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Abstract

In this paper, we discuss optimally controlled economic grawmtidels with Cobb-Douglas aggregate
production function, comparing real per capita income performamcgcenarios where the labopr
(population) growth dynamics range from purely exponentiasttongly logistic. The paper seeks|to
ascertain, by means of analytical and qualitative methrelsyell as numerical simulations, the caysal
factors and parameters, especially population related oviesh induce qualitative changes in the
performance of real per capita income. The models ussuogstion per effective labour as their contyol
variable, and capital per effective labour as the staiabla. Income per effective labour is here used as
the output variable. A time-discounted welfare functional eduss the objective functional, maximized
subject to a differential equation in the state and comtmohbles. Each system is found to be stable in the
neighbourhood of its non-trivial critical value. The modelks laoth locally controllable and observable.
The models’ simulation values, in control, state and ougpgear plausible and consistent with reality. It
is found out that under R & D technological process, economis exponential population growt
consistently out-perform those with logistic population gtowDn the contrary, in all other instances,
economies with exponential population growth consistently parfaorse than those with logist|c
population growth. These findings have far reaching inferewitegegard to the running of economies.

*Corresponding author: E-mail: skopbasoa@gmail.com;
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1 Introduction

It is generally accepted in economic literature, for imsta[1-7], that the time performance of gross
domestic product (GDP), and thus, real per capita incdrae economy, is based on the level and quality of
labour, technology, physical and human capital. Even faonover simplified model incorporating a linear
aggregate production function studied in [8], it is observethray other things, that capital’'s share, as well
as technology, in the aggregate production function is amtakfactor in determining the performance of
real per capita income. However, it is also realize@jrthat Malthus’ concerrtsn [9], which is at variance
with [10]% cannot be discounted, and so is that of{11]

The population growth dynamics, especially as the kegrpater (carrying capacity) seems to govern, in
most cases, how other system parameters impact on thenmemfee of real per capita income over time in
[8]. Invariably, economies with logistic population growdis, per the models, tend to experience higher real
per capita income over time, in contrast with thosd wikponential population growth. The introduction of
technology in the discussions in [8] appears to boost the pexfme of real per capita income, albeit
marginally. Hence, Boserup’s idea [11] of an economy inmgritself out of its difficulties through the use
of technology also seems to be supported here. Arénedlet observations made in models wherein the
aggregate production function is linear generally truecitnemics, where production functions are rather
usually nonlinear? Consequently, there is the need to extenfoandlate the models to include more
realistic nonlinear production functions so as to address associated problems arising from
oversimplification.

Subsequently, this paper discusses the effects of populdgimamics in optimally controlled economic
growth models, using a generalised Cobb-Douglas aggrpgadaction function of technology, capital, and
labour. The local stability and controllability of the migdg built is considered. It also brings to bear the
concept of maximum sustainable population growth, its impacéconomic performance. Furthermore, it
implements qualitative analyses on the models with regpdtteir dependence on the system parameters,
especially the population related ones. It also perfaramerical simulations on the models to authenticate
the theoretical results.

2 Theoretical Preliminaries

2.1 Optimal control theory and the Hamilton-Pontryagin equations

Letx e X € R,,u€UCR, andy € Y S R, respectively denote the state, control, and output hlaga
of a system of a continuous time-varying controlled sy4t2+l6], such that

x(t) = g(x(t),u(t), p, t) (2.1.1)

and y() = G(x(t),u(t),p,t). (2.1.2)

wherep denotes the set of system parameters. Let the objdeteiéare) functional say, which is a
function of the control(t) and statec(t), just as in [8], be defined by

1 Malthus (1798) states that, high population growtits a lot of strain on economic performance, phesence of
technology notwithstanding.

2 Optimists such as George (1879) believe that thhotechnological innovations and advancement, thghés
capability of containing humans is boundless.

3 In contrast to these extreme views, Boserup (1868s that population growth boosts technologgralwth, which in
turn enhances economic well-being. Subsequentliesamirces begin to run out, an economy is foroeidvent its way
out of the problem.
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W(x,w) = ffof L(x (), u(t), t)dt, forTy > 0. (2.1.3)
Then the control problem reduces to finding the conifo) [8, 12, 13, 14, 16, 17, 18] that maximizes
W (e, u) = fth L(x (), u(t),t)dt forT; =0
subject to x() = g(x(®),u(®),p,t), forx(ty) = xo = 0 andx(Ty) = xr, 20,
for y() = G(x(t),u(t),t).
Hence, the related Hamiltonian functidh, is thus

H = H(x(t), u(t), A(t),t) = L(x(t),u(t),t) + () g(x(t), u(t),p, t), (2.1.4)

A is the co-state function. The associated Hamilton-Pagtnyequations [19] are

Hy =L, + Ag, = —4 (2.1.5)
Hy=g=1x% (2.1.6)
H,=L,+ g, =0 (2.1.7)

for x(ty) = x = 0, x(Ty) = xr, 2 0 or A(Ty) = Px(Ty), for someP > 0.
2.2 Linear control problem

Assume g (x(t),u(t),p,t) and G(x(t),u(t),t) are linear or linearized, with system representation
{a(®),b(t),c(t),d(t)}. Then the state and output equations [14,20] are respectively

x(t) = a(®x(t) + b(O)u(t) (2.2.1)
y(t) = c(®)x(t) + d®)u(t). (2.2.2)
2.3 Stability, controllability and observability conditions

The scalar system in Equation (2.2.1) is stable if and niyt) < 0, for all t within the defined time
interval [14,21,22]. [14], for instance, also suggests thatsiystem is controllable within a given time
interval if for anyx(t) there exists a contral(t). Being controllable suggests the system is stabilizable
even if it not completely stable [14,20]. Equally, frobd], the above system is observable if for any output
y(t) there exists a statgt). The system is also detectable if it is observable. Auditly, there exit unique
system solutions if the systems are stabilizable arettidile.

