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ABSTRACT 
 

The concentration of gross alpha and gross beta radioactivity in surface soil, mineral rock and 
consumable water around mining sites in Benue state, Nigeria have been measured using protean 
instrument corporation (PIC) MPC 2000DP detector. The average activity for gross alpha ranged 
between 4.202.00 Bq/kg (coal) – 11.84.00 Bq/kg (salt) in soil and in mineral rocks the activity 
varies between 1.110.70 Bq/kg (lead) to 5.203.00 Bq/kg (limestone). The gross beta has an 
average activity ranges between 739.6542.0 Bq/kg (lead) – 1703.3152.20 Bq/kg (limestone) in 
soil and values of 245.3171.5 Bq/kg (coal) to 1004.598.5 Bq/kg (barite) was obtained for mineral 
rocks. The average activity concentrations of gross alpha and beta in soil were compared with 
other literature values. Correlations were made among the variables (gross alpha and gross beta) 
to prove the interdependency or direct relationship in the investigated samples. In water samples, 
the calculated average value of gross alpha and gross beta activities varies from 0.00780.0036 
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(barite) to 0.16200.2530 Bq/L (salt) and 0.22000.0123 (limestone) to 4.85000.1510 Bq/L (coal) 
respectively. The average activity concentrations of gross alpha in water in all mining fields were 
below the permissible levels stipulated by World Health Organization (WHO). The average annual 
committed effective dose from intake of water was calculated to study the dose level. The values 
obtained in limestone, barite, lead and salt mine fields were lower than the (WHO) recommended 
reference level (0.1mSv/y) while the value obtained in coal mine field was higher than the reference 
level. Consumable water around the coal mine field may pose a health risk as the ingested dose is 
quite high.  
 

 
Keywords: Natural radioactivity; alpha and beta radioactivity; radioactivity of soil; mining site; 

radium, radionuclide; trace metal. 
 

1. INTRODUCTION 
 
The threats to public and the surrounding from 
radioactive contamination differ on the nature of 
the radioactive contaminant, the level of 
contamination, and the extent of the spread of 
contamination. Human activities such as mining, 
milling and processing of uranium ores and 
mineral sands, smelting of metalliferous ores, 
manufacture of fertilizers, drilling, and 
transportation, processing and burning of fossil 
fuels have raised the concentrations of naturally 
occurring radioactive materials in the 
environment [1,2]. 
 
Enhanced levels of these naturally occurring 
radionuclides might be present in the soil as well 
as surface and groundwater in areas that are rich 
in natural radionuclides. The soil is seen as a 
source of transfers of radionuclides through the 
food chain depending on their chemical 
properties and the uptake process by the roots to 
plants and animals [3] thus it is the elementary 
sign of the radiological status of the environment. 
 
There is no doubt gamma rays have the highest 
penetrating power when compared to alpha and 
beta particles, the effects of alpha and beta 
particles within the body either through inhalation 
or ingestion are far more detrimental because of 
their ionising power [4]. The presence of 
radionuclides in water poses a number of health 
hazards, especially when these radionuclides are 
deposited in the human body through drinking. 
Dissolved radionuclides in water can emit 
particles (alpha and beta) and photons (gamma) 
which can gradually affect living tissues [4]. 
 
In nature, alpha particles come from the 
radioactive transformation of heavy elements 
long transformation chains produce several 
successive alpha and beta particle until the 
resulting nuclide has a stable configuration [5]. A 
specific alpha emitting radionuclide emits 

monoenergetic alpha particles of discrete 
energies and relative intensities, making it 
possible to identify each alpha emitting 
radionuclide by its alpha energy spectrum. The 
major amount of natural radionuclides entering 
into the human body via ingestion and 
contributes much to the exposure of man. 
Approximately 20% of radium isotopes and 10-
15% of decay products of 238U and 232Th 
considered for this work reaches the bloodstream 
as reported by UNSCEAR [6-8] distributed to the 
whole body. Since the percentage distribution of 
annual intakes of uranium and thorium series 
radionuclides in food ranges between 4% to 
about 96% [9] accumulation of these 
radionuclides through the ingestion of the vital 
organs as food have significant health effects 
such as bone cancer, leukaemia and increase in 
blood pressure. Uranium has a chemical toxicity 
that predominately affects the kidneys [10,11]. 
Therefore, measuring the radioactivity in drinking 
water is of great interest in environmental studies 
[12]. 
 
