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Abstract 
 

This paper utilizes perturbation and asymptotic techniques to discuss and obtain, analytically, the 
buckling modes and buckling load of a harmonically imperfect column lying on an elastic foundation that 
has cubic – quintic nonlinearity. Two slightly different approaches are here utilized. In the first approach, 
the perturbation parameter is a component of the displacement while in the second approach, the 
perturbation is a component of the load. In the final assessment, results from both approaches are seen to 
be in good agreement. The results are however observed to be implicit in the load parameter and are valid 
asymptotically as long as these perturbation parameters are small relative to unity. 
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1 Introduction 
 
In this paper, a perturbation scheme in asymptotic series expansions is developed in determining the static 
buckling load and buckling modes of an infinitely long but harmonically imperfect column lying on a cubic 
– quintic nonlinear elastic foundation where the column is trapped by a static load of magnitude P. It is to be 
recalled that, as far as investigations concerning columns are concerned, majority of the existing research 
findings have tended to favour columns lying on nonlinear cubic elastic foundations [1, 2, 3] to the exclusion 
of most other nonlinear elastic foundations. In this study, we intend to stretch the analysis to the case where 
the foundation has a cubic – quintic nonlinearity. 
 
We remark that investigations on columns lying on cubic – quintic non – linear elastic foundations are rare, 
for reasons, perhaps, attributed to the inherent excessive nonlinearity which makes any analytical solution of 
the problem difficult and cumbersome. However, it is to be recalled that Elishakoff [4] had earlier studied 
the buckling of similar columns lying on cubic foundations as well as those lying on quadratic – cubic non – 
linear elastic foundations. It is our intention in this analysis to extend Elishakoff’s analysis to the case of a 
column lying on cubic – quintic non – linear elastic foundations.  
 
Generally, investigations on buckling, both static and dynamic, have tended to attract and occupy a 
prominent attention amongst the research community for a long time now. In this respect, mention is here 
made of an investigation by Reda and Forbes [5], Priyadarsini et al. [6], Chitra and Priyadarsini [7], 
Mcshane et al. [8], Kolakowski [9, 10] and Patil et al. [11], among others. 
 

2 Governing Equation 
 
The normal displacement �(�)  of the column, subjected to the applied load P, satisfies the non – 
homogeneous equation 
 

��
���

��� + 2�
���

��� +	��� + 	����
� − �����

� = 	 − 2�
����

��� ,					− ∞ < � < ∞																												(2.1)  
 

where ⃒� (�)⃒ < 	∞ as �	 → 	±∞. 
 

In general, we demand that the displacement w(x) be bounded for all values of �. 
 

Here X is the spatial coordinate, EI is the bending stiffness, where E and I are Young’s modulus  and 
moment of inertia respectively and ��  is the twice differentiable stress – free harmonic imperfection. The 
cubic – quintic nonlinear elastic foundation exerts a force per unit length given by ��� + 	����

� −
�����

� on the column, while � and �� are the imperfection – sensitivity factors which are to be carefully 
chosen so that the column becomes imperfection – sensitive and ��, �� and �� are positive constants. In this 
formulation, we have neglected all nonlinearities greater than quintic while all nonlinear derivatives are 
neglected. 
 

In order to nondimensionalize the equation, the following nondimensional quantities are now assumed. 
 

	� = 	�
��

��
�

�

�
�,					� = 	 �

��

��
�

�

�
� ,						�� = 	 � �

��

��
�

�

�
��	,							� = 	�

������

��
� �,							� = 2�(����)

�

�					   

 

Here, � and � satisfy the inequalities 0 < � ≪ 1,0 < 	� < 1, and the nondimensional form of the equation is 
 

���

���
+ 2�

���

���
+ 	� + 	�� � − �� � = 	− 2��

����

���
,					− ∞ < � < ∞																																															(2.2) 



 
 
 

Ette et al.; ARJOM, 10(2): 1-13, 2018; Article no.ARJOM.42333 
 
 
 

3 
 
 

In general, the amplitude of imperfection ϵ satisfies the inequality ⃒�⃒ ≪ 1, but in this analysis we shall let ϵ 
satisfy 0 < 	� ≪ 1. 
 