3 Model Development

3.1 Population (labour) growth dynamics

If a population (labour)L(t), grows naturally ad < n < 1, with a carrying capaciti' > 0. Then

<10 =n(1 - oL®O)L(E) = N(L(E);n, 0). (3.1.1)
Thus, the equilibria values arg, = 0 andL, = i > 0. Thus,N'(L;) = n > 0, and hencd,, is an unstable
equilibrium value. BuN'(L,) = —n < 0, impliesL, is a stable equilibrium. For any initial populatibn
such thatl; < L, < L,, L(t) > 0 andL(t) - L, ast —» «, and hencef < L(t) < i meaningL(t) is
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bounded for alt = 0, given thatd < n < 1. Moreover, for any., > L,, L(t) declines gradually té, over
time. Equation (3.1.1) suggests that whes 0, the dynamics of(t) tends exponential, as noted in [8].
ThusL(t) bifurcates whew = 0. L(t) bifurcates again whem = 1, as the trajectory tends constant over
time wheno = 1, but declines to zero over time when> 1, for allt > 0. Variously statedl,, andL, are
respectively a souréeand a sink.

Assuming our starting timg, = 0, where the initial valué, is standardized to unity [8], then

nt nt nt

L(t) = —=¢ c ° <emt (3.1.2)

1+oLo(e™t-1)  1+o(e™-1)  (1-0)+ge™ —

_ VO _ moce) (3.1.3)

L) T 14o(e™-1)  14Te™ T
242
sincec >0,0<n<landforalt>0,1—0+ ge™ = 1+o—(nt+%+---) > 1, ande™ > 1.

3.1.1 Senditivity analysis on population dynamics

From Equation (3.1.2), and as seen in [8], we obtain

oL _  (eM-1)emt

%~ reent-np <0 (3.1.4)

oL (1—oytemt >0 for0<o<1

an - rotert—np )= 0 foro =1 (3.1.5)
<0 foro > 1

L (1-o)ne™
and ot [t+oe™—1D)]?

=0 foroc =1. (3.1.6)

i>0 for0<o<1
<0 foro > 1

From (3.1.4)L(t) is a decreasing function of the parameteThus ad.(t) tends logistic, the lower its
growth, and hence, its numbers in relation to the one wipiotvs exponentially, all things being equal.
From (3.1.5) and (3.1.6}(t) is an increasing function af, and of time¢, when0 < ¢ < 1. But L(t) is a
decreasing function of andt wheng > 1, and in the extremé,(t) decays down to zero. The greater the
value ofg, the faster this is. Howevei(t) is a constant function eof andt whens = 1. The referenced
expressions, as well as (3.1.3), suggest that, far>al0, L(t) grows the fastest when= 0, that is, when
the growth dynamics is exponential. Like in [8], Fig. 3.1 &igl 3.2 illustrate this.

Generally, underdeveloped (lower income) economies and megtloping (lower middle income)
economies seem to experience exponential population growtdreas the population growth in developed
(high income) economies as well as most upper middle incomeoetes is logistic. This can also be
inferred from [8].

3.2 Technological growth dynamics

TechnologyA(t) usually enhances labour to make it even more produdfieece, assuming a generalized
Cobb-Douglas aggregate production function, a type with phlysépital and technology augmented labour,
that guarantees balanced growth, for simplicity, then we have

Y(t) = F(K(®),A()L(1)) = pK*(O)[A) L] 3.21)

4 Additionally,N'(L;) =n < 0, for alln < 0. Hencen = 0 is a bifurcation value, and in contrast with therler
discussionL(t) - 0 ast —» o whenn < 0, for Ly > 0.
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Yo _ KO —_ o [f® O
= rasad+(1-a) [A(t) +0 (3.2.2)
. A _ 1 o _ _ n(1-o)
ie., D= [6-as - (1-a) e (3.2.3)
for6 =Y/Y, 8¢ = K/K, and% = L/L. In a balanced growtl, = &, [23,24]. Hence, the modified

residual technological progrest), is defined by

A _ g n(1-o) (3.2.4)

a0 0 1vo(ent-1)

But from [25] and [26]L(t) may be segregated into two additive parts, thdi(i9, = Ly (t) + L,(t), where
L, (Ly) is the labour used in the research (actual productionyrsericreate new technology or advance
existing ones. ID < ¢ < 1is the research sector's average productivity, rdd < 1, the fraction of

existing technology used to produce new one(s), theh,ftr, = L/L = % the modified research
and development (modified R & D) technological procdss), is given by
A = pA°()La(D) = A1) = La(®) (3.2.5)
AO __ 9n-0) (3.2.6)