This test serves as a preliminary screening stage 
and determines whether additional testing is 
advisable [13]. Gross alpha is much of concern 
than gross beta for natural radioactivity in water 
as it refers to the radioactivity of thorium- Th, 
uranium- U and radium- Ra as well as radon- Rn 
and their progeny [14]. 
 
The gross alpha radioactivity concentration in soil 
samples is defined as the total radioactivity of all 
alpha emitters. The value of gross alpha 
radioactivity originating from these alpha emitters 
in soil samples depends on the geological 
characteristic of the area, mineral composition 
and the type of activities in the area [4].  
 
Natasa and others [15] study the gross alpha and 
gross beta activity in the soil sample from 
Drzljevo landfill in Republic of Srpska. The result 
shows that the gross alpha and beta activities 
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ranged between 66.7-102.4 and 285.7-607.4 
Bq/kg. There is no regulation for limit values for 
gross alpha and beta activity in the soil, we 
cannot say this value implies certain level of 
hazard for the gross beta activity. 
 
However, the gross beta activity in the sample of 
soil is great because of the presence of natural 
radionuclides 

40
K in the soil [16].  

 
Mangset and others [17] study the level of gross 
alpha and beta activity concentrations in 
groundwater supply in mining areas of plateau 
state. The result obtained shows that gross alpha 
and beta activity concentrations in most location 
from borehole and well water supplies are above 
the World Health Organization recommended 
guideline value. Also, Atsor and others [18] 
determine the concentrations of gross alpha and 
gross beta in underground water at Gboko and 
its environs, the results show that, the range of 
alpha activity in water in the area was 0.309 to 
14.488 Bq/L, with geometric mean of 6.576± 
0.328 Bq/L. The range of beta activity was 0.024 
to 27.477 Bq/L with geometric mean, 11.16±0.42 
Bq/L, they conclude that majority of the results 
do exceed the WHO and USEPA recommended 
standards. 
 
Alpha emitters mixed to groundwater by filtrating 
through the soil may have contributed to the 
increased concentrations of gross alpha in well 
water samples. 
 

The gross beta radioactivity in soil is due to the 
natural long-lived isotopes 40K, 210Pb and 228Ra 
[4,19]. The presence of these radioactive 
elements may threaten the public and miners’ 
health, and surroundings, there is need to 
document the level and extent of spread of these 
radioactive contaminations. 
 

1.1 Study Area 
 

The study areas are located in Benue State 
which lies within the lower river Benue trough in 
the middle belt region of Nigeria and is within the 
geographical points situated on longitude 7

º
47’ 

and 10º0’ East and Latitude 6º25’ and 8º8' North. 
The geology of the study area is principal of 
sedimentary formation with pockets of basement 
complex which is made up of sandstones, 
mudstones and limestone that influences both 
surface and groundwater availability [20,21]. 
Benue State is endowed with solid mineral 
resources such as industrial minerals – barites, 
kaolin, gypsum, limestone; Energy mineral – 
coal, Chemical mineral – brine; Metallic mineral – 

wolframite, bentonite clay, lead and zinc etc, 
which are evenly distributed over the existing 
geographical location, some of which are yet to 
be mined. Mining activities are dominantly 
carried out in areas of limestone (Gboko), barite 
(Lessle), brine- rock salt (Akuana) and lead 
(Anyin) deposit fields while coal (Orokam) 
deposit fields are abandoned sites. The 
socioeconomic of the area covers agricultural 
activities, cattle rearing and fishing.  
 

2. SAMPLE PREPARATION AND MEA-
SUREMENT 

 

A total of sixty samples were collected; thirty soil 
samples, ten mineral samples from host rocks 
and twenty water samples. Water samples were 
collected from rivers/streams in close proximity to 
the mineral sites and from the community public 
water supply sources (rivers, taps and wells). 
The samples were collected in 1-litre plastic 
containers with about 1% air space left for 
thermal expansion and these containers were 
rinsed with one litre acid to avoid containers’ wall 
absorption of radioactivity [22] and to minimize 
the contamination of the sample from the original 
content of the container [23]. Soil and mineral 
samples were dried, pulverized and sieved by a 
2mm mesh to remove larger objects. Samples of 
about 620 g each were packed in marinelli 
beaker of about 0.5 litres volume and sealed 
using silicon and plastic tapes for tight air free. 
 