We shall solve the equation in two slightly different approaches whereby, in the first approach, we adopt the 
perturbation and asymptotic parameter as a component of displacement whereas in the second approach, we 
adopt the perturbation parameter as a component of the applied load. In this latter case, we shall let �	 = 1 −

	
���

�
 , for 0 < 	� ≪̅ 1 , where �  is the nondimensional load amplitude. In both cases, we aim at first 

determining a uniformly valid asymptotic expression of the normal displacement subsequent upon which the 
static buckling load �� , is next determined. The static buckling load �� , as in [1 – 3], is defined as the 
maximum value of the load amplitude � that emanates from the origin of the load – displacement graphical 
configuration of the loading system. It is to be recalled that perturbation techniques in the load and 
displacement parameters used in this work were judiciously utilized by Amazigo [2] when he investigated 
the buckling of an infinitely long column with harmonic imperfection lying on a non – linear cubic elastic 
foundation. His method is hereby extended to study the case of a column lying on a cubic – quintic non – 
linear elastic foundation. 
 

3 Solution of (2.2) Using Displacement as Perturbation Parameter 
 
Since the imperfection is harmonic, we let 
 

�� = cos��,																� = 1,2,3,… 																																																																																																												(3.1) 
 

Assuming that the displacement must be in the shape of imperfection, we let 
 

� (�) = cos��,																																																																																																																																															(3.2) 
 

The equation satisfied by the perfect linear structure is  
 

���

���
+ 2�

���

���
+ 	� = 0																																																																																																																														(3.3) 

 

The resultant equation when (3.2) is substituted in (3.3) is  
 

(�� − 2��� + 1) = 0,							� = 	
1

2��
(�� + 1)																																																																																										(3.4) 

 

The least value of � in (3.4) is obtained when � = 1 and for this the classical buckling load ��  is  
 

�� = 1																																																																																																																																																															(3.5) 
 

For the solution of (2.2), it is necessary to let 
 

� (�) = �c̅os� + �(�)																																																																																																																																		(3.6) 
 

It is here assumed that the average value of �(�) cos� vanishes over the interval of definition of �, that is 
 

< �(�)����> 	= 0																																																																																																																																							(3.7)	 
 

where, < ⋯ >  denotes the average of �(�)����.Thus, with �  known, � ̅is uniquely defined. 
 

Let 
 

�(�) = 	 � �̅� �� ,									�� = 	

∞

� ��

� �̅� �� 																																																																																																(3.8)	

∞

� ��
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In order to solve (2.2), using (3.2), equations (3.8) are now substituted into (2.2) and thereafter, we equate 
the coefficients of powers of � ̅to get 

 
�(�)̅:				2(1 − �)����= 2�� cos�																								 																																																																																			(3.9) 
 

�(�̅�):			� �� ≡ 		
����
���

+ 2�
����
���

+	�� = 2�� cos�																								 																																																(3.10) 

�(�̅�):			� �� = 2�� cos� − � cos� �																																																																																																				(3.11) 
 

�(�̅�):			� �� = 	2�� cos� − 3��� cos
� �																																																																																												(3.12) 

 

�(�̅�):			� �� = 2�� cos� − 3��� cos
� � − 3��� cos� + � cos� �																						 																								(3.13) 

 

�(�̅�):			� �� = 2�� cos� − 3��� cos
� � − 6����� cos� + 5� ��cos

�� 																																				(3.14) 
 

�(�̅�):			� �� = 2�� cos� − �[3�� cos
� � + 6���� cos� + 3��

� cos�]+ 	���cos
��															(3.15) 

 

etc. 

