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Abstract 
 

In this paper, we discuss optimally controlled economic growth models with Cobb-Douglas aggregate 
production function, comparing real per capita income performance in scenarios where the labour 
(population) growth dynamics range from purely exponential to strongly logistic. The paper seeks to 
ascertain, by means of analytical and qualitative methods, as well as numerical simulations, the causal 
factors and parameters, especially population related ones, which induce qualitative changes in the 
performance of real per capita income. The models use consumption per effective labour as their control 
variable, and capital per effective labour as the state variable. Income per effective labour is here used as 
the output variable. A time-discounted welfare functional is used as the objective functional, maximized 
subject to a differential equation in the state and control variables. Each system is found to be stable in the 
neighbourhood of its non-trivial critical value. The models are both locally controllable and observable. 
The models’ simulation values, in control, state and output, appear plausible and consistent with reality. It 
is found out that under R & D technological process, economies with exponential population growth 
consistently out-perform those with logistic population growth. On the contrary, in all other instances, 
economies with exponential population growth consistently perform worse than those with logistic 
population growth. These findings have far reaching inferences with regard to the running of economies. 
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1 Introduction 
 
It is generally accepted in economic literature, for instance [1-7], that the time performance of gross 
domestic product (GDP), and thus, real per capita income of an economy, is based on the level and quality of 
labour, technology, physical and human capital. Even from an over simplified model incorporating a linear 
aggregate production function studied in [8], it is observed, among other things, that capital’s share, as well 
as technology, in the aggregate production function is an essential factor in determining the performance of 
real per capita income. However, it is also realized in [8] that Malthus’ concerns1 in [9], which is at variance 
with [10]2, cannot be discounted, and so is that of [11]3.  
 
The population growth dynamics, especially as the key parameter (carrying capacity) seems to govern, in 
most cases, how other system parameters impact on the performance of real per capita income over time in 
[8]. Invariably, economies with logistic population growth, as per the models, tend to experience higher real 
per capita income over time, in contrast with those with exponential population growth. The introduction of 
technology in the discussions in [8] appears to boost the performance of real per capita income, albeit 
marginally. Hence, Boserup’s idea [11] of an economy inventing itself out of its difficulties through the use 
of technology also seems to be supported here. Are all these observations made in models wherein the 
aggregate production function is linear generally true in economics, where production functions are rather 
usually nonlinear? Consequently, there is the need to extend and formulate the models to include more 
realistic nonlinear production functions so as to address any associated problems arising from 
oversimplification.  
 
Subsequently, this paper discusses the effects of population dynamics in optimally controlled economic 
growth models, using a generalised Cobb-Douglas aggregate production function of technology, capital, and 
labour. The local stability and controllability of the model(s) built is considered. It also brings to bear the 
concept of maximum sustainable population growth, its impact on economic performance. Furthermore, it 
implements qualitative analyses on the models with respect to their dependence on the system parameters, 
especially the population related ones. It also performs numerical simulations on the models to authenticate 
the theoretical results.  
 

2 Theoretical Preliminaries 
 
2.1 Optimal control theory and the Hamilton-Pontryagin equations 
 
Let � ∈ � ⊆ ��, � ∈ � ⊆ �� and 	 ∈ 
 ⊆ �� respectively denote the state, control, and output variables 
of a system of a continuous time-varying controlled system [12-16], such that 
 �� �� = �����, ���, �, �                            (2.1.1) 

 

and  	�� = �����, ���, �, �.                           (2.1.2) 
 

where � denotes the set of system parameters. Let the objective (welfare) functional, � say, which is a 
function of the control ��� and state ���, just as in [8], be defined by  
                                                      
1 Malthus (1798) states that, high population growth puts a lot of strain on economic performance, the presence of 
technology notwithstanding. 
2  Optimists such as George (1879) believe that through technological innovations and advancement, the earth’s 
capability of containing humans is boundless. 
3 In contrast to these extreme views, Boserup (1965) states that population growth boosts technological growth, which in 
turn enhances economic well-being. Subsequently, as resources begin to run out, an economy is forced to invent its way 
out of the problem. 
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 ���, �� = � �����, ���, ������ , for �� ≥ 0.                       (2.1.3) 
 
Then the control problem reduces to finding the control ��� [8, 12, 13, 14, 16, 17, 18] that maximizes 
 ���, �� = � �����, ���, ������  for �� ≥ 0 
 
subject to �� �� = �����, ���, �, �,  for �� � = � ≥ 0 and ����� = ��� ≥ 0, 
 
for  	�� = �����, ���, �. 
 
Hence, the related Hamiltonian function, !, is thus 
 ! = !����, ���, "��, � = �����, ���, � + "�������, ���, �, �,                       (2.1.4) 
 " is the co-state function. The associated Hamilton-Pontryagin equations [19] are  
 !$ = �$ + "�$ = −"�                               (2.1.5) 

 !& = � = ��                            (2.1.6) 
 !' = �' + "�' = 0                          (2.1.7) 

 

for �� � = � ≥ 0, ����� = ��� ≥ 0 or "���� = (�����, for some ( ≥ 0. 
 

2.2 Linear control problem 
 
Assume �����, ���, �, �  and �����, ���, �  are linear or linearized, with system representation )*��, +��, ,��, ���-. Then the state and output equations [14,20] are respectively 
 �� �� = *����� + +�����                         (2.2.1) 

 	�� = ,����� + ������.                         (2.2.2) 
 

2.3 Stability, controllability and observability conditions 
 
The scalar system in Equation (2.2.1) is stable if and only if *�� < 0, for all  within the defined time 
interval [14,21,22]. [14], for instance, also suggests that the system is controllable within a given time 
interval if for any ��� there exists a control ���. Being controllable suggests the system is stabilizable, 
even if it not completely stable [14,20]. Equally, from [14], the above system is observable if for any output 	�� there exists a state ���. The system is also detectable if it is observable. Additionally, there exit unique 
system solutions if the systems are stabilizable and detectable. 
 