The samples were carefully prepared according 
to International Atomic Energy Agency IAEA [22] 
specifications for gross alpha and beta analyses, 
after which the samples were each contained in 
their planchets and were stored in desiccators 
waiting counting. The samples were analysed for 
gross alpha and beta activity using an IN-20 
model gas-flow proportional counter available at 
the Centre for Energy Research and Training, 
Ahmadu Bello University, Zaria, Nigeria. Each 
sample was counted three times and the mean 
used in computing the activity. The operational 
modes used for the counting were the -only 
mode for the alpha counting and the  (+) mode 
for the beta counting. The count rate of each 
sample was automatically processed by the 
computer using the equation (1). 
 

�(�,�) 	= 	��,� × 60 �⁄            (1) 

 
Where A (,) is the count rate (cpm) of alpha 
and beta particles, B (,) is the raw count of 
alpha or beta particle, T is the counting time 
(2700 sec. or 45 min.). 
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The activity of each of the samples was 
calculated using equation (2); 
 

�(�,�) = 	 ��(�,�) − �(�,�)� ×
�(�,�)

�(�,�)×�(�,�)×�
							(2) 

 
where C (,) is the alpha and beta activity 
(Bq/kg), G (,) is the background count of  
alpha and beta particle, U (,) is the unit 
coefficient of alpha and beta particle (1.67 x 10-2) 
conversion factor from cpm to cps (1 cps=1 Bq), 
H (,) is the channel efficiency for alpha or beta 
counting, S (,) is the sample efficiency for 
alpha or beta counting and V is the sample 
mass. 
 
Statistical tool (correlation) was applied using 
Microsoft excel package 2013 which helps to 
measure and analyse the degree of relationship 
between two variables. The strength of 
relationship present and predictions about the 
variables studied can be achieved using the 
correlation analysis. The degree of relationship 
between variables is measured through the 
correlation analysis. The correlation analysis 
enable us to have an idea about the degree and 
direction of the relationship between the two 
variables in the study.The degree of relationship 
is expressed by coefficient which range from 
correlation (-1 ≤ r ≥ +1).  The interpretation of the 
value of correlation coefficient is done with the 
use of square of coefficient of correlation 
(Coefficient of Determination r

2
). 

 

3. RESULTS AND DISCUSSION 
 
The mean gross alpha and beta activity 
concentrations for soil, mineral and water 
samples are presented in the tables below. 
 
3.1 Effective Dose 
 
The annual alpha and beta effective dose due to 
intake of water were determined by averaging 
the individual annual committed effective doses 
contributed by the major alpha and beta emitters 
in the U-238 and Th-232 series of the naturally 
occurring radionuclides [22]. 

 
����(�/�) = 	∑ ��(�/�)

�(�/�)
� × ����(�/�) × 730 (3) 

 
Where  

 
Eavg(/) = average gross annual alpha or beta 
committed effective dose in the consumable 
water,  

Ai(/)= gross alpha or beta activity concentration 
of individual radionuclides present in the water 
sample and DCFi(/)= dose conversion factor for 
ingestion of the individual natural radionuclides 
for an adult taken from  [9] UNSCEAR report. 
 

A daily water intake of 2 L/day is assumed [24] 
thus resulting in annual consumption rate of 730 
L/year. 
 

Using the Fernandez and others [25] and Damla 
and others [26] procedure, it is considered that 
more than half of the annual dose from intake of 
water corresponds to radium (gross alpha 
radium). This was assumed in this work since the 
component radionuclides in the gross alpha and 
beta activities could not be determined due to the 
limited functions of the machine used. According 
to ��̈��̈� et al. [23] the major contributors to the 
gross- activities are 

210
Pb and 

228
Ra. For 

calculations, the dose conversion factors of 
2.80	 × 10�� mSvBq-1 for 226Ra and 6.90	 ×
10��mSvBq

-1
 for both 

210
Pb and 

228
Ra, published 

by WHO [27] were used. The calculated effective 
doses are shown in Table 6. 
 

