Asian Hematology Research Journal

Sickle Cell Hepatopathy: Prevalence and Presentation in Children with Sickle Cell Anemia at Enugu State University Teaching Hospital, Parklane, Enugu

C. I. Eneh^{1*}, S. N. Uwaezuoke² and C. J. Chukwu³

¹Department of Paediatrics, Enugu State University of Science and Technology, Enugu State University Teaching Hospital (ESUT-TH), Parklane, P.M.B. 1030, Enugu State, Nigeria. ²Department of Paediatrics, University of Nigeria Teaching Hospital, Enugu, Nigeria. ³Department of Paediatrics, Enugu State University Teaching Hospital (ESUT-TH), Parklane, P.M.B. 1030, Enugu State, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. Author CIE designed the study, wrote the protocol and draft of the manuscript. Author CJC collected and documented the data. Author SNU supervised the statistical analysis and edited the final manuscript. All authors read and approved the final manuscript.

Article Information

Editor(s): (1) Dr. Dharmesh Chandra Sharma, G. R. Medical College & J. A. Hospital, India. <u>Reviewers:</u> (1) Joabe Lima Araújo, University of Brasília (UnB), Brazil. (2) Halley Ferraro Oliveira, UFS, Brazil. (3) Mukesh Kumar, Max Super Speciality Hospital, Saket, India. Complete Peer review History: <u>http://www.sdiarticle4.com/review-history/61671</u>

Original Research Article

Received 25 July 2020 Accepted 30 September 2020 Published 21 October 2020

ABSTRACT

Background: Sickle cell hepatopathy (SCH) are liver pathologies related mainly to sickling. These conditions present similarly yet have varied prognosis, high index of suspicion is therefore needed for early and proper diagnosis. In Nigeria literature on SCH is variable and scarce.
Aim: To evaluate the clinical and laboratory evidences of SCH in Nigerian children with SCA.
Study Design: Cross-sectional, observational study.
Place and Duration: SCD clinic, Department of Paediatrics, Enugu State University Teaching Hospital, Enugu, South-East Nigeria. Three months.

^{*}Corresponding author: E-mail: zomafrank@yahoo.com;

Methods: A presumptive diagnosis of SCH based on icteric or anicteric hepatomegaly with or without right hypo-chondrial pain was made in thirty (30%) of 100 patients, 15 males and 15 females in a ratio of 1:1. Only 10 out of the 30 (33.3%) patients had complete data with final sample size of 10. History of scleral icterus, abdominal pain, multiple blood transfusions and frequent crises were obtained. Patients were examined for sclera icteria, hepatomegaly and right upper quadrant tenderness. LFT, blood film, CBC, hepatitis virus serology, haemoglobin quantitation, serum ferritin and abdominal ultrasonography (USS) were obtained. A definitive diagnosis of SCH was based on significant markedly elevated ALP, ALT and AST, marked total bilirubin with conjugated bilirubin > 50% total for AIHC (but < 50% for AHSS and AHSCC). Moderately elevated AST, ALT, mildly elevated ALP for AHSCC, moderately elevated ALP, normal ALT, normal or mildly elevated AST and significant sudden decline from steady state haemoglobin for AHSS.

Results: Using appropriate statistical tools and software at 5% level of significance, we found that eighty percent (8 out of 10) had mild-to-moderate derangement of LFT but only 1 patient (10%) had LFT suggestive of AIHC. One (10%) patient's LFT suggested AHSCC. One patient (10%) had features of AHSS.

Conclusions: SCH is rare in children but may present as AHSCC, AHSS and AIHC.

Keywords: Liver pathology; sickling; hepatomegaly; liver function; sickle cell hepatopathy.

1. INTRODUCTION

Sickle cell disease (SCD) is a common hemoglobinopathy which can affect multiple organ systems in the body. Within the digestive tract, the hepatobiliary system is most commonly affected in SCD. The manifestations range from benign hyperbilirubinemia to overt liver failure, with the spectrum of acute clinical presentations often referred to as "sickle cell hepatopathy", an umbrella term referring to liver dysfunction and hyperbilirubinemia due to intrahepatic sickling process during crisis leading to ischemia, sequestration and cholestasis [1]. Acute Hepatic Sickle Cell Crisis (AHSCC), Acute and Chronic Intra-Hepatic Cholestasis (AIHC and CIHC) and Acute Hepatic Sequestration Syndrome (AHSS) constitute the liver pathologies arising primarily from the sickling process. Secondly, a range of hepatic diseases arise from multiple transfusions and include Hepatitis B and C infection and Iron overload. These have been described by some authors as 'multi-transfusion hepatopathy'. The hepatic consequences of chronic haemolysis such as gallstone, cholecystitis, choledocho-lithiasis with chronic bile duct obstruction comprise the other common group of Sickle Cell Hepatopathy.