3 Model Development 
 
3.1 Population (labour) growth dynamics 
 

If a population (labour), ���, grows naturally at 0 < / < 1, with a carrying capacity 
12 > 0. Then  

 44� ��� = /51 − 6���7��� = 8����; /, 6�.                       (3.1.1) 

Thus, the equilibria values are, �1 = 0 and �: = 12 > 0. Thus, 8;��1� = / > 0, and hence, �1 is an unstable 

equilibrium value. But 8;��:� = −/ < 0, implies �: is a stable equilibrium. For any initial population �  

such that �1 < � < �: , ��� > 0  and ��� → �:  as  → ∞ , and hence, 0 < ��� < 12 , meaning ���  is 
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bounded for all  ≥ 0, given that 0 < / < 1. Moreover, for any � > �:, ��� declines gradually to �: over 
time. Equation (3.1.1) suggests that when 6 = 0, the dynamics of ��� tends exponential, as noted in [8]. 
Thus ��� bifurcates when 6 = 0. ��� bifurcates again when 6 = 1, as the trajectory tends constant over 
time when 6 = 1, but declines to zero over time when 6 > 1, for all  ≥ 0. Variously stated, �1 and �: are 
respectively a source4, and a sink. 
 
Assuming our starting time  = 0, where the initial value �  is standardized to unity [8], then  
 ��� = >�?@A

1�2>��?@AB1� = ?@A
1�2�?@AB1� = ?@A

�1B2��2?@A ≤ DE�                                     (3.1.2) 

 

        ⟹  
>G���>��� = E�1B2�1�2�?@AB1� = E1� HIJH?@A ≤ /        (3.1.3) 

 

since 6 ≥ 0, 0 < / < 1 and for all  ≥ 0, 1 − 6 + 6DE� = 1 + 6 K/ + EL�L
: + ⋯ N ≥ 1, and DE� ≥ 1.  

 
3.1.1 Sensitivity analysis on population dynamics 
 
From Equation (3.1.2), and as seen in [8], we obtain 
 O>O2 = − 5?@AB17?@A

P1�2�?@AB1�QL < 0                          (3.1.4) 

 

O>OE = �1B2��?@A
P1�2�?@AB1�QL  R> 0            for 0 ≤ 6 < 1= 0                    for 6 = 1< 0                    for 6 > 1W                       (3.1.5) 

 

and  
O>O� = �1B2�E?@A

P1�2�?@AB1�QL  R> 0            for 0 ≤ 6 < 1= 0                    for 6 = 1< 0                    for 6 > 1W .        (3.1.6) 

 
From (3.1.4), ��� is a decreasing function of the parameter 6. Thus as ��� tends logistic, the lower its 
growth, and hence, its numbers in relation to the one which grows exponentially, all things being equal. 
From (3.1.5) and (3.1.6), ��� is an increasing function of /, and of time, , when 0 ≤ 6 < 1. But  ��� is a 
decreasing function of / and  when 6 > 1, and in the extreme, ��� decays down to zero. The greater the 
value of 6, the faster this is. However, ��� is a constant function of / and  when 6 = 1. The referenced 
expressions, as well as (3.1.3), suggest that, for all  > 0, ��� grows the fastest when 6 = 0, that is, when 
the growth dynamics is exponential. Like in [8], Fig. 3.1 and Fig. 3.2 illustrate this. 
 
Generally, underdeveloped (lower income) economies and most developing (lower middle income) 
economies seem to experience exponential population growth, whereas the population growth in developed 
(high income) economies as well as most upper middle income economies is logistic. This can also be 
inferred from [8]. 
 
3.2 Technological growth dynamics 
 
Technology X�� usually enhances labour to make it even more productive. Hence, assuming a generalized 
Cobb-Douglas aggregate production function, a type with physical capital and technology augmented labour, 
that guarantees balanced growth, for simplicity, then we have 
 Y�� = Z�[��, X������ = \[]��PX�����Q1B]                        (3.2.1) 

                                                      
4 Additionally, 8;��1� = / < 0, for all / < 0. Hence, / = 0 is a bifurcation value, and in contrast with the earlier 
discussion, ��� → 0 as  → ∞ when / < 0, for � > 0. 
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Fig. 3.1. Population growth dynamics over time for varying σ values 

 
 

Fig. 3.2. Population dynamics over time for varying σ values 
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⇒  
_� ���_��� = ` a� ���a��� + �1 − `� bc����c��� + >� ���>���d           (3.2.2) 

 

 i.e.,  
c����c��� = 11B] be − `ea − �1 − `� E�1B2�1�2�?@AB1�d                (3.2.3) 

 

for e = Y� /Y, ea = [� /[, and 
E�1B2�1�2�?@AB1� = �� /�. In a balanced growth, e = ea [23,24]. Hence, the modified 

residual technological progress, X��, is defined by 
 c����c��� = e − E�1B2�1�2�?@AB1�.                           (3.2.4)  

 
But from [25] and [26], ��� may be segregated into two additive parts, that is, ��� = �_�� + �c��, where �c (�_) is the labour used in the research (actual production) sector to create new technology or advance 
existing ones. If 0 < g ≤ 1 is the research sector’s average productivity, and 0 < h < 1, the fraction of 

existing technology used to produce new one(s), then for ��c/�c = �� /� = E�1B2�1�2�?@AB1�, the modified research 

and development (modified R & D) technological process, X��, is given by 
 X�� = gXi���c��    ⇒ X1Bi�� = g�c��                      (3.2.5) 
 

 ⇒ c����c��� = jE�1B2��1Bi�P1�2�?@AB1�Q. .           (3.2.6)  
Let X  be the initial value of X. Then by respectively putting X1 , and X: for X in Equations (3.2.4) and 
(3.2.6), each with initial value X  normalised to unity, we obtain 
 X1�� = X P1 + 6�DE� − 1�QD�lBE�� = P1 + 6�DE� − 1�QD�lBE��                      (3.2.7) 
 

and  X:�� = X b ?@A
1�2�?@AB1�d

mIJn = b 1�1B2�?J@A�2d mIJn.        (3.2.8) 

 
Assuming a technological growth dynamics similar to that of � such that it has a natural growth  0 < * < 1 

with a carrying capacity 
1o > 0. Then the logistic form of technology growth, Xp��, is  