 

From (3.9), it is easily seen that 
 

			�� = (1 − �),							�� = 0																																																																																																																						(3.16) 
 
On using the condition (3.7), it is seen that  
 

�� = 0,									�� = 0																																																																																																																																			(3.17) 
 
On simplification, equation (3.11) becomes 
 

� �� = 	 �2�� − 	
3�

4
�����−

�

4
cos3�																																																																																																			(3.18) 

 
On using the condition (3.7) on (3.18), it easily follows that 
 

�� = 	
3�

8
																																																																																																																																																							(3.19) 

 
After solving the remaining equation in (3.18), we have  
 

�� = 	
− � cos3�

8(41 − 9�)
																																																																																																																																								(3.20) 

 
From (3.12), it easily follows that  
 

�� = 	�� = 0																																																																																																																																																	(3.21) 
 
Equation (3.13) is next simplified to yield (using (3.17)) 
 

� �� = 	 �2�� +	
5�

8
+	

3��

32(41 − 9�)
� cos� +	�

15�

16
+	

3��

16(41 − 9�)
� cos3�	

+ 	�
�

16
+	

3��

32(41 − 9�)
� cos5�																																																																											(3.22) 
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On applying (3.7) in (3.22), this yields 
 

�� = 	−
1

2
�
5�

8
+	

3��

32(41− 9�)
�																																																																																																												(3.23) 

 
The solution of the remaining equation in (3.22) is 
 

�� = 	
1

32
�� +	

3��

(41 − 9�)
� �

cos3�

(41 − 9�)
� +	

1

64
�2� +	

3��

(41 − 9�)
� �

cos5�

(313− 25�)
�																(3.24) 

 
After substituting in (3.14), we get 
 

�� = 	�� = 0																																																																																																																																																	(3.25) 
 

Next, we substitute in (3.15) and simplify to get 
 

� �� = 	 �2�� −
3�

2
�
��

2
+	

��

128(41 − 9�)�
� +

5�

8
	�cos� +	�

3�

8
−
3�

2
��� +

��

2
��cos3�

+	�
�

2
−
3�

2
���� +

��

2
� +	

��

256(41 − 9�)�
��cos5�

+		�
�

8
−
3�

2
�
��

2
+	

��

256(41 − 9�)�
��cos7�																																																				(3.26�) 

 

where, 
 

�� =
1

32(41 − 9�)
	�� +	

3��

41 − 9�
�																																																																																																				(3.26�) 

 

�� =
1

64(313 − 25�)
	�2� +	

3��

41 − 9�
�																																																																																												(3.26�) 

 

The condition (3.7) as applied to (3.26a) yields 
 

�� = 	
1

2
�
3�

2
�
��

2
+	

��

128(41− 9�)�
��−

5�

8
																																																																																						(3.26�) 

 

The solution of the remaining equation in (3.26a) yields 
 

�� = 	
1

2
�
3�

8
−
3�

2
��� +

��

2
���

cos3�

41− 9�
� +

1

2
�
�

2
−
3�

2
��� +

��

2
+	

��

256(41− 9�)�
���

cos5�

313− 25�
�

+	
1

2
�
�

8
−
3�

2
�
��

2
+	

��

256(41− 9�)�
���

cos7�

1201− 49�
�																																								(3.27) 

 

Following (3.6), we can now write 
 

� = 	 � c̅os� − 	
α��̅cos3�

8(41− 9�)
+	��̅ �

1

32
�� +	

3��

41 − 9�
� �

cos3�

41 − 9�
� +

1

64
�2� +	

3��

41− 9�
� �

cos5�

313− 25�
�	�

+	
�̅�

2
��
3�

8
−
3�

2
��� +

��

2
���

cos3�

41− 9�
�

+ �
�

2
−
3�

2
��� +

��

2
+	

��

256(41 − 9�)�
���

cos5�

313− 25�
�

+		�
�

8
−
3�

2
�
��

2
+	

��

256(41 − 9�)�
���

cos7�

1201− 49�
��+ ⋯ 																																												(3.28) 
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Similarly, we have (from (3.8)) 
 

�� = �(̅1 − �) +	
3��̅�

8
− 	

�̅�

2
�
5�

8
+

3��

32(41− 9�)
� +	

�̅�

2
�
3�

2
�
��

2
+	

��

128(41− 9�)�
� −

5�

8
�

+ ⋯ 																																																																																																																																							(3.29) 
 
To determine the static buckling load ��, we, as in [1 – 3], use the condition 
 

��

��̅
= 0,																																																																																																																																																										(3.30) 

 
and get 
 

(1 − ��) +	
9���̅

�

8
− 	

5��̅
�

2
�

3��

32(41− 9�)
+
5�

8
� = 0																																																																											(3.31) 