A (1-0)[1+0(e™-1)]

Let A, be the initial value ofi. Then by respectively puttindy,, andA, for A in Equations (3.2.4) and
(3.2.6), each with initial valug, normalised to unity, we obtain

A () = Ay[1 + a(e™ —1)][e@® ™Mt = [1 4 g(e™ — 1)]e@™¢ (3.2.7)
nt 1l L £
_ e -6 _ 1-6

and A, ®= Ao [1+U(e"f—1)] - [(1—a)e_m+cr] ' (328)

Assuming a technological growth dynamics similar to tifdt such that it has a natural growth< a < 1
with a carrying capacit? > 0. Then the logistic form of technology growth, (t), is

S A3(0) = a(1 — EA; ()45 (0). (3.2.9)

It has similar qualitative properties like L, (t), spurs higher growth in real per capita GDP when ¢ is
very small, greatest when ¢ = 0 (in which growth rate is kept constant at a), and yields

Agedt _ 1
1+40E(e®t—1) ~ (1-&)e—at+¢’

A;(t) = for4, = 1. (3.2.10)

3.2.1 Sensitivity analysis on technological growth dynamics

From Equation (3.2.7), and for alt> 0, we obtain

2 =[5 —n(1 - 0) + (e™ — 1)651e® ™ > 0 (3.211)
% — (ent _ 1)e(é—n)t >0 (3.2.12)
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2 — _(1—o)te®mt

and o

=0 foro =1. (3.2.13)

!<O for0<o<1
>0 foroc > 1

Similarly, for allt > 0, and the given domain éfand¢, Equation (3.2.8) also gives

o4,  (1—o)nt >0 for0<o<1
a—(; = o Az(t) =0 foroc =1 (3214)
<0 foro > 1
24, _ (1-0)ng >0 for0<o<1
25 = > A2(8) §=0 foro =1 (3.2.15)
(1-6)
<0 foroc > 1
a4 e ot >0 for0<o<1
22 _ o, ¥ — —
n =126 TreenipA2() 1= 0 foro =1 (3.2.16)
<0 foro > 1
o4 1o on >0 for0<o<1
2 _1-0 _ ¢n_ _ h
S =100 TreeniopA2(t) =0 forc =1 (3.2.17)
<0 foro > 1
0 _ _ & _eM-1
and %0 = Time remn A2 <0 (3.2.18)

On the other hand, for all> 0, Equation (3.2.10) gives

) (1-5) >0 for0<¢<1
Az _ 1-$)a — _
o~ mreea-n 43 ! 0 for§ =1 (3.2.19)
<0 foré > 1
oa (1-8) >0 for0<é<1
945 _ _ (U=§)a  Lar ) — _
da  [1+&(e®t-1)]2 { 0 for§ =1 (3.2.20)
<0 foré > 1
% = — (eat_l) at
and 98 [1+€(e?t-1)]2 e <0. (3221)

Expressions (3.2.11) and (3.2.12) suggest that, far>ald, the residual technological proceds(t), is an
increasing function of time, as well as the parameter Subsequently, over time, the higher the value, of
the higher the growth prospects ignited by the technologicalepsd, (t) in real per capita income, all
things being equal. Expression (3.2.13) indicatesAhéf) is an increasing function of the parametamly
wheno > 1, a condition that has dire consequences for the vemgrsuzxe of population. On the other
hand,4, (t) is a decreasing function of the parametevhen0 < o < 1, but a constant function af when

o = 1. It is also quite clear from Expressions (3.2.4) and (BtRatA, (t) is also an increasing function of
§, the growth rate of GDP. Moreover, anytime there ipogitive difference betweehandn, that is,

§ —n >0, A,(t) is likely to ignite growth in real per capita GDP.

With regards to th&k & D technological process,(t), Expressions (3.2.14) to (3.2.17) respectively
suggest that, for alt > 0, A,(t) is an increasing function of the parametgrsd, n (unlike inA4;(t)
discussed earlier), and timewhenevel < ¢ < 1. However A4, (t) becomes a decreasing functiongofd,
n andt, wheng > 1, whereas it is a constant function ¢gf6, n andt, whenevew = 1, for allt > 0.
Expression (3.2.18), on the other hand, suggests that, for>all, 4,(t) is a decreasing function of.
Hence, as population growth becomes more and more logisi® & D technological process becomes
inimical to real per capita income growth. Consequentlypyrinference from Expressions (3.2.14) to
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(3.2.18), theR & D technological process possibly incites the greatesttprgnospects in real per capita
income when population growth is exponential, that is, when0.

Expressions (3.2.19) and (3.2.20) indicate that, far 2110, the logistic formulation of technolog¥fs (t), is
an increasing function of the parameterand timet, whenevef < ¢ < 1. HoweverA;(t) is decreasing
function ofa andt, when¢ > 1. On the other handi;(t) is a constant function of andt, whenevegk =
1. But A;(t) is decreasing function &f, for allt > 0, as in (3.2.21). Thud;(t) is most likely to generate
the greatest growth in real per capita whenéver0, as alluded to earlier.

