    0.9931     0.7815     3.6316    2.2125     3.0844    1.9055     1.9396     2.7692    3.5010     1.5911 

 
500% 

1P  1.7101    4.0012    3.2137     0.8501     0.7136    5.3162     3.8823    0.5816     4.4242     2.2703    3.0264     1.6812 

2P  1.6111    1.7819    2.6264     0.3333     3.3172    0.7531     3.4661    0.2704     1.1004     4.7523    3.4844     0.2695 

3P  1.8048    1.2227    1.5741     0.5371     1.9528    2.7854     3.6655    1.0040     0.04894   3.0273    5.7220     0.3252 
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LEVEL II 

7 3 Design RMSE MSE Abs. Bias 

Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 

 
 
50% 

1P  3.4238    5.2310    0.0910     0.0084     6.4652    1.9233     2.2460    0.1911     0.5703     0.3069    3.3359     0.2065 

2P  3.2708    3.3591    3.8662     0.3958     1.4202    0.5999     0.5097    0.4724     1.0174     0.6440    1.2842     0.0318 

3P 
4.2015    1.7402    2.6065     0.6418     3.7936    2.2081     1.7318    1.2205     0.3998     2.9872    5.6198     0.0992 

 
 
100% 
 

1P  
0.5124    0.1033    0.8784     0.1871     1.4766    4.0085     4.2567    0.6677     0.1981     0.8231    1.5602     0.0194 

2P  5.1710    0.1945    0.7860     0.1767     5.9881    5.0057     1.9802    1.2974     1.4629     5.0202    3.1696     0.5631 

3P  2.5587    3.5489    2.7646     0.2048     0.1269    0.4526     2.1693    0.7055     1.1571     2.9201    0.7725     2.8306 

 
 
500% 

1P  0.0521    1.4113    2.9385     0.7985     2.7062    0.6397     2.4102    0.50811    3.2087    0.6473    2.9993     0.0518 

2P  0.2692    3.1942    2.7341     0.1503     1.2543    3.0624     0.9869    0.1241     1.9423     2.9430    2.3555     0.0352 

3P  4.2669    2.2342    3.1680     1.7939     1.0382    2.6514     0.5382    0.0671     1.2059     3.0836    1.0354     0.1412 

LEVEL III 
10×7 Design RMSE MSE Abs. Bias 
Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 

 
 
50% 

1P  2.6959   2.1524    2.6881     0.7750     2.4945    1.2512     1.2349    0.7706     3.0821     2.4643    2.2330     1.4713 

2P  3.3999   4.8647    1.5426     0.7426     1.4984    2.9315     4.1289    0.0820     2.1879     3.1694    2.1385     0.2187 

3P  3.6175   2.4843    2.3107     1.4908     2.4368    4.9343     0.8677    0.5174     4.1753     2.0979    2.2549     0.9854 

 
 
100% 
 

1P  0.2541   0.7277    2.9696     1.8264     2.5112    4.6280     2.8049    1.6542     1.3253     3.1015    7.5532     1.5582 

2P  5.8573   2.4074    3.2303     2.1389     5.4739    2.1130     0.6081    0.3218     1.3546     3.2373    0.2059     0.1971 

3P  1.6985   1.5213    1.7744     0.9543     1.2531    2.2730     1.5746    0.7153     1.1631     1.2707    7.5389     0.2591 

 
 
500% 

1P  1.8914   3.6685    5.2327     0.1050     2.1975    5.2735     1.0182    0.7774     3.2362     2.5087    1.4944     1.4829 

2P  0.7860   2.7948    2.1190     0.6122     3.1051    1.7604     3.7557    0.6933     2.4068     1.3888    4.7508     0.8761 

3P  2.3873   0.1125    0.9368     0.1063     2.1870    6.1950     3.5534    1.3832     1.0771     3.8293    4.0075     0.6893 
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LEVEL IV 
7×10 Design RMSE MSE Abs. Bias 
Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 
 
 
50% 

1P  0.2579    1.3002    1.8793     0.9268     7.7057    1.9438     1.0843    0.9430    3.3818     2.7349    3.4363     1.8128 

2P  1.4885    1.4120    1.5012     0.6238     2.3528    2.7359     3.1290    1.9584     2.7117     1.6961    1.3069     0.6420 

3P  4.6320    0.7134    1.7653     0.0081     3.2045    2.3589     3.0521    2.3572     1.6095     3.2579    0.1977     0.0928 

 
 
100% 
 

1P  1.1259    4.0580    0.6756     0.4793     1.0366    1.9033     0.8564    0.5197     3.9285     5.8000    1.6967     0.5478 