 
On solving, this yields 
 

��̅
� =

9�

40�
���

��(������)
+

��

�
�
⎣
⎢
⎢
⎢
⎡

1 − � 1 +
512(1 − ��)

405�� �
���

��(������)
+

��

�
�
⎦
⎥
⎥
⎥
⎤

																																																						(3.32) 

 
And 
 

∴ 				 ��̅ = 	
3

2√10�

�

40�
���

��(������)
+

��

�
�
⎣
⎢
⎢
⎡

1 − �1 +
512(1 − ��)

405�� �
���

��(������)
+

��

�
�
�

�

�

⎦
⎥
⎥
⎤

�

�

																									(3.33) 

 
The static buckling load �� is now obtained by evaluating (3.29) at � = �� and substituting for ��̅

� and ��̅ 
from (3.32) and (3.33) respectively and this yields 
 

��� = 	 ��̅ �(1 − ��) +	��̅
� ��

��

�
− ��̅

� �
���

��(������)
+

��

�
�+	

���
�

�
�
��

�
�
��

�
+ 	

��

���(�����)�
�−

��

�
����		(3.34)  

 

4 Solution of (2.2) with Load Component as Perturbation parameter 
 
Here, we shall let 
 

� = 1 −
��

2
,					0 < � < 1																																																																																																																													(4.1) 

 
In this case, equation (2.2) becomes 
 

���

���
+ 2

���

���
− ��

���

���
+ 	� + 	�� � − �� � = 	− 2��

����

���
																																																														(4.2) 

 
Let 
 

� (�) = 	 ��� cos� + �(�),												0 < �� < 1																																																																																													(4.3) 
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Further let  
 

�(�) = 	 � �� �� ,									�� = 	

∞

� ��

� �� �� 																																																																																																(4.4)	

∞

� ��

 

 
Substituting for terms in (4.2) and equating the coefficients of powers of �, yields 
 

�(�):			� �� 	 ≡
����
���

+ 2�
����
���

+	�� = 2�� cos�																								 																																																						 (4.5) 

 
�(��):			� �� = 2�� cos�																								 																																																																																																			(4.6)	 
 

�(��):			� �� = − �� cos� − ���� cos� � + 2�� cos�																								 																																																					(4.7) 
 

�(��):			� �� = 	
����
���

− 3����� αcos� � + 2�� cos	�																																																																											 (4.8) 

 

�(��):			� �� =
����
���

− 3����� αcos� � − 3�����
� cos� + � ���cos� �	 + 2�� cos	�					 																(4.9) 

 
�(��):			� ��

=
����
���

− ��3����� cos
� � + 6������ cos� − ��

��

− 6����� cos� + 5� ����
�cos��+2�� cos	�																																																					(4.10) 

�(��):			� ��

=
����
���

− ��3����� cos
� � + 3���� cos�(��

� + 2����)+3��
����

+ 5� ����
�cos��+2�� cos	�																																																																																			(4.11) 

etc. 
 
We shall still use the same orthogonality condition as (3.7). Thus, from (4.5), we get 
 

�� = 0,											�� = 0																																																																																																																																	(4.12�) 
 
From (4.6), we get 
 

�� = 0,											�� = 0																																																																																																																																	(4.12�) 
 
Equation (4.7) simplifies to 
 

��� = �2�� − �� −
3����

4
�����−

����

4
	���3�																																																																																				(4.13) 

 
Application of (3.7) in (4.13) yields 
 

�� = 	
1

2
��� +

����

4
	�																																																																																																																																		(4.14�) 

 
The solution of the remaining equation in (4.13) is 
 

�� = 	
����

32
	���3�																																																																																																																																						(4.14�) 
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Substituting for �� in (4.8) yields 
 

�� = 0,											�� = 0																																																																																																																																				(4.15) 
 
Substituting for ��and �� in (4.9) gives 
 

��� = 	�� cos� +	��� cos3� +	��� cos5�																																																																																					(4.16�) 
 
where, 
 

�� = �
11����

16
+ 2�� −

3����

128
�																																																																																																														(4.16�) 

 

��� = �
����

4
−

9����

32																							
−
3����

64
�,						��� = �

����

16
−
3����

128
�																																											(4.16�)	 