 44� Xp�� = *�1 − qXp���Xp��.                          (3.2.9)  It has similar qualitative properties like �:��, spurs higher growth in real per capita GDP when q is very small, greatest when q = 0 �in which growth rate is kept constant at *�, and yields  Xp�� = c�?�A
1�c�o�?�AB1� = 1�1Bo�?J�A�o, for X = 1.                     (3.2.10) 

 
 
 
3.2.1 Sensitivity analysis on technological growth dynamics 
 
From Equation (3.2.7), and for all  > 0, we obtain 
 OcIO� = Pe − /�1 − 6� + �DE� − 1�e6QD�lBE�� > 0                      (3.2.11) 

 OcIO2 = �DE� − 1�D�lBE�� > 0                         (3.2.12) 
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and  
OcIOE = −�1 − 6�D�lBE��  R< 0           for 0 ≤ 6 < 1= 0                   for 6 = 1> 0                   for 6 > 1 W.                      (3.2.13) 

 
Similarly, for all  > 0, and the given domain of h and g, Equation (3.2.8) also gives 
 

OcLOj ≅ �1B2�E�1Bi X:��  R> 0           for 0 ≤ 6 < 1= 0                   for 6 = 1< 0                   for 6 > 1 W                              (3.2.14) 

 

OcLOi ≅ �1B2�Ej�1Bi�L X:��  R> 0           for 0 ≤ 6 < 1= 0                   for 6 = 1< 0                   for 6 > 1 W                     (3.2.15) 

 

OcLOE = 1B21Bi ∙ j�1�2�?@AB1� X:��  R> 0           for 0 ≤ 6 < 1= 0                   for 6 = 1< 0                   for 6 > 1 W                     (3.2.16) 

 

OcLO� = 1B21Bi ∙ jE1�2�?@AB1� X:��  R> 0           for 0 ≤ 6 < 1= 0                   for 6 = 1< 0                   for 6 > 1 W                    (3.2.17) 

 

  and  
OcLO2 = − j1Bi ∙ ?@AB11�2�?@AB1� X:�� < 0.         (3.2.18) 

 
On the other hand, for all  > 0, Equation (3.2.10) gives 
 

Oc�O� = �1Bo��1�o�?�AB1� Xp��  R> 0           for 0 ≤ q < 1= 0                   for q = 1< 0                   for q > 1 W                      (3.2.19) 

 

Oc�O� = �1Bo��P1�o�?�AB1�QL D��  R> 0           for 0 ≤ q < 1= 0                   for q = 1< 0                   for q > 1 W                     (3.2.20)  

 

  and  
Oc�Oo = − 5?�AB17P1�o�?�AB1�QL D�� < 0.         (3.2.21) 

 
Expressions (3.2.11) and (3.2.12) suggest that, for all  > 0, the residual technological process, X1��, is an 
increasing function of time, , as well as the parameter 6. Subsequently, over time, the higher the value of 6, 
the higher the growth prospects ignited by the technological process X1�� in real per capita income, all 
things being equal. Expression (3.2.13) indicates that X1�� is an increasing function of the parameter / only 
when 6 > 1, a condition that has dire consequences for the very sustenance of population. On the other 
hand, X1�� is a decreasing function of the parameter / when 0 ≤ 6 < 1, but a constant function of / when 6 = 1. It is also quite clear from Expressions (3.2.4) and (3.2.7) that X1�� is also an increasing function of e, the growth rate of GDP. Moreover, anytime there is a positive difference between e  and /, that is, e − / > 0, X1�� is likely to ignite growth in real per capita GDP. 
 
With regards to the �  & �  technological process, X:�� , Expressions (3.2.14) to (3.2.17) respectively 
suggest that, for all  > 0 , X:��  is an increasing function of the parameters g , h , /  (unlike in X1�� 
discussed earlier), and time , whenever 0 ≤ 6 < 1. However, X:�� becomes a decreasing function of g, h, / and , when 6 > 1, whereas it is a constant function of g, h, / and , whenever 6 = 1, for all  > 0. 
Expression (3.2.18), on the other hand, suggests that, for all  > 0, X:�� is a decreasing function of 6. 
Hence, as population growth becomes more and more logistic, the � & � technological process becomes 
inimical to real per capita income growth. Consequently, or by inference from Expressions (3.2.14) to 
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(3.2.18), the � & � technological process possibly incites the greatest growth prospects in real per capita 
income when population growth is exponential, that is, when 6 = 0. 
 
Expressions (3.2.19) and (3.2.20) indicate that, for all  > 0, the logistic formulation of technology, Xp��, is 
an increasing function of the parameter *, and time , whenever 0 ≤ q < 1. However, Xp�� is decreasing 
function of * and , when q > 1. On the other hand, Xp�� is a constant function of * and , whenever q =1. But Xp�� is decreasing function of q, for all  > 0, as in (3.2.21). Thus Xp�� is most likely to generate 
the greatest growth in real per capita whenever q = 0, as alluded to earlier. 
 
3.3 Optimal growth model in a closed economy 
 
In an economy in which income, Y��, is either expended on consumption, ���, or investment, ��� [8, 17, 
23, 27-32], we have  
 Y�� = ��� + ���.                          (3.3.1) 

 
Assume the aggregate production function 
 Y�� = Y5[��, X�����7.                         (3.3.2) 
 
From theory, if � is the rate of depreciation of [��, then in simplest form [18, 33], ��� is given by  
 ��� = [� �� + �[��.          (3.3.3) 
 
Now, putting 	� = Y/X�, ,̂ = �/X�, and �� = [/X�, assuming technology grows at a constant rate 0 < * <1, and using the transformations as seen in [8], for simplicity, then  
 ��� �� = ������, ,̂��, � = �5����7 − K* + � + E�1B2�1�2�?@AB1�N ���� − ,̂��                                  (3.3.4) 

  
and  	��� = �5����7.           (3.3.5) 

 
Equations (3.3.4), and (3.3.5) are respectively the state and output equations, ���� is the state variable, ,̂�� 
is the control variable [8, 13, 18, 27, 34, 35, 36]. Using Equation (3.2.1), and the transformations in [8], 
where 0 < ` < 1 share of [ in Y, and \ ≥ 1 the unaccounted for factors in Y, then 
 ��� �� = ������, ,̂��, � = \�� ]�� − K* + � + E�1B2�1�2�?@AB1�N ���� − ,̂��.                      (3.3.6) 
 