3.3 Optimal growth model in a closed economy

In an economy in which incom(t), is either expended on consumpti6fit), or investment](¢t) [8, 17,
23, 27-32], we have

Y() =C@) +1(0). (3.3.1)
Assume the aggregate production function
Y(t) = Y(K (), A(D)L(L)). (3.3.2)
From theory, ifu is the rate of depreciation &f(t), then in simplest form [18, 33](¢t) is given by
1(t) = K(t) + puK(t). (3.3.3)

Now, puttingy = Y /AL, ¢ = C/AL, andk = K /AL, assuming technology grows at a constantGatea <
1, and using the transformations as seen in [8], for sitylithen

n(1-o)
1+o0(e™t-1)

k@) = g(k®), e, 0) = F(k©®) — (a fu+ )E(t) 0, (3.3.4)

and 9@ = f(k@®)). (3.3.5)

Equations (3.3.4), and (3.3.5) are respectively the stateatput equation,(t) is the state variablé(t)
is the control variable [8, 13, 18, 27, 34, 35, 36]. Using EquaBdh ), and the transformations in [8],
where0 < a < 1 share oK inY, andp > 1 the unaccounted for factors¥n then

k(e) = g(k(t), 6(0),t) = pke(t) — (@ + p + —22 ) k(e) - e(t). (3.3.6)

1+0(e™t-1)

Alternatively, if we use the idea that income is eitbensumed or saved, or that investment is identically
equal to savings§(t), that is,I(t) = S(t), and that savings is a fraction of income, then

S(t) = sY(t) (3.3.7)
ie., Ct)=1—-5)Y(®) = ét) = (1 -5, (3.3.8)

wheres is the savings rate, or the propensity to save [23]. Thusti6gsed3.3.6) and (3.3.5) become

k(t) = pske(t) — (a fu+ M) 70) (3.3.9)

1+0(ent-1)

and  §(t) = pske(d). (3.3.10)
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3.3.1 Theutility and welfare functional

The utility per heady(t), and welfare functionaly (¢), are respectively given by

v(t) = u(é@®)), (3.3.11)
o Tr e~ V—"MTy (1)
W(e) = ftofmdr, Tr > t. (3.3.12)

fory —n > 0,u'(é(t)) > 0,u”(é(t)) < 0[23, 33, 34, 35] anfl < y < 1 is discount rate of value.
3.4 Equilibrium and linearization analyses

At the equilibriumfc(t) = 0, Equation (3.3.9), gives the equilibria values 6f) thus

1-a
ki, =0 or ke, ) = (ﬁ) (3.4.1)

1+0(ent-1)

The equilibrium value}fc;1 gives corresponding equilibria valueségt) andy(t) as zero, which are of little
or no interest. Usin@;z, the equilibria values dgf(t) andé(t) respectively becomes

1-a 1-a
HORY. (p—()) and  &©=p1-9) (%) . (34.2)

a+”+1+a(e"f—1) +ﬂ+1+a(ent—1)

Equations (3.4.1) and (3.4.2) suggest that the higher the valyep anda, the greater the equilibrium
value ofk(t), and hence, that §f(t), and vice versa. Now, linearizing around the equilibriumegiv

$(t) = p(1 — a)(l?éz)a + pa(l?éz)a_lfc(t) = P(t) +%[a +u+ %} k@ (3.4.3)

> 20~ et u+ SR RO = 00Ok (3.4.4)

2(6) = 9(6) = p(©), (®) = (1 = 3" (@) ande(t) = % (a +u + =P, Foréy(6) = é0) - (©)
k)~ (2-1)(a+pu+ %) k) = &, = g(kR(®), &, ), t). (3.4.5)

3.5 Local controllability observability and stability of the linearized system

Given that for any state(t) in Equation (3.4.5), there exists a con#td(t), and hencei(t), that drives the
system to a desired state. Hence the linearized systeanipletely controllable, in the neighbourhood of
the critical value [14]. But given that it is completelgntrollable, it is also stabilizable. Similarly, from
Equation (3.4.4), the system is completely observable, an& héeiectable [14].

The system is asymptotically stable if and onlg ik s. Granted tha& < s cannot be guaranteed always,
our system might not generally be stable. But from Equ&8d10), and restated as

n(1-o)
1+o0(ent-1)

k(e) = psk(t) = (a +p + VRO = frara k() (35.1)

gives the equilibria valuds, andlE;z, as provided in Equation (3.4.1). Similar to the discusssia Section
3.1,k(t) = k;, is a source, anll(t) = k;, is a sink, since for any initial value(t,) such thatk; <
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k(to) < k,, which is in the domain of interedt(t) > 0 for all t > 0, andk(t) - k;, ast —» co. Thus for
anyk;, < k(ty) < ki, k(t) is bounded, that ik; < k(t) <k;,. For any initial value(t,) > k;,, k(t)

decays down td*. Hence, the application of higher and higher initial valweéll lead to less than
proportionate increase in valueskdt). This assertion is underlain by the fact that

1 % n(l_U)
fpara(kez) = —(1 - 0!) (a +u+ m) <0 (352)
sincel —a > 0, anda + u + % > 0, for allt > 0. Hencef is stable in the neighbourhood of the

equilibrium valuefcg2 [14, 21, 22]. Hencei};2 is a sink. But in the rare situation where> 1 such that
— X thenk;, is an unstable equilibrium value
n—(a+p)(ent-1)’ e a '
3.6 Sensitivity and bifur cation analyses of the systems
From the above, the trajectory foft), and hences(t) andy(t), bifurcates whem + u + % =0.
Let the equilibrium trajectories, per labour, of capitad éncome be&*(t) andy*(t) respectively, then