2P  0.7850    1.5907    0.4744     0.1925     3.5802    2.9806     1.1144    0.2105     1.0918     2.7243    1.0612     0.6818 

3P  0.9111    5.1454    0.5803     0.3725     4.2133    4.8490     2.0656    1.5703     4.1112     2.3778    2.0362     1.4701 

 
 
500% 

1P  0.5309    4.6632    2.1003     0.1413     2.6229    4.3176     1.9380    0.3578     1.0617     4.3839    1.5758     0.9996 

2P  1.0500    4.3233    0.6974     0.2318     0.5599    2.9307     0.0105    0.1539     3.3370     2.9522    2.7589     0.4961 

3P  0.5378    2.1718    1.3371     0.2078     5.3866    3.2484     1.2911    0.4443     0.3455     2.2293    7.0051     0.3439 

 

CASE 2 - Table 3. Type I: Balance design 
 

LEVEL I 

3 3 Design RMSE MSE Abs. Bias 

Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed Model 
 
 
50% 

1P  2.8764     5.6853     5.2575     2.6282     8.2738    2.3227    4.4630    1.8976     1.7660    4.2261     2.3519    0.8559 

2P  2.7907     4.7294     4.1370     2.2008     5.8387    3.4564    4.9730    0.4505     1.7236    6.4662     4.3932    0.8078 

3P  2.5938    4.9464     1.8288     2.0088     5.9005    4.3322    2.6618    0.5877     1.6280    2.2555     1.9976    0.8544 

 
 
100% 
 

1P  1.7494     5.3206     3.1129     1.6736     6.4850    1.3390    6.0894    0.3582     5.0264    1.8288     4.0844    1.8047 

2P  4.1046     6.1564     3.0320     2.3412     4.4860    5.6864    4.7429    1.8777     4.3333    4.5447     1.2282    0.5457 

3P  3.0590     4.7094     3.7505     2.5478     5.9283    5.7763    4.3389    1.3988     8.8099    1.4022     3.3399    1.2201 

 
 
500% 

1P  7.0040     5.9376     4.5014     2.4829     5.6316    3.4642    3.7858    0.3486     3.4558    4.0190     4.8384    0.4873 

2P  8.1231     4.3743     3.5015     2.6805     6.4093    4.2554    1.8861    1.3294     0.9623    1.5665     1.7435    0.0296 

3P  5.3128     5.1458     7.1354     3.4792     2.2981    3.3683    6.4258    1.8571     2.3958    2.9487     4.2130    1.4707 
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LEVEL II 
7×7 Design RMSE MSE Abs. Bias 
Contamination AMMI FW GGE Mixed model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 
 
 
50% 

1P  1.6910     5.6182     3.8497     0.8176     4.0299    5.2249    5.5083    0.3291     1.5520    2.6599     4.6642    0.9045 

2P  5.3868     6.1487     7.0119     1.2164     4.4701    6.4020    1.4202    0.7809     3.7798    1.9284     7.3905    1.7407 

3P  3.9607     5.0717     4.6491     4.0033     5.3359    4.2228    7.4815    0.9675     3.5602    6.5907     6.5766    0.5037 

 
 
100% 
 

1P  5.6947     3.4992     2.6989     1.8957     7.7220    5.9320    5.0497    1.0974     2.5999    1.8915     2.3103    0.1654 

2P  4.8259     4.5228     2.3588     1.8155     3.6493    2.2233    7.6018    1.7116     2.5775    0.4889     1.9219    0.0025 

3P  2.1986     3.5014     3.4978     1.5661     6.1706    3.8373    2.9345    1.6761     2.7725    3.6197     3.3463    1.6030 

 
 
500% 

1P  4.0743     3.3480     5.1024     2.3249     6.4724    2.5700    5.9525    1.0746     3.0354    4.2765     1.5133    0.3418 

2P  2.8302     3.5893     2.7378     0.4459     7.6198    6.1457    4.6387    0.4956     4.6808    0.6082     0.4849    0.2901 

3P  9.9500     5.6825     7.2383     2.5971     4.5424    3.5754    6.2611    0.9469     4.2228    4.7689     1.6841    1.1603 

LEVEL III 
10×10 Design RMSE MSE Abs. Bias 
Contamination AMMI FW GGE Mixed Model AMMI FW GGE Mixed model AMMI FW GGE Mixed model 
 
 
50% 

1P  3.0023     4.2344     5.2708     1.9083     7.0057     3.4202    4.2460    1.5019     1.3868    1.9826     1.7308    1.3219 

2P  1.6655     4.2081     2.4408     0.6839     3.2974     3.0992    5.3153    0.0626     2.6440    6.2015     2.4297    1.7975 