Alternatively, if we use the idea that income is either consumed or saved, or that investment is identically 
equal to savings, ���, that is, ��� = ���, and that savings is a fraction of income, then 
 ��� = �Y��              (3.3.7) 
 

 i.e.,  ��� = �1 − ��Y��   ⇒ ,̂�� = �1 − ��	���,            (3.3.8) 
 
where � is the savings rate, or the propensity to save [23]. Thus Equations (3.3.6) and (3.3.5) become 
 ��� �� = \��� ]�� − K* + � + E�1B2�1�2�?@AB1�N ����                        (3.3.9) 

 
and  	��� = \��� ]��.                          (3.3.10) 
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3.3.1 The utility and welfare functional 
 
The utility per head, ���, and welfare functional, ��,̂�, are respectively given by 
 ��� = ��,̂���,                                        (3.3.11) 
 ��,̂� = � ?J��J@��'��̂����1�2�?@�B1� ������ ,  �� ≥  .                                    (3.3.12) 

 
for � − / > 0, �′�,̂��� > 0, �;;�,̂��� < 0 [23, 33, 34, 35] and 0 < � < 1 is discount rate of value. 
 
3.4 Equilibrium and linearization analyses 
 

At the equilibrium, ��� �� = 0, Equation (3.3.9), gives the equilibria values of ���� thus 
 

��?I∗ �� = 0 or ��?L∗ �� = ¢ £¤��¥� @�IJH�I¦H5§@AJI7¨
IIJ©

                        (3.4.1) 

 

The equilibrium value ��?I∗  gives corresponding equilibria values of ,̂�� and 	��� as zero, which are of little 
or no interest. Using ��?L∗ , the equilibria values of 	��� and ,̂�� respectively becomes 
 

	�?∗�� = \ ¢ £¤��¥� @�IJH�I¦H5§@AJI7¨
©IJ©

   and ,?̂∗�� = \�1 − �� ¢ £¤��¥� @�IJH�I¦H5§@AJI7¨
©IJ©

.                     (3.4.2) 

 
Equations (3.4.1) and (3.4.2) suggest that the higher the values of �, \ and ̀ , the greater the equilibrium 
value of ����, and hence, that of 	���, and vice versa. Now, linearizing around the equilibrium, gives 
 	��� ≈ \�1 − `�5��?L∗ 7] + \`5��?L∗ 7]B1���� ≈ «�� + ]¤ b* + � + E�1B2�1�2�?@AB1�d ����                     (3.4.3) 

 ⇒ ¬̂�� ≈ ]¤ K* + � + E�1B2�1�2�?@AB1�N ���� = ������                        (3.4.4) 

 ¬̂�� = 	��� − «��, «�� = �1 − `�	�∗�� and �� = ]¤ K* + � + E�1B2�1�2�?@AB1�N. For ,1̂�� = ,̂�� − «�� 

 ��� �� ≈ K]¤ − 1N K* + � + E�1B2�1�2�?@AB1�N ���� − ,1̂�� = ������, ,̂1��, �.                                   (3.4.5)  
 

3.5 Local controllability observability and stability of the linearized system 
 
Given that for any state ���� in Equation (3.4.5), there exists a control ,̂1��, and hence, ,̂��, that drives the 
system to a desired state. Hence the linearized system is completely controllable, in the neighbourhood of 
the critical value [14]. But given that it is completely controllable, it is also stabilizable. Similarly, from 
Equation (3.4.4), the system is completely observable, and hence, detectable [14].  
The system is asymptotically stable if and only if ` < �. Granted that ̀ < � cannot be guaranteed always, 
our system might not generally be stable. But from Equation (3.3.10), and restated as 
 ��� �� = \��� ]�� − K* + � + E�1B2�1�2�?@AB1�N ���� = �®¯°¯������                                    (3.5.1) 

 
gives the equilibria values ��  and ��?L∗ , as provided in Equation (3.4.1). Similar to the discussions in Section 

3.1, ���� = ��?I∗  is a source, and ���� = ��?L∗  is a sink, since for any initial value ��� �  such that ��?I∗ <



 
 
 

Opuni-Basoa et al.; JAMCS, 25(1): 1-24, 2017; Article no.JAMCS.36753 
 
 
 

10 
 
 

��� � < ��?L∗ , which is in the domain of interest, ���� > 0 for all  ≥ 0, and ���� → ��?L∗  as  → ∞. Thus for 
any ��?I∗ < ��� � < ��?L∗ , ���� is bounded, that is, ��?I∗ < ���� < ��?L∗ . For any initial value ��� � > ��?L∗ , ���� 
decays down to �� ∗ . Hence, the application of higher and higher initial values will lead to less than 
proportionate increase in values of ����. This assertion is underlain by the fact that  
 �®¯°¯; 5��?L∗ 7 = −�1 − `� K* + � + E�1B2�1�2�?@AB1�N < 0                         (3.5.2) 

 

since 1 − ` > 0, and * + � + E�1B2�1�2�?@AB1� > 0, for all  ≥ 0. Hence, ��  is stable in the neighbourhood of the 

equilibrium value ��?L∗  [14, 21, 22]. Hence, ��?L∗  is a sink. But in the rare situation where 6 ≫ 1 such that 6 > ��E�¥EB���¥��?@AB1�, then ��?L∗  is an unstable equilibrium value.  

 
3.6 Sensitivity and bifurcation analyses of the systems 
 
From the above, the trajectory of ����, and hence, ��� and 	��, bifurcates when * + � + E�1B2�1�2�?@AB1� = 0. 