1-a
k*(t) = k2, (DA@) = A, (ﬁ) et (3.6.1)

1+0(ent-1)

>a, 0<o<l1

PN 1 n?(1-g)e™ . o « _ _
= ke (t) = [a + 1-a (a+w)[1+o(e™-1)]+n(1-0) 1+cr(e"lt—1)] k() {_ a, for 0=01 (3.6.2)
<a, foro>1

a

1-a
and y* () = 9:(®A) = p, (W) e (3.6.3)

1+0(ent-1)

>a, 0<o<1

;’m_n] y*(t) i: a, for o =0,1. (3.6.4)
<a, foro>1

- _ a nZ(1-o)emt ]
= v = [a + 1-a (a+w[1+o(e™-1)]+n(1-0) 1+0(

po = Ayp. The time trajectory ok, and hencey, bifurcates whenever =0, ora =0, oroc =0, oro = 1.
Invariably,y remains constant whenewer= 0,1 anda = 0; decay down to zero when< 0, for alle > 1
org =0,1; and grows up whea > 0, for all0 < ¢ < 1. Whena = 0, then the time trajectory of may
rise, probably marginally, wheh< ¢ < 1; but rises initially, then stay constant whee= 0, or fall when

a n2(1-o)oent
— _. h >
g>1.letm=a+ e @it -DE+n(1-o)1toem-1] then for allt > 0,

o _[p_ . 1+o(em-1) .
da 1-a (a+ﬂ)[1+0(ent—1)]+(1—o)n] y >0 (365)
am o n2(1-0)ent >0, for0<o<1
E = (1-a)? . (a+w)[1+0(e™-1)]2+n(1-0)[1+0(e™t-1)] Z 8: fOI%OOI" : g, 1 (366)
We also have
W _ @, ne™t oy
90 1-a (a+w)i+o(e™-1)]+n(1-0) [1+o(e™-1)] >0 (3.6.7)

10
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2 )y >0 and % = %(ﬁ)y >0 (3.6.8)

Wy a 1-0)[{1+(nt-1)e™}o-1] . >0, for0 <o <1

an  1-a [+oe—Dl(atpi+oEe™—D]+(1-o)m]” Z?) for o — of%rrf;i i (3.6.9)

ay* _ a 1+o0(e™t-1)

and o 1-a (a+m[ito(e™—D]+(1-o)m

y* <0. (3.6.10)

From (3.6.5) and Equation (3.6.4), we can conveniently conthatehe higher the value af the fastey
grows, and hence, has a positive effect on the time-valuegofrhe converse is also true. Equations (3.6.6)
and (3.6.4) suggest that for 8l ¢ < 1, higher values of ignite faster growth iry*, and hence, iy, and
vice versa. However, whenever= 0 or ¢ = 1, the growth effect oft ony is kept at zero, and henge,
remains constant, except if there is a positive technicalress, as seen in Equation (3.6.4), in which gase
grows over time. Whea > 1, then higher values af is disincentive for growth iy. Under such instance,
y may grow or the negative growth slowed down if there exigissitive technical growth rate as per
Equation (3.6.4). For all that it is worth in terms of rpat capita income time values> 1 is a recipe for
population extinction, and thus, undesirable.

From (3.6.8),s, and hencep, has a direct positive effect gn and the higher each one is, the higher the
time-values ofy. The division bys suggests that asbecomes higher and higher, the growth potential
generated diminishes. From Equation (3.4.5), the time toajeof k, and by implicationy, may experience
the fastest growth, before the attainment of equilibrimimeneverr > s. The highest this difference is the
greatest the growth potential. This growth, before dayiiiim, is negated whenever< s, but this may be
off-set by the developments after the equilibrium, a agethe tendency of establishing higher equilibrium
value.

However, from (3.6.9), the economy starting from a refegepoint of a higher value of will be
instrumental for the establishment of higher real pertaaipicome trajectory if the population growth
dynamics turns logistic, and moreowex ¢ < 1. But higher values of are inimical to the generation of

higher real per capita income performance when0. AIthough% < 0 wheng > 1, given that higher

values ofo ignite higher real per capita GDP time values, per {B.8he negative effect of herein may be
eliminated or greatly reduced, except for the disfaktmpart ofc > 1 on population as discussed earlier.
Butn has neutral effect on real per capita GDP growth whenl. (On the other hand, higher valuesuof
affect the time-values of negatively, as per (3.6.10), most likely due to its affef establishing lower
equilibrium value ofy. The converse is similarly true.)