3P  3.9979     3.8221     4.6065     1.9880     7.2876     4.9872    5.6655    1.0310     3.7605    5.9694     3.4114    0.1517 

 
 
100% 
 

1P  3.8958     2.1871     2.1981     1.0045     5.0434     2.1034    5.4238    0.3597     2.4766    6.2567     3.7318    1.8784 

2P  3.3478     3.8397     7.1710     0.5266     5.0624     7.9881    6.3164    0.3902     5.5632    3.4629     2.6397    0.3259 

3P  6.4613     2.4526     2.4235     0.3822     3.1242     4.8306    5.8662    1.2392     2.0202    4.5587     2.5081    0.6801 

 
 
500% 

1P  4.3614     0.2330     4.3073     0.6977     5.4400     5.7452    5.7409    0.8224     2.3625    1.0371     1.9090    1.7635 

2P  1.0796     4.7985     5.2087     0.9145     4.0079     0.5887    6.5344    0.3905     4.7062    4.4102     1.4903    0.3405 

3P  6.1373     3.5741     7.2310     1.4447     4.0085     0.7457    4.9201    0.5310     1.9647    1.0577     1.6002    0.8952 
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CASE 2 - Table 4. Type II: Unbalance design 
 

LEVEL I 

3 7 Design RMSE MSE Abs. Bias 

Contamination AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model 
 
 
50% 

1P  3.4008    8.0176    4.9574    0.0292     5.7055    4.1140    0.7600    0.7545     2.6970    2.1611    2.9232    1.8766 

2P  4.5144    5.5122    4.4751    0.1821     4.8687    5.1655    4.1879    0.2331     4.3921    2.9725    3.8986    0.6071 

3P  2.9049    6.7722    6.4581    1.7840     4.3471    7.2665    4.3391    1.5262     1.1258    3.6634    2.4362    0.1405 

 
 
100% 
 

1P  6.0291    4.9868    6.5886    0.9967     4.7646    7.0762    2.3782    0.3156     3.3253    2.6797    3.8205    0.9445 

2P  1.1897    6.8932    4.1279    0.9092     2.4600    0.5445    4.5071    0.1980     3.1408    6.6320    5.0483    0.9025 

3P  4.7938    1.1133    1.4519    1.9524     4.7957    3.0695    6.3333    0.9416     3.4667    3.1989    7.2446    1.5740 

 
 
500% 

1P  4.2907    5.1946    1.5591    0.2379     4.1120    1.0307    6.8115    0.4946     3.0356    5.3814    4.1325    1.6361 

2P  4.3885    0.1219    0.6874    1.4461     2.6555    2.4612    7.6111    0.7181     6.8728    5.4641    4.7116     0.0770 

3P  5.1917    3.9909    4.1766    1.8612     2.6347    7.3444    3.7060    1.7757     3.9162    3.0955    1.6919     1.4311 

LEVEL II 
7×3 Design RMSE MSE Abs. Bias 
Contamination AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model 
 
 
50% 

1P  5.0355    4.3352    6.7830    0.8861     0.5762    5.0355    3.2406    0.3909     3.6261    7.8000    3.4110    1.6871 

2P  1.1860    5.9237    0.9083    0.1164     5.1867    4.9309    4.7704    1.5050     2.3297    2.0802    5.3632    1.1980 

3P  5.7643    4.1078    2.8815    0.3679     3.5923    2.4152    5.2499    1.8670     4.9235    4.6836    4.2784    1.6876 

 
 
100% 
 

1P  3.3631    1.4893    3.0972    0.5830     7.0066    4.6773    3.1678    0.0784     5.3462    6.1144    1.2170    0.0596 

2P  3.8319    4.1853    4.2233    1.6097     5.1495    5.0940    0.7730    0.0482     0.8182    4.5730    5.8122    1.6067 

3P  3.9725    4.3183    1.9859    1.5625     4.1614    2.2604    2.3710    1.6111     2.4258    7.9401    3.2469    0.6366 

 
 
500% 

1P  7.0392    4.6645    5.4762    1.9663     1.5630    2.9473    3.5903    0.6730     6.9551    7.5240    2.5815    0.1064 

2P  2.8242    2.9683    0.9575    0.7675     3.5401    4.7465    9.2216    0.6655     8.0648    4.2651    3.1826    1.6757 

3P  4.2985    1.7470    0.8645    1.6547     6.4800    5.1118    7.4418    1.0599     3.3190    6.0617    5.0643    0.8681 
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LEVEL III 
10×7 Design RMSE MSE Abs. Bias 
Contamination AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model 
 
 
50% 

1P  1.1926    2.3810    3.9562    1.1611     2.8740    6.0143    5.1170    0.7309     1.2266    5.8581    2.3114    0.8793 