Let the equilibrium trajectories, per labour, of capital and income be �∗�� and 	∗�� respectively, then 
 

�∗�� = ��?L∗ ��X�� = X ¢ £¤��¥� @�IJH�I¦H5§@AJI7¨
IIJ© D��                        (3.6.1) 

  

⇒  �� ∗�� = b* + 11B] ∙ EL�1B2�?@A
���¥�P1�2�?@AB1�Q�E�1B2� ∙ 21�2�?@AB1�d �∗��   R> *,      0 < 6 < 1= *,    for  6 = 0,1< *,       for  6 > 1W       (3.6.2) 

 

 and  	∗�� = 	�?∗��X�� = \ ¢ £¤��¥� @�IJH�I¦H5§@AJI7¨
©IJ© D��      (3.6.3) 

  

⇒  	� ∗�� = b* + ]1B] ∙ EL�1B2�?@A
���¥�P1�2�?@AB1�Q�E�1B2� ∙ 21�2�?@AB1�d 	∗��  R> *,      0 < 6 < 1= *,    for  6 = 0,1< *,       for  6 > 1W.   (3.6.4) 

 \ = X \. The time trajectory of �, and hence, 	, bifurcates whenever / = 0, or * = 0, or 6 = 0, or 6 = 1. 
Invariably, 	 remains constant whenever 6 = 0, 1 and * = 0; decay down to zero when * < 0, for all 6 > 1 
or 6 = 0, 1; and grows up when * > 0, for all 0 < 6 < 1. When * = 0, then the time trajectory of 	 may 
rise, probably marginally, when 0 < 6 < 1; but rises initially, then stay constant when 6 = 0, or fall when 6 > 1. Let ² = * + ]1B] ∙ EL�1B2�2?@A

���¥�P1�2�?@AB1�QL�E�1B2�P1�2�?@AB1�Q, then for all  ≥ 0, 

 
    O³∗

O� = b − ]1B] ∙ 1�25?@AB17���¥�P1�2�?@AB1�Q��1B2�Ed 	∗ > 0                         (3.6.5) 

 

OÓ] = 2�1B]�L ∙ EL�1B2�?@A
���¥�P1�2�?@AB1�QL�E�1B2�P1�2�?@AB1�Q   R> 0,   for 0 < 6 < 1= 0,        for 6 = 0, 1< 0,            for 6 > 1W.                       (3.6.6) 

 
We also have 
 O³∗

O2 = ]1B] ∙ E?@A
���¥�P1�2�?@AB1�Q�E�1B2� ∙ ³∗

P1�2�?@AB1�Q > 0                                       (3.6.7) 
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O³∗
O¤ = 1¤ K ]1B]N 	∗ > 0      and  

O³∗
O£ = 1£ K 11B]N 	∗ > 0          (3.6.8) 

 

O³∗
OE = ]1B] ∙ �1B2�µ¶1��E�B1�?@A·2B1¸P1�2�?@AB1�QP���¥�P1�2�?@AB1�Q��1B2�EQ 	∗  R> 0,             for 0 < 6 < 1= 0,                     for 6 =  1< 0,    for 6 = 0 or 6 > 1W                       (3.6.9) 

 

and  
O³∗
O¥ = − ]1B] ∙ 1�25?@AB17���¥�P1�2�?@AB1�Q��1B2�E 	∗ < 0.      (3.6.10) 

 
From (3.6.5) and Equation (3.6.4), we can conveniently conclude that the higher the value of *, the faster 	 
grows, and hence, * has a positive effect on the time-values of 	. The converse is also true. Equations (3.6.6) 
and (3.6.4) suggest that for all 0 < 6 < 1, higher values of ̀ ignite faster growth in 	∗, and hence, in 	, and 
vice versa. However, whenever 6 = 0 or 6 = 1, the growth effect of ̀ on 	 is kept at zero, and hence, 	 
remains constant, except if there is a positive technical progress, as seen in Equation (3.6.4), in which case 	 
grows over time. When 6 > 1, then higher values of ` is disincentive for growth in 	. Under such instance, 	 may grow or the negative growth slowed down if there exists a positive technical growth rate *, as per 
Equation (3.6.4). For all that it is worth in terms of real per capita income time values, 6 > 1 is a recipe for 
population extinction, and thus, undesirable. 
 
From (3.6.8), �, and hence, \, has a direct positive effect on 	, and the higher each one is, the higher the 
time-values of 	. The division by � suggests that as � becomes higher and higher, the growth potential 
generated diminishes. From Equation (3.4.5), the time trajectory of ��, and by implication, 	, may experience 
the fastest growth, before the attainment of equilibrium, whenever ̀ > �. The highest this difference is the 
greatest the growth potential. This growth, before equilibrium, is negated whenever ` < �, but this may be 
off-set by the developments after the equilibrium, as well as the tendency of establishing higher equilibrium 
value. 
 
However, from (3.6.9), the economy starting from a reference point of a higher value of /  will be 
instrumental for the establishment of higher real per capita income trajectory if the population growth 
dynamics turns logistic, and moreover 0 < 6 < 1. But higher values of / are inimical to the generation of 

higher real per capita income performance when 6 = 0. Although 
O³∗
OE < 0 when 6 > 1, given that higher 

values of 6 ignite higher real per capita GDP time values, per (3.6.7), the negative effect of / herein may be 
eliminated or greatly reduced, except for the distasteful impart of 6 > 1 on population as discussed earlier. 
But / has neutral effect on real per capita GDP growth when 6 = 1. (On the other hand, higher values of �, 
affect the time-values of 	 negatively, as per (3.6.10), most likely due to its effect of establishing lower 
equilibrium value of 	. The converse is similarly true.) 
 