These clinical conditions present similarly with hepatomegaly, right upper quadrant abdominal pain, jaundice and varying levels of derangement of serum bilirubin and liver enzymes. The definition of acute hepatic crisis is not always precise, and the true incidence may be lower than 10%. A typical hepatic crisis presents with painful hepatomegaly, bilirubin less than 200 μ M, and transaminase level of less than 300 IU [2]. The pathophysiology of AHSCC) and sickle cell

intrahepatic cholestasis is probably the same with intra-sinusoidal sickling and subsequent obstruction and hepatocyte ischemia [2] but with different levels of severity. Namely, the benign, isolated, acute intrahepatic cholestasis in which patients also present with extreme hyperbilirubinemia but without failure of synthetic function (AIHC) [3,4]. Sickle cell intrahepatic cholestasis may present as a severe syndrome of acute liver failure with extremely high bilirubin levels (as great as 1,500-2,500 µM) which is associated with a very high mortality (CIHC) [5,6]. Another severe hepatobiliary manifestation of SCA is hepatic sequestration (AHSS). It presents with sudden hepatomegaly, pain, and acute anemia but without cholestasis [5,7].

Thus AHSCC is mild and self -resolving in children, AHSS is a medical emergency while AIHC may progress to CIHC, fulminant hepatic failure and ultimately death [6]. Therefore, the similarity in presentation yet varied prognosis makes it imperative that a high index of suspicion and in-depth laboratory evaluation is needed for proper diagnosis and early, appropriate intervention in these patients. Few literatures have described these clinical conditions in detail [1-6] and to the best of the author's knowledge none is existent in Nigeria. Thus the study aims to evaluate the clinical and laboratory evidences of SCH in children with SCA with a view to enhance the early diagnosis and management of this group of subjects.

2. METHODS

The study was a cross-sectional observational review of 100 children with sickle cell anaemia

(SCA) on regular clinic follow-up. History of scleral icterus, abdominal pain, multiple blood transfusions and frequent vaso-occlusive and haemolytic crises, demographic data such as age and sex, were obtained. Patients were examined for sclera icterus as well as hepatomegaly and right upper quadrant tenderness. Liver function test (LFT) for bilirubin in umol/L total and direct and for enzymes in IU/L: aspartate and alanine transaminases (AST and ALT) and alkaline phosphatase(ALP) haematuria(urobilinogenuria), Urinalvsis for complete blood count (CBC) for white blood cell (WBC) x 10^9 and haemoglobin(Hb) in g/dl, abdomino-pelvic ultrasound scan (USS), quantitation of hepatitis virus serology, haemoglobin and serum ferritin of subjects were obtained. A patient was presumed to have SCH if presenting with icteric or anicteric hepatomegaly with or without right hypo-chondrial pain and haematuria (urobilinogenuria). A presumptive diagnosis of SCH was made in thirty (30%) of the 100 patients who made up the study population, 15 males and 15 females in a ratio of 1:1. Only 10 out of the 30 (33.3%) patients had complete laboratory results bringing the final sample size from 30 to 10. The collected data was analyzed using both descriptive and inferential statistics. The descriptive statistics _ frequency. percentage, mean, 5% trimmed mean, range and standard deviation were used to summarize the characteristics of the subjects. The inferential statistics - Paired Samples t-test, Independent Samples t-test and Pearson Correlation were used for comparisons and ascertaining relationships at 5% level of significance. Hence, significant difference or relationship existed if pvalue is less than .05, (P < .05). These statistics were done with the aid of the Statistical Package for Social Science (SPSS) version 21 and Microsoft Excel 2007. The relationship between the Haemoglobin (Hb), White blood cell (WBC) and LFT was evaluated. A previously obtained steady state [8] Hb and WBC were compared with similar parameters obtained at the time of the study. The LFT, liver sizes, Hb and WBC values of subjects at steady state and at time of the study were compared. Similar comparisons were made between those with SCH diagnosis and those without. Diagnosis of AIHC was made based on marked elevation of ALP, AST ALT, bilirubin total with conjugated > 50% of total. AHSSC was diagnosed based on normal or mildly elevated ALP, moderately elevated AST and ALT, moderately elevated bilirubin total with conjugated < 50% of total [1]. A diagnosis of AHSS was made with moderately elevated ALP,