3.2 Discussion of Results 
 

The activity concentration of gross alpha and 
gross beta soil and mineral samples are given in 
Tables 1 and 2. The mean gross alpha and beta 
activities in soil and mineral samples are shown 
in Table 3. The mean gross alpha and beta 
activities in soil samples were between 
4.202.00 Bq/kg (coal) – 11.84.00 Bq/kg (salt) 
and 739.6542.0 Bq/kg (lead) – 1703.3152.3 
Bq/kg (limestone) respectively. These results 
were lower than the value of control samples 
collected from areas where there are no mining 
activities. Results for the gross alpha and gross 
beta activity in soil samples of mining fields are 
lower than those values reported by Zorer and 
others [28] in Van (Turkey) whose value for gross 
alpha and gross beta activity are 686-4713 and 
73-11773 Bq/kg. The mean gross alpha activities 
are also lower than those reported for the surface 
soil and selected oil fields in Nigeria [29,30] 
around steel processing facility, Delta State 
(32.010.0 – 64.010.0 Bq/kg) and around 
Imiringi, Bayelsa State (53020 Bq/kg). The 
mean beta activities in the present study are 
however within the mean value at Delta 
(411.511.5 – 2710.0150.0 Bq/kg) but are lower 
than those obtained in selected oil fields around 
Imiringi, Bayelsa State (2929170 Bq/kg). Gross 
alpha activities in soil decreased with the spread 
out from mining fields and much lower 
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comparable to the control host communities as 
seen in Fig. 1. 
 

The mean gross alpha and beta activities for soil 
in mining fields also varies from one mineral 
deposition to another, with Akuana (salt mining 
field) and Gboko (limestone mining field) having 
higher activities in gross alpha and gross beta as 
shown in Figs. 1 and 2. This pattern of variation 
suggests that there is a likely contamination of 
the environment through the mining activities in 
the mineral deposition fields. 
 

There exists a poor linear correlation between 
gross alpha and beta activities in the soil with 2% 
of the variation in the gross beta activity has 

been described by gross alpha activity in soil as 
shown in Fig. 3, thus implying that dissimilar 
radionuclides might be responsible for the 
contamination in the soil. 

 
The mean activity in minerals samples ranged 
between 1.110.70 Bq/kg (lead), 5.203.00 
Bq/kg (limestone) and 245.3171.5 Bq/kg (coal) 
for gross alpha and beta respectively. The 
activities are below those values obtained from 
soil samples. There also exists a strong linear 
correlation between gross alpha and beta 
activities in soil and minerals (Figs. 4 and 5), with 
91% of the variation in the gross alpha activity           
in mineral has been explained by gross

 
Table 1. Result of gross alpha and beta activity concentration of soil samples from mining field 

(Bq/kg) 

 
 Sample code Gross alpha activity (Bq/kg) Gross beta activity (Bq/kg) 
SBRT01  BARITE 10.4±4.00 393±143.0 
SBRT02 2.23±2.00 2260.0±162.0 
SBRT03 5.6±3.00 825.8±157.0 
SBRT04 5.57±3.00 423.3±130.0 
SBRT05 1.17±2.00 392.9±137.0 
SBRT06 4.42±3.00 838.5±180.0 
MEAN (CONTROL) 4.90 ± 3.00 (4.2±3.00) 856.1 ±221.0 (835.0±235.0) 
SLIM01 LIMESTONE 8.97±4.00 1002.0±180.0 
SLIM02 13.8±4.00 748.6±149.0 
SLIM03 12.8±4.00 2556.0±164.0 
SLIM04 5.79±3.00 695.7±137.0 
SLIM05 3.85±2.00 4455.0±156.0 
SLIM06 8.61±4.00 762.5±172.0 
MEAN (CONTROL) 9.0±4.00 (8.4±4.00) 1703.3±152.3 (725.0±172.0) 
SLE01 LEAD 13.9±4.00 420.9±142.0 
SLE02 5.74±3.00 586.3±136.0 
SLE03 3.02±2.00 113.6±139.0 
SLE04 6.61±3.00 717.1±156.0 
SLE05 11.7±4.00 1701.0±158.0 
SLE06 5.32±3.00 898.5±151.0 
MEAN (CONTROL) 7.70±4.00 (3.80±2.00) 739.6±542.0 (113.0±139.0) 
SCO01 COAL 5.7±3.00 586.2±136.0 
SCO02 7.73±4.00 320.5±217.0 
SCO03 4.38±2.00 407.6±121.0 
SCO04 3.43±3.00 2594.0±180.0 
SCO05 2.63±2.00 753.5±127.0 
SCO06 1.34±0.00 721.7±158.0 
MEAN (CONTROL) 4.20±2.00 (1.30±0.00) 897.3±84.9 (717.0±158.0) 
SST01 SALT 13.6±4.00 901.3±164.0 
SST02 14.00±4.00 650.9±150.0 
SST03 8.93±3.00 499.8±125.0 
SST04 5.92±3.00 694.8±142.0 
SST05 11.9±5.00 1176.0±158.0 
SST06 16.1±5.00 711.7±173.0 
MEAN (CONTROL) 11.8±4.00 (8.90±3.00) 772.4±236.0 (498.8±125.0) 