Alternatively, from the above, we define per capita income, 	��, thus 
 	�� = X���������            (3.6.11) 
 ⇒  ³� ���³��� = * + ¹º� ������ º�� ���º� ��� = * + ` º�� ���º� ���                       (3.6.12) 

where ̀ = ¹º� ������ = �GKº� ���Nº� ���
��º� ���� ∈ �0, 1� is the elasticity of the production function �, and measures the 

share of capital in the production mix. But from Equation (3.4.4), we have 
 º�� ���º� ��� = ��º� ����º� ��� − K* + � + E�1B2�1�2�?@AB1�N − �̂���º� ��� = ¤��º� ����º� ��� − K* + � + E�1B2�1�2�?@AB1�N.                    (3.6.13) 

 
Taking first order Taylor’s expansion of Equation (3.6.13), around ��?L∗ , with respect to ln������, then 
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º�� ���º� ��� ≈ 5¹º� 5��?L∗ 7 − 17 K* + � + E�1B2�1�2�?@AB1�N 5ln������ − ln���?L∗ �7                   (3.6.14) 

 

since at the steady state 
¤��º� §L∗ �º� §L∗ = K* + � + E�1B2�1�2�?@AB1�N. Hence, Equation (3.6.14) becomes 

 ³� ���³��� ≈ * − ¹º� ���?L∗ �51 − ¹º� ���?L∗ �7 K* + � + E�1B2�1�2�?@AB1�N 5ln������ − ln���?L∗ �7.                  (3.6.15) 

 
Now, from the steady state analysis, the steady state output or real GDP per capita is 
 	∗�� = �5��?L∗ ��7X�� = 	�?∗��X��.                      (3.6.16)  
 
A first-order Taylor expansion of ln�	∗��� with respect to ln������ in the locality of ln��� ∗� gives 
 ln�	��� − ln�	∗��� ≈ ¹º� ���?L∗ �µln������ − ln���?L∗ �¸.                    (3.6.17) 
 
Putting Equation (3.6.17) into that of (3.6.15) gives 
 ³� ���³��� ≈ * − �1 − `� K* + � + E�1B2�1�2�?@AB1�N Pln�	��� − ln�	∗���Q.                   (3.6.18) 

 

From Equation (3.6.18), the per capita income grows much faster, greater than *, any time per capita income 
is less than the system established equilibrium per capita income, that is, 	�� < 	∗��, since 1 − ` > 0 and * + � + E�1B2�1�2�?@AB1� > 0, for  ≥ 0. It grows at a rate less than the technological progress rate, *, anytime 	�� > 	∗�� , and with or without technological progress, growth in 	��  here may hit the negative 
(occasionally). The growth rate in 	�� is just * whenever 	�� = 	∗��, and zero when * = 0. Thus in the 
absence of technological progress, or if it is negative, growth in 	�� is much less than discussed above. If * < 0, then per capita GDP values may tumble over time. The expression on the right side of Equation 
(3.6.18), excluding the first term, *, is termed the rate of convergence. 

 

3.7 Analysis on maximum sustainable population growth 
 
Just like noted in [8], the factor shares (excluding labour) in the production mix positively influence real per 
capita income performance, whereas depreciation rates and population growth rate do the very opposite. 
Thus the most prudent policy for exiting the Malthusian trap is to pursue measures that enhance 
technological growth, savings rates and marginal products per (effective) labour, lower depreciation rates 
and shares of natural resources in the production mix. In contrast to [37], here the MSPG is rather an 
increasing function of technological growth, marginal products of factors of production (excluding labour) 
and their corresponding rates of savings, but a decreasing function of the factor depreciation rates and 
associated factor shares.   

   

3.8 The Hamilton-Pontryagin equations for the Linearized systems 
 
From Equations (2.3.2) to (2.3.5), and using a logarithmic utility functional, ��,��� = ln ,�� , taking  = 0, for simplicity, the associated Hamilton-Pontryagin equations give 
 

,̂�� = ?J��J@�A
P1�2�?@AB1�Q&���                         (3.8.1) 
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"��� = K1 − ]¤N K* + � + E�1B2�1�2�?@AB1�N "��                          (3.8.2) 

 

 ⇒  ��� �� = K]¤ − 1N K* + � + E�1B2�1�2�?@AB1�N ���� + «�� − ,̂��.     (3.8.3) 

 
 for   ���0� = �� > 0,   ��5��7 = �� �� ≥ 0        (3.8.4) 

 

 and  ¬̂�� ≈ ]¤ K* + � + E�1B2�1�2�?@AB1�N ���� = ������.      (3.8.5)  

 

3.9 Solution of the Hamilton-Pontryagin equations 
 
From Equation (3.8.2), it follows immediately that 

 

"�� = &�P1�2�?@AB1�QKIJ©» N DK1B©» N���E�¥��                        (3.9.1) 

 

⇒  ,̂�� = 1
&�P1�2�?@AB1�Q©» DbK©» B1N���¥��©» EB¼d�          (3.9.2) 

 

 and  ��� �� = K]¤ − 1N K* + � + E�1B2�1�2�?@AB1�N ���� + «�� − ?bK©» JIN��¦½�¦©» @J�dA
&�P1�2�?@AB1�Q©»     (3.9.3) 

 

 ⇒  ���� = P1 + 6�DE� − 1�QK1B©» NDK©»B1N���¥�E�� b�� + ¾�� − 1&� ℎ��d    (3.9.4) 

 

where ℎ�� = � ?J��J@��4�1�2�?@�B1��  and ¾�� = � «���P1 + 6�DE� − 1�QK©» B1NDK1B©» N���¥�E����� .  

 

Putting in the terminal condition gives  
 

"�� = À����
µº� ��Á5��7¸?K©» JIN��¦@¦½��Â��Bº� Â�b1�2�?@Â�B1�dK©» JIN ∙ ?KIJ©» N��¦@¦½��AJÂ��

P1�2�?@AB1�QKIJ©» N .                    (3.9.5) 

    

,̂�� = µº� ��Á5��7¸?K©» JIN��¦@¦½�Â�Bº� Â�b1�2�?@Â�B1�dK©» JIN
À����?��J@�A ∙ ?K©» JIN��¦½¦@��AJÂ��

P1�2�?@AB1�Q©»        (3.9.6) 

 

���� = P1 + 6�DE� − 1�QK1B©» NDK©»B1N���¥�E��Ã��                        (3.9.7) 

 

and  	���= «�� + ��P1 + 6�DE� − 1�QK1B©» NDK©»B1N���¥�E��Ã��       (3.9.8) 
 

where Ã�� = º� �KÀ5��7BÀ���N�À5��7Á���BÁ5��7À����º� Â�b1�2K?@Â�B1NdK©» JIN?KIJ©» N��¦@¦½�Â�À���
À���� . 
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Hence, if X  is the initial value of X��, then from our substitutions, we recover  
 

,�� = c�Äµº� ��Á5��7¸?K©» JIN��¦@¦½�Â�Bº� Â�b1�2�?@Â�B1�dK©» JINÅ
À����?��J@J��A ∙ ?K©» JIN��¦½¦@��AJÂ��

P1�2�?@AB1�Q©»                                    (3.9.9) 

    

��� = X P1 + 6�DE� − 1�QK1B©» NDbK©» B1N�¥�E��©» �d�Ã��                                   (3.9.10) 

 

and 	�� = X b«�� + ��P1 + 6�DE� − 1�QK1B©» NDK©» B1N���¥�E��Ã��d D��.     (3.9.11) 

 

However, whenever equilibrium is reached, the trajectory of 	 assumes the form defined in Equation (3.6.5) 
thereafter. The trajectories of , and � follow similar traits. 
 