Alternatively, from the above, we define per capita incopfe), thus
y(©) = A)f k(D) (3.6.11)
YO _ oo () H2 = 0]
et a+ &, (k(t) "o a+a’}(t) (3.6.12)
wherea = ;(k(t)) = %
share of capital in the production mix. But from Equation £3,4ve have

€ (0,1) is the elasticity of the production functign and measures the

k@ _ fR@) _
k() k()

n(1-o) _® _ sfkR@) n(1-o)
(a tat 1+o(e"t—1)) OO (a tut 1+o(ent—1))' (3'6'13)

Taking first order Taylor's expansion of Equation (3.6.13)uadfc;2, with respect tdn(k(t)), then

11
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k(©) 7 n(1-o) - -
i~ (ealk,) = 1) (a+ 1+ omis) (n(k©) = In(kz,)) (3.6.14)
since at the steady stafe- "2 ,EI:EZ) = (a +u+ %) Hence, Equation (3.6.14) becomes
en -
o (B* D+ n(1-o) ~ P
X0 ~ 0 —e(ke)(1 - e (Re,)) (@ + 1+ oames) (in(R(©) = In(kz,)). (3.6.15)

Now, from the steady state analysis, the steady stapeit or real GDP per capita is
() = f(kz,(©)A®) = 9:(DAC). (3.6.16)
A first-order Taylor expansion of(y*(t)) with respect tdn(k(t)) in the locality ofin(k*) gives

In(y(t)) — In(y* () = & (kz,)[In(k(t)) — In(k;,)]. (36.17)
Putting Equation (3.6.17) into that of (3.6.15) gives

n(1-o)
1+0(ent-1)

YO L a—(1—
o=@ (1 a')(a+u+

) In((£)) = In(y* (). (3.6.18)
From Equation (3.6.18), the per capita income grows mucérfageater than, any time per capita income
is less than the system established equilibrium per dapitane, that isy(t) < y*(t), sincel —a > 0 and

a+u +% >0, fort > 0. It grows at a rate less than the technological pregra®a, anytime

y(t) > y*(t), and with or without technological progress, growthy{it) here may hit the negative
(occasionally). The growth rate jr(t) is justa whenevery(t) = y*(t), and zero when = 0. Thus in the
absence of technological progress, or if it is negative, tyrawy(t) is much less than discussed above. If
a < 0, then per capita GDP values may tumble over time. Tipeesgion on the right side of Equation
(3.6.18), excluding the first term, is termed the rate of convergence.

3.7 Analysis on maximum sustainable population growth

Just like noted in [8], the factor shares (excluding lapimuthe production mix positively influence real per

capita income performance, whereas depreciation ratep@ndation growth rate do the very opposite.

Thus the most prudent policy for exiting the Malthusiarp tia to pursue measures that enhance
technological growth, savings rates and marginal productgeffective) labour, lower depreciation rates

and shares of natural resources in the production mix. Imastriio [37], here the MSPG is rather an
increasing function of technological growth, marginal préslwf factors of production (excluding labour)

and their corresponding rates of savings, but a decreasicgofurof the factor depreciation rates and

associated factor shares.

3.8 The Hamilton-Pontryagin equationsfor the Linearized systems

From Equations (2.3.2) to (2.3.5), and using a logarithmic utilityctional,u(c(t)) = Inc(t), taking
t, = 0, for simplicity, the associated Hamilton-Pontryagin eique give

e—(r-mt
[1+0(e™t-1)]A(t)

&) = (3.8.1)

12
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i) = (1 - %) (a +u+ %) (6 (3.8.2)
= ke) = (2-1)(a+nu+ %) R +9(0) — é(0). (3.8.3)
for k(0) = ko >0, k(Ty) =ky, 20 (3.8.4)
and 26) ~2(a+u+ %) k() = o(Ok(®). (3.8.5)

3.9 Solution of the Hamilton-Pontryagin equations

From Equation (3.8.2), it follows immediately that

A = —2o___(1-D@mrn (3.9.1)
[1+cr(e"lt—1)](1_?)

> ) =— oG- 1)@rm+in—y]e (3.9.2)
Aoll+o(ent-1)]s

and k@) = (% - 1) (a +u+ M) k@) + 9@ — W (3.9.3)

1+0(e™t-1) Aoll+a(ent—-1)]s

a
N

> R(6) = [1 + o(ent — 1)](175) g(G-1)(@rusmie EROE %Oh(t)] (3.9.4)

-(y-n)t
whereh(t) = [*< [

0 1+0(e™*-1)

and{(t) = f(ftp(‘r)[l + o(e™ — 1)](%_1)e(1_%)(“+”+")Td‘r.

Putting in the terminal condition gives

A(t) - h(Tf) . e(l—%)(a+n+u)(:—rf) (3 o 5)
[ko+((Tf)]e(%_1)(a+"+”)(Tf)—fc—pf[1+o(e"Tf—1)](?_1) [1+0—(ent_1)](1—?)
&) = [Tco+((Tf)]e(;—1)(a+n+u)Tf_f(Tf[1+0(ean_1)](?‘1) . e(%_1)(a+u+n)(t—'rf) 396
h(Tf)e(y_n)t [1+0'(e71t_1)]% e
(D) = [1+ o(ent — 1)] (175G @hmrmre Gom)
and FO=9®) + oO[1 + a(e™t — 1)](15) 1) @rumre gy (3.9

a_
l‘co(h(Tf)—h(t>)+h(Tf)<(t>—z(rf)h(z>+f<Tf[1+a(e"Tf_1)](S - Sarmmry g,

whereq(t) = w)

13
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Hence, if4, is the initial value ofd(t), then from our substitutions, we recover

a_
A"[[’A‘W(rf)]e(%‘lﬁ‘””*“”f—krf[1+a<e"Tf-1>](s )

e(%—l)(a+u+n)(t—Tf)

o= Wiyt — (3.9.9)
k(t) = Ag[1 + o(e™ — 1)](1_%)9[(%_1)(H+n)+%a]tq(t) (3.9.10)
and  y() =4, [w(t) + o1+ o(e™ - 1)](1‘%)e(%‘1)(“+”+"”q(t)] e’ (3.9.11)

However, whenever equilibrium is reached, the trajectopy agsumes the form defined in Equation (3.6.5)
thereafter. The trajectories ofandk follow similar traits.