Table 2. Result of gross alpha and beta 
activity concentration of mineral samples 

(Bq/kg) 
 

Sample ID Gross alpha  
activity 
(Bq/kg) 

Gross 
activity 
(Bq/kg)

BARITE   
MBRT01 4.42±3.00 838.5±0.00
MBRT02 1.59±0.00 1167.0±197.0
MEAN 3.00±1.00 1004.5±98.5
LIMESTONE   
MLIM01 8.61±4.00 762.5±172.0
MLIM02 1.78±3.00 1246.0±212.0
MEAN 5.2±3.00 1004.3±192.0
LEAD   
MLE01 1.05±0.20 627.1±126.0
MLE02 1.17±1.00 170.1±158.0
MEAN 1.11±0.70 398.6±142.0
COAL   
MCO01 1.37±2.00 231.2±163.0
MCO02 3.43±3.00 259.4±180.0
MEAN 2.40±1.40 245.3±171.5
SALT   
MST01 5.92±3.00 694.8±142.0
MST02 1.19±4.00 117.6±158.0
MEAN 3.56±3.30 406.2±150.0
 
alpha activity in soil and 80% of the variation in 
the gross beta activity in mineral has been 
described by gross beta activity in soil, which 
could depicts that mineral rocks are major 
constituent of the soil through physical 
weathering processes and this may suggest that 
 

Fig. 1. Mean comparison of alpha activity with soil control (Bq/kg)
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Table 2. Result of gross alpha and beta 
activity concentration of mineral samples 

Gross beta  
activity 
(Bq/kg) 

838.5±0.00 
1167.0±197.0 
1004.5±98.5 

762.5±172.0 
1246.0±212.0 
1004.3±192.0 

627.1±126.0 
170.1±158.0 
398.6±142.0 

231.2±163.0 
259.4±180.0 
245.3±171.5 

694.8±142.0 
117.6±158.0 
406.2±150.0 

alpha activity in soil and 80% of the variation in 
the gross beta activity in mineral has been 
described by gross beta activity in soil, which 
could depicts that mineral rocks are major 

through physical 
weathering processes and this may suggest that 

similar contamination by alpha and beta particles 
in the mineral rocks might result in that of surface 
soil. 
 
The activity concentration of gross alpha and 
gross beta consumable water samples
in Table 4. The activity in water for gross alpha 
and beta varies between 0.0030
0.01200.0021 Bq/L and 0.1420
0.45990.1470 Bq/L (barite), 0.0013
0.07830.0083 Bq/L and 0.1130
1.39000.0111 Bq/L (lead), 0.001
0.01720.0069 Bq/L and 0.0344
0.40600.3930 Bq/L (limestone) 0.0069
– 0.31580.0928 Bq/L and 0.1670
1.23000.8920Bq/L and 0.0016
0.06010.0076Bq/L and 0.1811
13.9000.55100Bq/L (coal) respectively.
 
The mean activity in water samples ranged 
between (0.00780.0036 (barite) 
0.2530) Bq/L (salt) and 0.2200
(limestone) – 4.85000.1510 Bq/L (coal) for 
gross alpha and beta as presented in Table 5 
respectively. 
 
The plot of mean gross alpha and 
water for the sampled mining fields are shown in 
Figs. 6 and 7. As compared with WHO 
standards, the activity is below the permissible 
levels of 0.5 Bq/L for gross alpha in all  the 
mining fields and 1.0 Bq/L for gross beta as 
stipulated by WHO [27] (except Akuana salt 
mining field). 