Using technological processes defined by X1�� or X:�� or Xp��, we obtain similar sets of trajectories for ,��, ���, and 	��, similar in structure to those in Equations (3.9.9) to (3.9.11), except for some few 
details. Let 	Æ�� be the counterpart trajectory for 	�� in respect of XÆ��, for Ç = 1, 2, 3, then 
 

	1�� = b«1�� + 1��DK©» B1N���¥�E��Ã1��d X1��                                   (3.9.12) 

 

	:�� = Ê«:�� + :��P1 + 6�DE� − 1�QK1B©» NKI¦mJnIJn NDK©» B1NK¥�EI¦mJnIJn N�Ã:��Ë X:��                   (3.9.13) 

 

	p�� = b«p�� + p��P)1 + q�D�� − 1�-)1 + 6�DE� − 1�-QK1B©» NDK©» B1N���¥�E��Ãp��d Xp��           (3.9.14) 

 

«1�� = \�1 − `� K £¤¥�lN ©IJ©, «:�� = \�1 − `� ¢ £¤¥�I¦mJnIJn ∙ @�IJH�I¦H5§@AJI7¨
©IJ©

, 

«p�� = \�1 − `� ¢ £¤¥� ��IJÌ�I¦Ì5§�AJI7� @�IJH�I¦H5§@AJI7
¨

©IJ©
,  

 1�� = ]¤ �� + e�, :�� = ]¤ K� + 1�jBi1Bi ∙ E�1B2�1�2�?@AB1�N , p�� = ]¤ K� + ��1Bo�1�o�?�AB1� + E�1B2�1�2�?@AB1�N 

Ã1�� = º� �KÀ5��7BÀ���N�À5��7ÁI���BÁI5��7À����º� Â�?KIJ©» N�½¦Í�Â�À���
À���� , ¾1�� = 1B]¤B] K £¤¥�lN IIJ© KDK1B©» N�¥�l�� − 1N 

 

Ã:�� = �� Kℎ5��7 − ℎ��N + ℎ5��7¾:�� − ¾:5��7ℎ�� + ����P1 + 6�DE�� − 1�QK©»B1NKI¦mJnIJn NDK1B©»NK¥�EI¦mJnIJn N�� ℎ��ℎ����  

Ãp��
= �� Kℎ5��7 − ℎ��N + ℎ5��7¾p�� − ¾p5��7ℎ�� + ����P)1 + q�D��� − 1�-)1 + 6�DE�� − 1�-QK©» B1NDK1B©»N���¥�E���ℎ��ℎ����  

 ¾:�� = � «:���P1 + 6�DE� − 1�QK©» B1NKI¦mJnIJn N��� DK1B©» NK¥�EI¦mJnIJn N���  

¾p�� = � «p���P)1 + q�D�� − 1�-)1 + 6�DE� − 1�-QK©» B1N�� DK1B©» N���¥�E����.  
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In each case, the equilibrium trajectory of 	Æ��, for Ç = 1, 2, 3, is given by 
 	Æ∗�� = 11B] «Æ��XÆ��.                              (3.9.15) 
 

4 Discussion 
 
4.1 Models with constant technological growth 
 
From the above, it is obvious that the equilibrium value of real per capita GDP, 	��, is higher in a system 
with logistic labour growth (6 > 0� than one in which labour growth is exponential (6 = 0�. Equally, as per 
the sensitivity and numerical simulations, it is evident that the former economy grows faster, and given that 
it generates higher equilibrium, establishes higher time-values of 	��  than the latter, for any set of 

parameter values. That is, for all  ≥ 0, 
O³O2 > 0. All the simulation plots, especially Fig. 4.1 and Fig. 4.2, 

confirm this. The population dynamics is indicative of these conclusions. (Data used has been sourced from 
[38], but the analysis stops short of linking up to the actual economies, especially as simulations are 
performed on these parameter values to check for qualitative changes.5)   
 

 
 
Fig. 4.1. Real per capita GDP trajectories for varying values of Î (With Tech) 

                                                      
5 For any clearly defined bundle of trajectories, the lower trajectory depicts the case where 6 = 0 (population growing 
exponentially), with increasingly higher trajectories as 6 steadily becomes higher (population progressively becomes 
logistic). From one bundle of trajectories to another which is higher shows the application of increasing value of a 
parameter (besides 6) on which the simulation is being carried out. This does not happen when R & D technology is at 
play. 
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Fig. 4.2. Real per capita GDP trajectories for varying values of Î (No Tech) 
 

 
 

Fig. 4.3. Real per capita GDP trajectories for varying values of Î and Ï (With Tech) 
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Like noted in [8], the results suggest 
O³O� > 0, and that higher values of * excite higher time-performance in 	��, and vice versa. All the simulation plots, especially Fig. 4.9, re-enforce this finding. The trajectory of 	�� takes a nose-dive when * < 0.6 The real per capita income trajectory, 	��, rises gently over time, 

almost flat, whenever * = 0, and 0 < 6 < 1, but declines asymptotically when 6 > 1. But 	�� is either 
completely flat or it may initially rise and thereafter flatten up, when * = 0, and 6 = 0.  
 

 
 

Fig. 4.4. Real per capita GDP trajectories for varying values of Î and Ï (No Tech) 
 

Similarly, it can be inferred that 
O³O] > 0, whenever 0 < 6 < 1, but 

O³O] < 0 when 6 > 1, and 
O³O] = 0 when 6 = 0, 1. Fig. 4.3 and Fig. 4.4 above, as well as Fig. 4.6 and Fig. 4.7 below, lend a lot of credence to this. It 

can also be confirm that 
O³O¤ > 0. Fig. 4.5 and Fig. 4.6 beneath attest to this. (This is also true in respect of \. 