Using technological processes defineddpyt) or A,(t) or A;(t), we obtain similar sets of trajectories for
c(t), k(t), andy(t), similar in structure to those in Equations (3.9.9) to (3)9.&xcept for some few
details. Lety;(t) be the counterpart trajectory fpft) in respect of4;(t), fori = 1,2, 3, then

31 = [920) + 01 (0T, 1)) 4, 1) (39.12)
720 = [0 + 9011 + o et = DIFET) (55N, ()] 4,0y (3.9.13)
ya(0) = [3® + 93O + £ - D1 + o — DY DeENe g )] 2,00 (3.919)

a

() =p(1—-a) (%)ml P (8) = p(1 — @) (W) -

H+—1"g 1+0(enf-1)

a

P3(t) = p(1 - 0-')( a9 psl n(1-0) > )

T14£(et-1)  1+0(ent-1)

_a _a 1+¢p-6 i n(1-o)
(pl(t) T s (H + 6)7 (pZ(t) T s (‘Ll + 1-6 1+o‘(ent—1))

fco(h(rf)-h(t))m(rf)zl(t)-ql(rf)n<t)+;sze(1—%)<u+a>rf .

a(1-§) n(1-o) )

a
 p3(t) = Z(H + 1+£(e@t-1) ' 1+o(ent-1)

q:(t) " L) = :_Z(%)ﬁ (8(1—%)(ﬂ+5)t _ 1)
ko (h(Tf) - h(t)) + (T3 () = &o(TRE) + ky, [1 + 0 (e — 1)](%_1)(1129)6(1_%)(“"1,;?;9)”}!@)
q2(t) = s
q3(8) u u
o ((Ty) = h(©) + h(T7)S5(®) = &5 (Tr)R(E) + or, [(1 + £ — DI + o™ — DY) (i) @rirmrp ey
) h(Ty)

1+9=0y B pu+n @
) o (19 (w25

oL@ = fOTf Y,(D)[1+ o(e™ — 1)](%_1)( -0 3 )Td‘[
(0 = [T PO + £ — DY + (e — DY) (-5 @rmsmrgy

14
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In each case, the equilibrium trajectoryypft), fori = 1, 2, 3, is given by

Y (®) = = Pi(OA(D). (3.9.15)
4 Discussion
4.1 Modelswith constant technological growth

From the above, it is obvious that the equilibrium valueeaf per capita GDB(t), is higher in a system
with logistic labour growthd > 0) than one in which labour growth is exponentia 0). Equally, as per
the sensitivity and numerical simulations, it is evident thatformer economy grows faster, and given that
it generates higher equilibrium, establishes higher timdees ofy(t) than the latter, for any set of

parameter values. That is, for at> O,Z—Z > 0. All the simulation plots, especially Fig. 4.1 and H®,

confirm this. The population dynamics is indicative of thesnclusions. (Data used has been sourced from
[38], but the analysis stops short of linking up to theu@ceconomies, especially as simulations are
performed on these parameter values to check for qualittamges)
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Fig. 4.1. Real per capita GDP trajectoriesfor varying values of & (With Tech)

% For any clearly defined bundle of trajectoriese lower trajectory depicts the case where 0 (population growing
exponentially), with increasingly higher trajectesi aso steadily becomes higher (population progressilmgomes
logistic). From one bundle of trajectories to anattwhich is higher shows the application of inciegsvalue of a
parameter (besides) on which the simulation is being carried out. §dbes not happen when R & D technology is at

play.
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Fig. 4.2. Real per capita GDP trajectoriesfor varying values of ¢ (No Tech)
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Fig. 4.3. Real per capita GDP trajectoriesfor varying values of ¢ and a (With Tech)
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Like noted in [8], the results sugg%b 0, and that higher values afexcite higher time-performance in

y(t), and vice versa. All the simulation plots, especially Bi§, re-enforce this finding. The trajectory of
y(t) takes a nose-dive when< 0.° The real per capita income trajectopyt), rises gently over time,
almost flat, whenever = 0, and0 < ¢ < 1, but declines asymptotically when> 1. Buty(t) is either
completely flat or it may initially rise and theresfflatten up, whea = 0, ands = 0.
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Fig. 4.4. Real per capita GDP trajectoriesfor varying values of & and a (No Tech)

Similarly, it can be inferred th% > 0, whenevell < g < 1, butZ—Z < 0wheno > 1, andg—z = 0 when

o =0,1. Fig. 4.3 and Fig. 4.4 above, as well as Fig. 4.6 and Fdyelow, lend a lot of credence to this. It
can also be confirm th%f > 0. Fig. 4.5 and Fig. 4.6 beneath attest to this. (Thaso true in respect pt
Also,:Ty0 = 0, confirming the fact that tends to a finite limit,,, for anyk, > 0.) Nonetheless, the growth
potential iny(t) arising out ofx naturally surpasses thatof

%1n the referenced plots above, unless otherwistedt we have largely uspd= 150, a = 0.33, s = 0.285,a =
0.035,n = 0.02, ko = 600,
y =0.045, 4 = 0.05,4,=1,¢ = 0.8, 8 = 0.6, § = 0.042 and¢ = 0.05.