 
On account of (3.7), we observe that �� = 0. This yields 
 

�� =
1

2
�
3����

128
−
11����

16
�																																																																																																																							(4.17�) 

 
The remaining equation in (4.16a) is solved to get 
 

�� = − �
��� cos3�

8
+
��� cos5�

24
�																																																																																																						(4.17�) 

 
On substituting for relevant terms in (4.10), we obtain 
 

�� = 0,											�� = 0																																																																																																																																				(4.18) 
 
After substituting for terms in (4.11) and simplifying, the equation becomes 
 

��� = 	��� cos� +	��� cos3� +	��� cos5� +	��� cos7�																																																											(4.19) 
 
where, 
 

��� = 	 �
15�����

512
+ 2�� + 	� �

3�����

16
−
3�����

2048
��																																																																													(4.20�) 

 

��� = �
9��

8
+ 	� �

3�����

16
+	

3�����

48
� +

15�����

256
�																																																																													(4.20�) 

 

��� = �
25���

4
+ 	� �

3������

48
+	

3�����

16
− 	

3�����

1024
� +

5�����

256
�																																																							(4.20�) 

 

��� = 	 ��
3������

48
− 	

3�����

4096
	� +

5�����

512
�																																																																																												 (4.20�) 

 

From the orthogonality condition (3.7) as applied to (4.19), we get 
 

�� = 	−
1

2
�
15�����

512
+ �

3�����

16
−
3�����

2048
��																																																																																												 (4.21) 
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The solution of the remaining equation in (4.19) is 
 

�� = 	 −
1

2
�
��� cos3�

(41− 9�)
+

��� cos5�

(313− 25�)
+

��� cos7�

(1201 − 49�)
�																																																																	 (4.22) 

 
From (4.3) and (4.4), we write 
 

� (�) = ��� +
������ cos3�

32
− �� �

��� cos3�

8
+
��� cos5�

24
�

−
��

2
�
��� cos3�

(41− 9�)
+

��� cos5�

(313− 25�)
+

��� cos7�

(1201− 49�)
�+ ⋯ 																																(4.23) 

 
Similarly, we have, from (4.4), 
 

�� = 	
����

2
�1+

3����

4
� +

�����

2
	�
3�

128
−
11�

16
� −

�����

2
�
15�����

512
+ 	� �

3��

16
−
3�����

2048
��+ ⋯ 		(4.24) 

 
To determine the buckling load ��, we employ (3.30), which yields 
 

3����
�

2
�1+

3����

4
� +

5�����
�

2
�
3�

128
−
11�

16
� −

7�����
�

2
�
15�����

512
+ 	� �

3��

16
−
3�����

2048
��= 0									(4.25) 

 
At this stage, we shall give the result in two levels of approximation. First, if we take only the first two terms 
in (4.25), we get  
 

3����
�

2
�1 +

3����

4
� +

5�����
�

2
�
3�

128
−
11�

16
� = 0																																																																																		(4.26�) 

 
where �� is the value of � at static buckling. This gives 
 

��
� = 	

3

5���
�
1 +

�����

�
���

��
−

��

���

�,										�� = 	
1

���
�
3

5
�
1+

�����

�
���

��
−

��

���

�

�

�

																																																																(4.26�) 

 
Now, on evaluating (4.24) at buckling, where � = ��, we get 
 

��� =
1

2���
�
3

5
�

�

�

�
1+

�����

�
���

��
−

��

���

�

�

�

��1 +
3����

4
� − 	��

� ���� �
11�

16
−

3�

128
� + ��

������																						(4.27�) 

 
where, 
 

���(��) = 	�
15�����

512
+ 	� �

3��

16
−
3�����

2048
��																																																																																						(4.27�) 

 
and where (4.27a, b) are evaluated at where � = ��. If we take the three terms in (4.25) then, we can write 
the whole equation as 
 

��
� �
3��

2
��� +	

5�����
�

2
��� − 	

7�����
�

2
����= 0																																																																																							(4.28�) 
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where, 
 

��� = 	 �1 +
3����

4
�,				��� = 	− �

11�

16
−

3�

128
�, ��� = �

15�����

512
+ 	� �

3��

16
−
3�����

2048
��									(4.28�) 