normal ALT, normal or mildly elevated AST, moderately elevated bilirubin total with conjugated < 50% of total and significant drop in steady state haemoglobin accompanying hepatomegaly [1].

3. RESULTS

3.1 Demographic Characteristics of the Subjects

The subjects were evenly stratified into age groups 1-4 years (2), 5-8 years (6), 9-12 years (2). Age range was 2-11 years with mean and standard deviation of M±SD 6.40 ± 2.76 . Modal age group was 5 - 8 years (60.0%). There were 4 (40%) males and 6 females (60%).

3.2 Clinical Features of Subjects

One (10%) had positive history of frequent blood transfusions. Haemolytic crisis was a frequent finding. All 10 patients had hepatomegaly, 5 (50%) had liver size > 4 cm while the other 50.0% had hepatomegaly of < 4 cm. Six subjects (60.0%) had jaundice and 1(10.0%) had right upper quadrant pain. All had urobilinoginuria on urinalysis. All 10 subjects were presumed to have SCH.

3.3 Prevalence of SCH

Overall prevalence of SCH was 30 percent (3/10). These were in females and in the 5-8 years' age range. Age prevalence of SCH was 0.0% (1 – 4years), 50.0% (5 – 8 years) and 0.0% (9-12 years). Sex prevalence of SCH was 0.0% for males and 50.0% for females.

3.4 LFT (Serum Bilirubin and Liver Enzymes)

Majority of the children had an elevated total bilirubin (90.0%), direct bilirubin (70.0%) and ALT (60.0%). All had an elevated ALP (100.0%) and AST (100.0%). Specifically, the range, mean and standard deviation as well as 5% trimmed mean of the total and direct bilirubin, ALP, ALT and AST are depicted.

3.5 Relationship between CBC and LFT in Subjects

Although not statistically significant, the relationship between WBC and ALP show a

positive trend (r = .400, P = .29) while that between Hb and AST show a negative trend (r = .398, P = .29). This implies that higher WBC

level was associated with higher ALP level and vice versa while higher Hb level was associated with lower AST level and vice versa.

Table 1. Prevalence of SCH based on age and g	gender
---	--------

Characteristics		SCH(n = 10)		Total
		Positive	Negative	
Age (years)	- 1-4	0 (0.0)	2 (100.0)	2
	- 5 – 8	3 (50.0)	3 (50.0)	6
	- 9 – 12	0 (0.0)	2 (100.0)	2
Gender	Male	0 (0.0)	4 (100.0)	4
	Female	3 (50.0)	3 (50.0)	6

	Table 2. LFT characteristics (Serum bilirubin and enzy	me levels) of the subjects
--	--------------------------------	--------------------------	----------------------------

	Frequency	Percentage	Range	M±SD	5% Trimmed Mean
Bilirubin	(n = 10)		11.3 – 370.2	70.82±107.97	57.49
Total(mg/dl)8-17	. ,				
Normal	1	10.0			
Elevated	9	90.0			
Mild-20 – 100	8	80.0			
Mod-100 – 300	0	0.0			
Marked-300 +	1	10.0			
Bilirubin Direct(mg/dl), n=<8			1.2 – 293.5	39.25±89.51	27.42
Normal	3	30.0			
Elevated	7	70.0			
ALP(IU/L), n=25-92			172.2 – 332.8	242.10±56.84	240.94
Elevated	10	100.0			
Mild-100 – 200	3	30.0			
Mod-200 – 300	5	50.0			
Marked-300 +	2	20.0			
ALT(IU/L), n=3-40			11.4 – 90.2	32.92±24.60	30.93
Normal	4	40.0			
Elevated	6	60.0			
Mild-20 – 50	4	40.0			
Mod-50 – 70	1	10.0			
Marked70 +	1	10.0			
AST(IU/L), n=5-40			32.6 – 106.1	54.94±25.20	53.34
Elevated	10	100.0			
Mild-20 – 50	6	60.0			
Mod-50 – 70	1	10.0			
Marked-70 +	3	30.0			