0=0 the population (labour) grows exponentially atntstural growth raten over time.
o=1 the population (labour) will be static and not grimg at all or growing at a 0.00% over time.
o>1 the population (labour) will be declining or gravg at a negative rate over time.

0<o<1 the population (labour) will be growing but at educing rate over time.

For o > 0, the population growth dynamics is logistic. Weuase that the natural growth rate of populatian,is
0<n<l1.
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It can be confirmed th% <0, for allt =0, wheng =0o0ro > 1. Similarly,Z—fl >0when0 <o <1,
whereasZ—Z = 0 whenevers = 1. Fig. 4.8 attest to these. (From the simulations and Equat®6<(Q),
(3.6.6) and confirms th% < 0, for allt = 0. Unlike in [8], howeverg—i =0)
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4.2 Systems with non-constant technological growth dynamics

The contrast between these technological processes amth#rewith constant growth is that either the
associated population growth here is non-constant or dhmakgical growth dynamics itself is logistic.
Here, the effects of anda (as well as those @f, k,, ¥ andu) are largely the same as discussed earlier. As
suspected earlier in Section 3.2, the lower the valug dfe higher the growth prospects, and hence, the
time-performance of(t) in the system with residual technological progrds$t), and vice versa. This is
similarly true in respect of systems underpinned by lagigtchnological procesdg(t),” except that the
negative effect here is far less than in the formérthalgs being equal. The reverse is the truth when the
technological process is premised on the R & D phenomehgt)).

Unlike in the simplistic form in which technological growthcignstant, in systems underlain by R & D, the
performance of(t) is highest whew = 0, and drastically slows down when> 0. The growth prospects

in y(t) here is much enhanced for higher valueg aindd, especially the latter. However, the effectof

on systems with technological procesdeé) andA;(t) is similar in nature to its effect on the systems with
constant technological growth. But the system with tluarielogical procesa;(t) generates the highest
time-trajectory ofy(t) whené = 0, worsening with increasing values §f This highest growth rate
generated byl;(t) is at a constant level, same as used in the original models. Fig. 4.10 and Fig. 4.11
below shows the effects df (t) on the performance of(t).

In systems with technological procesdt), y(t) grows much faster at a constant r&tevhenn = 0 or
o =1, and much more (no longer constant) when 0 and0 < n < 1, except that > 1 is not desirable
for population sustenance. Anytilie- n > 0, the time-performance of(t) is good.

" The logistic technological process is indicatedha plot as L'Tech.
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Real Per Capita GDP Values in US Dollars

Real Per Capita GDP Values in US Dollars

Fig. 4.11. Real per capita GDP trajectoriesfor various ¢ values Under R & D Tech process
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Fig. 4.10. Real per capita GDP trajectoriesfor various Tech processesand o values
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5 Conclusion

The models constructed in the foregoing are generally stahéh in the neighbourhood of its non-trivial
equilibrium value, whenevel < o < 1. They are each locally controllable and observabie] #us,
stabilizable and detectable. Consequently, the models’ sdutioa feasible and reachable, and most
importantly, bounded inputs always generate bounded outphtss as expected, their predictions are
plausible and realistic.

Furthermore, it is also found from the comparative ya®d of the results that:

1)

2)

3)

4)
5)
6)

7
8)

9)

Under the framework of R & D technology, economies with exptale population growth
consistently perform better than those with logistic paoih growth®

In contrast to the above, it is also clear that, undeerasets of conditions, excluding the R & D
technological process, economies with exponential populatiowth consistently perform worse
than those underpinned by logistic population growth.

Higher technological growth is also found to be an excellentftoaapid economic growth, and
with this, it is clear from the simulation graphs that adowncome economy, over a time, can
surpass that of a higher income economy whose technolgg@aih is much less.

The population dynamics parametery largely dictates, how most of the other parameters, and th
technological processes, impact on the time-performahoeal per capita income.

Given the caveat om, its tolerable domain i8 < ¢ < 1. The border line value = 1 may not be
advisable given the caution on

But ¢ = 0 is appropriate for high time-performance of real pgitaancome if and only if the R &
D technology is in place.

However,o = 1 is ideal when the modified residual technological procesather in place.
Generally,0 < o < 1 is preferable for high time-performance of real pepiteaincome, except

with the residual technology Whe%< 0, wheneve <o < 1.

Additionally, programmes that enhance technology, savings andimal products of the various
factors of production, per (effective) labour, whilstsaring lower factor depreciation rates, and
minimal shares of natural resource-based factors iaghgesgate production function, help exit the
Malthusian trap, if it exists, or postpone indefintel
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