Also, 
O³Oº� � = 0, confirming the fact that �� tends to a finite limit, ��?L, for any �� > 0.) Nonetheless, the growth 

potential in 	�� arising out of ̀  naturally surpasses that of �. 

                                                      
6 In the referenced plots above, unless otherwise stated, we have largely used \ = 150 , ` = 0.33, � = 0.285, * =0.035, / = 0.02, �� = 600, 
 � = 0.045, � = 0.05, X = 1, g = 0.8, h = 0.6, e = 0.042 and q = 0.05. 

 6 = 0 the population (labour) grows exponentially at its natural growth rate / over time. 6 = 1 the population (labour) will be static and not growing at all or growing at a 0.00% over time. 6 > 1 the population (labour) will be declining or growing at a negative rate over time. 0 < 6 < 1 the population (labour) will be growing but at a reducing rate over time. 

For 6 > 0, the population growth dynamics is logistic. We assume that the natural growth rate of population, /, is 0 < / < 1. 
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Fig. 4.5. Real per capita GDP trajectories for varying values of Î and Ô (With Tech) 
 

 
 

Fig. 4.6. Real per capita GDP trajectories for varying values of Î, Ï and Ô (With Tech) 
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Fig. 4.7. Real per capita GDP trajectories for varying values of Î, Ï and Õ 
 

 
 

Fig. 4.8. Real per capita GDP trajectories for varying values of Î and Ö (With Tech) 
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It can be confirmed that 
O³OE < 0, for all  ≥ 0, when 6 = 0 or 6 > 1. Similarly, 

O³OE > 0 when 0 < 6 < 1, 

whereas 
O³OE = 0 whenever 6 = 1. Fig. 4.8 attest to these. (From the simulations and Equations (3.6.10), 

(3.6.6) and confirms that 
O³O¥ < 0, for all  ≥ 0. Unlike in [8], however, 

O³O¼ = 0.) 

 

 
 

Fig. 4.9. Real per capita GDP trajectories for varying values of Î and Õ 
 

4.2 Systems with non-constant technological growth dynamics 
 
The contrast between these technological processes and the other with constant growth is that either the 
associated population growth here is non-constant or the technological growth dynamics itself is logistic. 
Here, the effects of � and ̀  (as well as those of \, �� , � and �) are largely the same as discussed earlier. As 
suspected earlier in Section 3.2, the lower the value of /, the higher the growth prospects, and hence, the 
time-performance of 	�� in the system with residual technological progress, X1��, and vice versa. This is 
similarly true in respect of systems underpinned by logistic technological process, Xp��,7 except that the 
negative effect here is far less than in the former, all things being equal. The reverse is the truth when the 
technological process is premised on the R & D phenomenon, X:��.  
 

Unlike in the simplistic form in which technological growth is constant, in systems underlain by R & D, the 
performance of 	�� is highest when 6 = 0, and drastically slows down when 6 > 0. The growth prospects 
in 	�� here is much enhanced for higher values of g and h, especially the latter. However, the effect of 6 
on systems with technological processes X1�� and Xp�� is similar in nature to its effect on the systems with 
constant technological growth. But the system with the technological process Xp�� generates the highest 
time-trajectory of 	��  when q = 0 , worsening with increasing values of q . This highest growth rate 
generated by Xp�� is at a constant level *, same as used in the original models. Fig. 4.10 and Fig. 4.11 
below shows the effects of XÆ�� on the performance of 	��. 
 

In systems with technological process X1��, 	�� grows much faster at a constant rate e, when / = 0 or 6 = 1, and much more (no longer constant) when 6 > 0 and 0 < / < 1, except that 6 > 1 is not desirable 
for population sustenance. Anytime e − / > 0, the time-performance of 	�� is good.   

                                                      
7 The logistic technological process is indicated in the plot as L’Tech. 
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Fig. 4.10. Real per capita GDP trajectories for various Tech processes and Î values 
 

 
 

Fig. 4.11. Real per capita GDP trajectories for various Î values Under R & D Tech process 
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5 Conclusion 
 
The models constructed in the foregoing are generally stable, each in the neighbourhood of its non-trivial 
equilibrium value, whenever 0 ≤ 6 ≤ 1 . They are each locally controllable and observable, and thus, 
stabilizable and detectable. Consequently, the models’ solutions are feasible and reachable, and most 
importantly, bounded inputs always generate bounded outputs. Thus as expected, their predictions are 
plausible and realistic. 
 
Furthermore, it is also found from the comparative analyses of the results that: 
 

1) Under the framework of R & D technology, economies with exponential population growth 
consistently perform better than those with logistic population growth.8  

2) In contrast to the above, it is also clear that, under other sets of conditions, excluding the R & D 
technological process, economies with exponential population growth consistently perform worse 
than those underpinned by logistic population growth.  

3) Higher technological growth is also found to be an excellent tool for rapid economic growth, and 
with this, it is clear from the simulation graphs that a lower income economy, over a time, can 
surpass that of a higher income economy whose technological growth is much less. 

4) The population dynamics parameter, 6, largely dictates, how most of the other parameters, and the 
technological processes, impact on the time-performance of real per capita income. 

5) Given the caveat on 6, its tolerable domain is 0 ≤ 6 ≤ 1. The border line value 6 = 1 may not be 
advisable given the caution on 6. 

6) But 6 = 0 is appropriate for high time-performance of real per capita income if and only if the R & 
D technology is in place. 

7) However, 6 = 1 is ideal when the modified residual technological process is rather in place. 
8) Generally, 0 < 6 ≤ 1 is preferable for high time-performance of real per capita income, except 

with the residual technology where 
O³OE < 0, whenever 0 ≤ 6 < 1. 

9) Additionally, programmes that enhance technology, savings and marginal products of the various 
factors of production, per (effective) labour, whilst ensuring lower factor depreciation rates, and 
minimal shares of natural resource-based factors in the aggregate production function, help exit the 
Malthusian trap, if it exists, or postpone indefinitely. 
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