Table 3. Relationship between CBC (Hb and WBC) and LFT in subjects

	Hb r (p)	WBC r (p)	
Total bilirubin	.063 (.873)	061 (.876)	
Direct bilirubin	.028 (.944)	.004 (.992)	
ALP	123 (.753)	.400 (.287)	
ALT	102 (.794)	.071 (.855)	
AST	398 (.289)	.066 (.866)	

3.6 Comparison of the LFT in SCH Positive and Negative

There was significant difference between the two groups for ALT (P = .008) and AST (P=<.001). For both SCH positive subjects had higher values [(60.70±29.30; 21.01±8.38) (88.43±15.87;40.59±8.22)] ALT and AST respectively. There was no significant difference in the ALP, total bilirubin (P = .203) and direct bilirubin (P = .142) between the two groups although subjects who were SCH positive seemingly had higher total and direct bilirubin. All SCH negative and two (66.7%) of the SCH positive had direct bilirubin < 50% of total while and 1(33.3%) had direct >50% of total.

3.7 Comparison of the Study Time and Steady State Mean Hb and WBC in SCH Positive and Negative

Both Hb values were lower in SCH positive but steady state WBC were lower with higher study time WBC in SCH positive although there was no significant difference between these values in the two groups. All (P = > .05).

3.8 CBC/Blood Film

Nine of them (90%) had evidence of haemolysis on blood film with no significant haemoglobin (Hb) drop from steady state levels. Mean Hb concentration was 6.7 g/dl. A comparison of mean Hb and mean WBC at steady state and at the study time showed that mean WBC at study time was significantly higher than at steady state (19.10±1.93; 13.71±2.99) (P = .004). For Hb, there was no significant difference between the two values (P = .29);

3.9 Comparison of the Liver Sizes in SCH Positive and Negative

SCH positive subjects had significantly larger liver sizes than the SCH negative $(6.00\pm2.00; 2.93\pm0.73)$ (*P* = .01).

3.10 Other SCHs

There were no evidences of hepatitis B and C infections, iron overload, gallstones and biliary obstruction.

3.11 Hb Quantitation of the Subjects

The range, mean and standard deviation of HbS, HbF, HbA₂ and HbA₁ were 79.4 - 86.6, 4.5 - 11.0, 3.1 - 5.1, 3.6 - 9.6, M±SD 82.18±3.12, 8.03 ± 3.46 , 3.88 ± 0.87 and 5.93 ± 2.61 respectively.

Table 4. Comparison of the LFT of SCH positive and negative

	SCH	M±SD	Т	Df	p-value
Total	Positive	139.67±200.08	1.386	8	.203
bilirubin	Negative	41.31±27.49			
Direct	Positive	103.97±164.18	1.628	8	.142
bilirubin	Negative	11.51±6.46			
ALP	Positive	235.83±24.93	216	8	.835
ALP	Negative	244.79±67.91			
AL T	Positive	60.70±29.30	3.517	8	.008
ALT	Negative	21.01±8.38			
ACT	Positive	88.43±15.87	6.504	8	<.001
AST	Negative	40.59±8.22			

Table 5. Comparison of mean Hb and WBC of SCH positive and negative at steady state and
study time

	SCH	M±SD	Т	Df	p-value
	Positive	6.33±1.29	-1.790	7	.117
Hb (at study), g/dl	Negative	7.77±1.06			
WBC (at study) x10 ⁹	Positive	18.97±1.48	.778	7	.462
	Negative	17.15±3.80			
Hb (steady state) g/dl	Positive	7.37±0.61	706	5	.512
	Negative	7.80±0.91			
WBC (steady state) x10 ⁹	Positive	12.37±2.43	-1.030	5	.350
	Negative	14.71±3.28			

3.12 Abdomino-Pelvic Ultra-Sound Scan

Hepatomegaly and nephropathy are common in SCH positive and negative.