2P  2.1501    4.8664    6.1214    0.3601     4.4991    5.1884    4.4857    0.5564     3.5086    5.4321    7.0076    1.1328 

3P  6.5341    2.2544    3.5090    1.3969     3.6978    2.3526    4.4821    0.0103     3.0068    6.7670    2.5582    1.5477 

 
 
100% 
 

1P  1.5011    0.8619    6.7254    0.5359     3.4930    7.4458    5.6237    0.5418     4.8684    3.1195    4.6701    0.1458 

2P  2.2384    6.7092    5.5099    0.8636     2.3550    7.1365    1.9108    0.1728     4.3747    5.1384    4.9517    0.2629 

3P  1.7742    4.2762    3.8505    0.1613     2.5222    4.4869    1.7112    0.1425     1.0016    3.4122    3.5241    0.0601 

 
 
500% 

1P  3.8750    6.8074    2.2741    1.7007     1.0261    5.4152    4.3149    0.8794     3.3203    2.3875    2.8985    1.6739 

2P  1.8139    3.6862    1.4167    0.2676     4.2292    7.1173    9.0670    0.2183     3.6403    7.3675    4.1560    0.3020 

3P  1.8111    2.5931    5.5700    0.6017     2.1597    2.0666    5.8518    1.2728    1.1349     3.3491    6.2105    0.0773 

LEVEL IV 
7×10 Design RMSE MSE Abs. Bias 
Contamination AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model AMMI FW GGE Mixed Model 
 
 
50% 

1P  3.4607    3.6771    5.1136    1.7914     3.1569    4.8694    1.7850    1.7709     7.4358    5.9929    3.0592    0.3497 

2P  5.4722    1.8288    2.2066    1.2248     1.9355    6.3457    3.4968    1.5887     3.8304    3.8482    4.7635    0.3346 

3P  2.4021    6.1389    3.9334    1.2022     3.1202    3.6785    1.4342    0.7812     4.8917    2.9076    5.9709    0.1156 

 
 
100% 
 

1P  2.7326    4.1227    2.4298    1.0182     5.2225    2.7803    5.0229    1.8490     2.2139    5.4250    4.5909    1.6895 

2P  5.2043    5.5423    5.6453    1.8244     2.4551    3.0120    3.6574    1.5665     4.6461    1.1434    5.7537    1.0085 

3P  5.5371    7.9584    5.1421    0.5363     2.2071    0.3588    3.4412    0.2775     3.2612    2.4711    3.9693    1.6434 

 
 
500% 

1P  2.8105    5.3725    3.6529    0.6786     7.3054    2.3744    3.4485    0.8481     4.7548    6.6993    2.4383    1.3085 

2P  4.5005    3.3274    3.8104    0.4717     5.9099    0.7673    5.8852    0.5823     2.0450    5.5807    5.4562    0.3770 

3P  4.2461    4.0276    8.0257    2.1187     4.6400    4.3944    1.1758    0.5691     7.8149    2.8380    3.1036    0.8018 
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Case II scenario was done for Highest Outlying 
Observations where 50%, 100% and 500% data 

contamination on the First Quarter ( 1P ), Mid 

quarter 2P ) and Last Quarter ( 3P ) were 

examined on each levels of generations. We 
then observed from the result of the model 
evaluation that, at each levels of data 
contamination for Balance and Unbalance 
design, Mixed model outperformed the other 
three models.  
 

5. CONCLUSION 
 

 The study has clearly shown that the four 
models considered detects the G×E 
interaction effect in a different way. We 
were able to evaluate and described G×E 
interaction performance by their stability 
and adaptability using multi-location trials. 

 Also, this study confirmed the suitability of 
AMMI in detecting G×E when the 
assumptions are maintained or kept. That 
is, when outlier is not influential, AMMI can 
be used. More so, we were able to 
deduced from the study that even though 
AMMI has been adopted in the literature to 
summarize patterns and relationships of 
G×E successfully, it is not an appropriate 
model in a situation where outlying 
observations are influential but rather the 
Mixed Model which is often neglected by 
the plant breeders and agronomists. 
Therefore, the findings revealed that 
AMMI, FW and GGE are not robust to 
outlying observations. 

 

6. SUGGESTION FOR FURTHER STUDY 
 
The following area may be considered in further 
research; 
 

 Modification of AMMI model in order to be 
sensitive to violation of model 
assumptions. 

 Our choice in G×E methods for mixed 
models with bilinear models’ terms for G×E 
seems to be a good reflection of the 
current trends in the literature. Therefore, a 
comparative study should also be check 
more on Mixed models, Crop growth 
models and Bayesian models. 
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