 
Fig. 1. Mean comparison of alpha activity with soil control (Bq/kg) 
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similar contamination by alpha and beta particles 
in the mineral rocks might result in that of surface 

The activity concentration of gross alpha and 
gross beta consumable water samples are given 
in Table 4. The activity in water for gross alpha 
and beta varies between 0.00300.0003 – 

0.0021 Bq/L and 0.14200.0650 – 
0.1470 Bq/L (barite), 0.00130.0007 – 
0.0083 Bq/L and 0.11300.0120 – 
0.0111 Bq/L (lead), 0.00110.0027 - 
0.0069 Bq/L and 0.03440.0075 – 
0.3930 Bq/L (limestone) 0.00690.0038 

0.0928 Bq/L and 0.16700.0656 – 
0.8920Bq/L and 0.00160.0002 – 
0.0076Bq/L and 0.18110.0260 – 
0.55100Bq/L (coal) respectively. 

mean activity in water samples ranged 
0.0036 (barite) – 0.1620 

0.2530) Bq/L (salt) and 0.22000.0123 
0.1510 Bq/L (coal) for 

gross alpha and beta as presented in Table 5 

The plot of mean gross alpha and beta activity in 
water for the sampled mining fields are shown in 

6 and 7. As compared with WHO 
standards, the activity is below the permissible 
levels of 0.5 Bq/L for gross alpha in all  the 
mining fields and 1.0 Bq/L for gross beta as 

WHO [27] (except Akuana salt 

 

 

Akuana (Salt)



Table 3. Mean activity of gross alp
 

Location Soil
 Mean gross alpha 

(Bq/kg) (control) 
Lessle 
(barite) 

4.90 ± 3.00     
(4.20) 

Gboko 
(limestone) 

9.00±4.00       
(8.40) 

Anyin 
(lead) 

7.70±4.00       
(3.80) 

Orokam 
(coal) 

4.20±2.00       
(1.30)  

Akuana 
(salt) 

11.80±4.00     
(8.90) 

 

Fig. 2. Mean comparison of 

Fig. 3. Correlation of alpha and beta activity concentration in soil of the mining field
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Table 3. Mean activity of gross alpha and beta in soil and mineral 

Soil Mineral 
Mean gross beta 
(Bq/kg) (control) 

Mean gross alpha 
(Bq/kg)  

Mean gross beta 
(Bq/kg)

856.1 ±721.00 
(835.0) 

3.00±1.00 1004.5±98.50

1703.3±152.30 
(725.0) 

5.20±3.00 1004.3±192.00

739.6±542.00 
(113.0) 

1.11±0.70 398.6±142.00

897.3±84.90 
(717.0) 

2.40±1.40 245.3±171.50

772.4±236.00 
(498.8) 

3.56±3.30 406.2±150.00

 

 
parison of beta activity with soil control (Bq/kg) 

 

 
Fig. 3. Correlation of alpha and beta activity concentration in soil of the mining field
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Fig. 4. Correlation between gross alpha activities in soil and mineral samples
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Table 4. Result of gross alpha and beta activity concentration (Bq/L) of consumable water 
samples 

 
Sample code Gross alpha activity (bq/l) Gross beta activity (bq/l) 
BARITE MINING FIELD   
WBRT 01 0.0030±0.0003 0.4599±0.1470 
WBRT 02 0.0101±0.0047 0.2740±0.1800 
WBRT 03  0.0059±0.0048 0.1810±0.0218 
WBRT 04 0.0120±0.0021 0.1420±0.0650 
MEAN 0.0078±0.00364 0.2640±0.153 
LEAD MINING FIELD   
WLE 01 0.0013±0.0007 0.3970±0.0288 
WLE 02 0.0578±0.0183 1.3900±0.0119 
WLE 03  0.0783±0.0083 0.1270±0.0110 
WLE 04  0.0683±0.0030 0.1130±0.0120 
MEAN  0.0514±0.00833 0.5070±0.102 
LIMESTONE MINING FIELD   
WLIM 01  0.0127±0.0071 0.4060±0.3930 
WLIM 02  0.0068±0.0029 0.0344±0.0075 
WLIM 03  0.0172±0.0069 0.1590±0.0760 
WLIM 04  0.0011±0.0027 0.2790±0.0288 
MEAN  0.0094±0.00742 0.2200±0.0123 
SALT MINING FILED   
WST 01  0.3158±0.0928 1.2300±0.8920 
WST02  0.3040±0.0782 0.1670±0.0656 
WST 03  0.0201±0.0027 0.4740±0.0180 
WST 04  0.0069±0.0038 0.5810±0.0218 
MEAN  0.1620±0.253 0.6130±0.249 
COAL MINING FIELD   
WCO 01  0.0016±0.0002 13.9±0.551 
WCO 02  0.0103±0.0030 4.60±0.0147 
WCO 03  0.0601±0.0076 0.7390±0.014 
WCO 04  0.0593±0.0058 0.1811±0.026 
MEAN  0.0328±0.00464 4.8500±0.151 