4. DISCUSSION

It has been documented hyperthat bilirubinaemia may punctuate the course of SCA resulting from haemolysis, intercurrent infection, viral hepatitis and intra-hepatic sickling [9]. Similarly, 90% of our subjects had haemolysis evidence of elevated total bilirubin with unconjugated fraction greater than 50% of total in eight out of the nine. Similar to the observation by Johnson et al. [10] AST was elevated in all, the high AST being associated with low Hb an extra evidence of haemolysis [10]. Thus abnormal LFT are common in patients with SCA even in the absence of liver disease and raised predorminantly bilirubin unconjugated are universal due to chronic hemolysis [11].

Neutrophillia, a total WBC significantly higher than steady state levels as well as the observed positive trend between mean WBC and serum ALP levels are the observed evidences for intercurrent infection in this study. The absence of significant difference between study time and steady state WBC in both SCH positive and negative supports the idea that intercurrent infections are responsible for the observed trend in WBC rather than SCH.

Hepatic sequestration may occur in SCA usually presenting with right upper quadrant pain, increasing hepatomegaly and a falling hematocrit [12,13] Only 16 probable cases of AHSS has been reported to date [14,15,16] and proved fatal in earlier cases [14]. We report a 10% prevalence of AHSS in our small sample sized study.

Repeated episodes of intra-hepatic sickling (AHSCC) in SCA resulting in fluctuating intrahepatic cholestasis (AIHC) and presenting with recurrent attacks of abdominal pain and jaundice has been reported [9,14] Our patient with features of AIHC may have had similar symptoms in the past. Similar to our finding, cases of AHSCC have been reported with right upper quadrant pain, hepatomegaly, jaundice, low grade fever and in approximately 10% of children with SCA [9,14] significant proportion of our patients presented with hepatomegaly and jaundice while few had right upper guadrant pain. The liver sizes were significantly larger in those with SCH than others. The female

preponderance of SCH noted in addition to the age prevalence among 5-8 year olds hasn't been reported earlier.

Ann et al. [17] observed that SCH is an uncommon complication in children which collaborates the 30% prevalence observed in this study. They [17] also noted that SCH is characterized by variable hyperbilirubinaemia and either mild or severe hepatic dysfunction. Similarly, the significantly elevated serum transaminases in SCH connote hepatic dysfunction. In contrast, the observed differences in total and differential bilirubin levels though seemingly higher in those with SCH than others were not statistically significant. This difference may be due to the small sample size of this studv.

Hatton et al. [18] had described 2 cases of AHSS with little alteration in the LFT in whom there was a rapid decrease in the haematocrit paralled by a transient dramatic increase in hepatic size. Similarly, 10% of our subjects with moderately elevated ALP, normal ALT, normal or mildly elevated AST, moderately elevated bilirubin total with conjugated < 50% of total and significant drop in steady state haemoglobin accompanying hepatomegaly [1] had diagnosis of AHSS.

In contrast, the documented characteristic finding of AIHC is markedly elevated plasma total bilirubin up to 273 mg/dl [7] with conjugated greater than 50% of the total [19] and marked elevation of serum transaminases. These features of AIHC are mirrored in another 10% of our study participants in whom a diagnosis of AIHC was made based on marked elevation of ALP, AST ALT, bilirubin total with conjugated > 50% of total [1].

Diggs [8] noted that 10% of the subjects with AHSCC had mildly elevated plasma total bilirubin with indirect greater than direct in addition to mild to moderate elevation of the transaminases. This has also been reported by some other authors [9,14,15] This picture mimicks that of another 10% in our study in whom AHSSC was diagnosed based on normal or mildly elevated ALP, moderately elevated AST and ALT, elevated moderately bilirubin total with conjugated < 50% of total [1]. A picture that reflects elevated liver enzymes of AHSCC accompanied by exacerbation of the chronic hemolytic state of SCA.

Serum ferritin levels of subjects were in normal limits. This is expected as there was barely any

history of multiple transfusion therapy since serum ferritin levels have been found to correlate with the number of units of blood transfused and increased risk of iron overload [20].

Sheehy [14] and Johnson et al. [10] found that the clinical course of sickle cell anaemia patients with acute hepatitis could either differ [10] or not differ [14] from control patients without sickle cell anaemia. None of our patients had evidence of hepatitis B or C probably because the risk of this infection is related to the number of units of blood transfused.