 
Then, we can recast (4.28a) simply as 
 

����
� − ����

� − �� = 0																																																																																																																													(4.29�) 
 
where, 
 

�� = 	
7���

2
���,				�� =

5���

2
���,							�� = 	

3��

2
���																																																																															(4.29�) 

 

The solution of (4.29a) is 
 

��
�

= 	
5������

7���
�1 − �1+	

84������

25������
�
�																																																																																																								(4.30�) 

 

�� = 	 ���
5

7
�
���

���

�

�

�

�1 − �1+	
84������

25������
�

�

�

�

																																																																																								(4.30�) 

 

The static buckling load in this case is determined using (4.24) at � = �� and using the values of ��
� and �� as 

in (4.30a, b) respectively. This gives 
 

��� = 	
����

�

2
��1 +

3����

4
� −

��
�

2
���

11�

16
−

3�

128
� +	����

� �
15�����

512
+ 	� �

3��

16
−
3�����

2048
�����										(4.31)	 

 

5 Analysis and Discussion of Results 
 
The results (3.34), (4.27a) and (4.31) show mathematical relationship between the Static buckling load �� 
and the imperfection parameter ϵ. Using Q – Basic codes with �� = 0.5, the results obtained from the two 
methods are shown both on Table1 and Table2 as well as on Figure1 and Figure2. It is clearly shown that the 
Static buckling load, in each case, decreases with increased imperfection parameter. All results are implicit 
in the load parameter �� and are valid provided the perturbation parameters are small relative to unity. It is 
pertinent that �� satisfies the inequality 0 < �� < 1. Certainly, if the values of �,� and �� change, a new set of 
results will be obtained. But whatever be the values of these parameters within the limits allowable in this 
work, the general trend will be the same, namely the static buckling load ��  decreases with increase in 
imperfection ϵ and vice versa. This trend is characteristic of all imperfection sensitive structures. In 
particular, it is observed that as the imperfection tends to zero, �� asymptotically increases without bounds 
and as it tends to one, ��  tends to approach zero. 
 

Though we have limited our analysis to 0 < � ≪ 1, the same trend follows if we use −1 ≪ � < 0.  
 

5.1 Numerical and graphical plots 
 
Below, we give the numerical results and the graphical plots of the relationship between the static buckling 
load and the imperfection parameter using the two methods.  
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Table 1. Relationship between the Static buckling load �� and the Imperfection parameter, ϵ for α = 1, 
β = 1 using Eqn. (3.34) 

 
Imperfection parameter, ϵ �� for α = 1, β = 1 
0.01 0.286212 
0.02 0.285966 
0.03 0.285721 
0.04 0.285478 
0.05 0.285236 
0.06 0.284995 
0.07 0.284756 
0.08 0.284519 
0.09 0.284283 
0.1 0.284048 

 

 
 

Fig. 1. Graphical Plot of Table 1, showing the relationship between the Static buckling load �� and the 
Imperfection parameter, ϵ for α = 1, β = 1,	using Eqn. (3.34) 

 
Table 2. Relationship between the Static buckling load �� and the Imperfection parameter, ϵ for α = 1, 

β = 1 and �� = �.�,	using Eqn. (4.27a) 
 

Imperfection parameter, ϵ �� for α = 1, β = 1, �� = �.� 
0.01 0.571931 
0.02 0.285966 
0.03 0.190644 
0.04 0.142983 
0.05 0.114387 
0.06 0.095322 
0.07 0.081705 
0.08 0.071492 
0.09 0.063548 
0.1 0.057194 
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Fig. 2. Graphical Plot of Table 2, showing the relationship between the Static buckling load �� and the 
Imperfection parameter, ϵ for α = 1, β = 1	���	�� = �.�,	using Eqn. (4.27a) 

 

6 Conclusion 
 
The paper has used perturbation methods to analyze a problem in non – linear dynamical system. The results 
are asymptotic and so, are valid as long as the small parameters are small relative to unity. Moreso, the result 
is implicit in the load parameter. The same method and technique can be used to analyze structurally more 
complex materials like cylindrical shells and plates subjected to similar loading conditions. 
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