 
Table 5. Mean activity of gross alpha and beta in water 

 
Location Water 

Mean gross alpha (Bq/L)  Mean gross beta (Bq/L) 
Lessle (barite) 0.0078±0.00364 0.2640±0.153 
Gboko (limestone) 0.0094±0.00742 0.2200±0.0123 
Anyin (lead) 0.0514±0.00833 0.5070±0.102 
Orokam (coal) 0.0328±0.00464 4.8500±0.151 
Akuana (salt) 0.1620±0.253 0.6130±0.249 

 
Table 6. Effective equivalent dose in all the sampled locations 

 
Location Water 

Effective equivalent 
dose due to radium-226 
(mSv/y) 

Effective equivalent dose 
due to beta radionuclides 
(mSv/y) 

Total effective 
equivalent 
dose (mSv/y) 

Lessle (barite) 0.0016 0.1330 0.1350 
Gboko 
(limestone) 

0.0019 0.1110 0.1120 

Anyin (lead) 0.0105 0.2550 0.2660 
Orokam (coal) 0.0067 2.4500 2.4500 
Akuana (salt) 0.0331 0.3090 0.3420 



 

Fig. 7. Comparison of mean gross beta activities in consumable water source from the 
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7. Comparison of mean gross beta activities in consumable water source from the 
sampled locations with standard 

Correlation between gross alpha activities in soil and water samples
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Fig. 10. Total effective equivalent dose due to alpha and beta 

 
Gross alpha activities in consumable water in 
coal mining field was higher relative to other 
mineral mining field while the least activity value 
was obtained at the lead mining field. The gross 
beta activities in water decrease with different 
mining field where the lowest activity was 
obtained in lead mining fields (Anyin) and highest 
value of gross beta activity was obtained in salt 
mining fields (Akuana). The results obtained for 
all mining fields are within the results obtained for 
groundwater (well) recorded in the mining areas 
of Plateau State where the average activity 
values varies (0.010-12.590) Bq/L and (0.020
14.640) Bq/L respectively for gross alpha and 
beta [17]. Also, it was noted that the values in 
this study are lower than the results obtained for 
groundwater in Ado-Ekiti and Enugu State where 
the gross alpha and beta values reported are 
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surrounding soil might be from exposure of 
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consumable water. This is obvious following the 
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Fig. 10. Total effective equivalent dose due to alpha and beta radionuclides in drinking water
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by beta particles might be as a result of 
filtration of beta-emitters nuclides leaving the soil 
into the groundwater. The drastic decrease in 
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also implies that the contaminants being 
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The total committed effective doses greatest at 
the coal mining field and least at the limestone 
mining field signify that greater risk is associated 
with consumable water from coal mining field and 
salt mining fields, compare to barite and 
limestone mining fields. The recommended 
reference dose level (RDL) of the committed 
effective dose of 0.1 mSv per year, [27] was not 
exceeded in most of the mining fields except in 
the coal mining fields. 
 

4. CONCLUSION 
 
The mean activity of gross alpha and gross beta 
in surface soil, mineral rock and consumable 
water collected from mineral mining site of Benue 
State, Nigeria have been determined. The result 
shows the variations in average activities of 
gross alpha and gross beta for surface soils and 
mineral rocks from one mineral deposition site to 
another. The result obtained for consumable 
water the average value of gross alpha and 
gross beta are below the World average value 
reported by WHO except the average gross beta 
activity concentration in salt mine field is quite 
high. The annual alpha and beta effective dose 
due to intake of consumable water was 
evaluated in order to determine the effects of the 
major alpha and beta emitters in water. The 
result indicates that consumable water from 
barite, limestone, salt and lead mine fields will 
not pose risk for workers and people living in the 
mining sites region. Therefore with the results 
obtained no potential radiological health 
consequence may directly be associated with               
the soil, mineral rock and consumable water   
from these mining fields.  The total effective  
dose of consumable water in the coal mine fields 
is higher than the recommended level. 
Consumable water around the coal mine field 
may pose health risk as the ingested dose is 
quite high. 
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