Abdominal ultrasound of our subjects showed no evidence of biliary obstruction such as gall stones and bile duct dilatation.

5. CONCLUSION

SCH is rare in children but may present as AHSCC, AHSS and AIHC in female patients aged 5-8 years. Evidence for SCH include significantly enlarged liver, deranged liver enzymes and serum bilirubin with accompanying sudden fall in steady state Hb in some instances.

CONSENT AND ETHICAL APPROVAL

The Institution's Ethics and Research committee approved the study while informed, written consent was obtained from each participant.

ACKNOWLEDGEMENTS

The authors appreciate the statistician for prompt analysis of data.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Ahn H, Li CS, Wang W. Sickle cell hepatopathy. Pediatr Blood Cancer. 2005; 45:184-90.
- 2. Bandyopadhyah R, Bandyopadhyah SK, Dutta A. Sickle cell hepatopathy. Indian J Pathol Microbiol. 2008;51:284-5.
- Banerjee S, Owen C, Chopra S. Sickle cell hepatopathy. Hepatology. 2001;33:1021–8. [Flore 6. Shao SH, Orringer EP. Sickle cell intrahepatic cholestasis: Approach to a

difficult problem. Am J Gastroenterol. 1995; 90:2048–50.

- 4. Banerjee S, Owens, Chopra S. Hepatology: Sickle cell hepatopathy. Concise review. 2001;33:1021-8
- Betrosian A, Balla M, KafiviaPalamarou C, Serastos N. Reversal of liver failure in sickle cell vaso-occlusive crisis. Am J Med SG. 1996;311:292-5.
- Brody JI, Ryan WN, Haida MA. Serum alkaline phosphatase iso-enzymes in sickle cell anaemia. J JAMA. 1975; 232:738-741.
- Buchanan GR, Glader BE. Benign course of extreme hyperbiliru-binemia in sickle cell anemia: Analysis of six cases. J Pediatr. 1977; 91: 21–4.
- 8. Diggs LW, Sickle cell crises. Am J Clin Pathol. 1965; 44:1-4.
- Florence L, Fabrice L, De Montalembert, Mariane. Acute hepatic crisis in children with Sickle cell disease. Journal of Pediatric Gastroenterology and Nutrition. 2004; 2 : 200-2.
- Flyer MA, Haller JO, Sundaran R. Transfusional haemosiderosis in sickle cell anaemia: another cause of an echogenic pancrease. Pediatr Radiol. 1993;23: 140-2.
- 11. Hatton CS, Bundi C, Weatherall DJ. Hepatic sequestration in sickle cell anaemia. Br Med J. 1985;290: 744-5.
- 12. Hatton CS, Bunch C, Weatherhall DJ. Hepatic sequestration in sickle cell anaemia. Br Med J. 1985;290:744–5
- Johnson CS, Omata M, Tony MJ, Simmons JF Jr, Weiner J, et al. Liver involvement in sickle cell disease. Medicine. 1985;64 :349-356.
- Mohamed AO, Jansson A, Ronquist G. Increased activity of 5 nucleotidase senim of patents with sickle cell anaemia. Scand J Chn Les Invest. 1993;53:701-4.
- 15. Porter JB, Huchns ER. Transfusion and exchange transfusion in sickle cell anaemia, with particular reference to iron metabolism. Acta Haematol. 1987;78:198-205.
- Schubert TT. Hepatobiliary system in sickle cell disease. Gastroenterology. 1986; 90:2013-21
- 17. Shah R, Taborda C, Chawla S. World J Gastrointest Pathophysiol. 2017;8:108–16.
- 18. Sheehy TW. Sickle cell hepatopathy. South Med J. 1997;70:533-538.
- 19. Stephan JL, Merpit- Gonon E, Richard O, Raynaud Rayni C,

Eneh et al.; AHRJ, 3(4): 23-30, 2020; Article no.AHRJ.61671

Freycon F. Fulminant liver failure in a 12 year old girl with sickle cell anaemia: Favourable outcome after exchange transfusion. Eur J Pediatr. 1995;154: 469-7. 20. Porter JB, Huchns ER. Transfusion and exchange transfusion in sickle cell anaemia, with particular reference to iron metabolism *Acta Haematol* 1987; **78**: 198-205.

© 2020 Eneh et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/61671