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Abstract 
 

Accelerated life testing or partially accelerated life testing is generally used in manufacturing industries 
since it affords significant minimization in the cost and test time. In this paper, a step-stress partially 
accelerated life test under progressive type-II censoring with random removals is considered. The lifetime 
of testing items under use condition follow the exponentiated Pareto distribution and the removals from 
the test are assumed to have binomial distribution. Maximum likelihood estimators for the model 
parameters and acceleration factor are obtained. Approximate confidence intervals for the parameters are 
formed via the normal approximation to the asymptotic distribution of maximum likelihood estimators. 
Simulation study is carried out to investigate the performance of estimators for different parameters 
values and sample size. 
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ACRONYMS AND NOTATIONS 
 
ALTs      : Accelerated life tests  
CP         : Coverage probability       
EP          : Exponentiated Pareto 
MLE     : Maximum likelihood estimate/estimator 
MSE    : Mean square error 
PALTs    : Partially accelerated life tests 
SS-PALT  : Step stress-partially accelerated life test 
RB            : Relative bias 

i
x            : Observed lifetime of unit i tested under SS-PALT 

      : Stress change time 

1 2,
i iu u   : Indicator functions: 

1 2( ), ( )
i i i iu I x u I x       

1 2,m m  : Number of units failed at normal use and accelerated conditions respectively 

m           : Total number of units failed under SS-PALT 
1 2( )m m m   

I(A)    : State function which equals 1 if the A is true and 0 if not. 
 

1 Introduction  
 
Recent developments in technological areas lead to highly reliability products with very long lifetimes. 
When testing the life of these products under normal operating conditions, the result gives no or very little 
failure by the end of the test. So, the accelerated life tests (ALTs) or partially accelerated life tests (PALTs) 
are preferred to be applied to obtain information on the life of the products shortly and rapid. If all test items 
are subjected to higher than usual stress levels, then the test is called ALT. While, in PALTs items are tested 
at both accelerated and use conditions. The information data collected from the test executed in the ALTs or 
PALTs are used to estimate failure behavior of the items at normal use conditions. Nelson [1] indicated that 
the stress can be applied in various ways. The constant-stress PALTs and step-stress PALTs (SS-PALTs) are 
the commonly used methods. In SS-PALTs, a test item is first run at normal (use) condition and, if it does 
not fail for a specified time, then it is run at accelerated condition until the test terminates. In constant-stress 
PALTs each item is run at constant high stress until either failure occurs or the test is terminated.   
 

In many life tests and reliability studies, the experimenter may not always obtain complete information on 
failure times for all experimental units. Data obtained from such experiments are called censored data. The 
most common censoring schemes are type-I censoring and type-II censoring. These two censoring schemes 
do not have the flexibility of allowing removal of units at points other than the terminal point of the 
experiment. Progressive censoring is a more general censoring scheme which allows the units to be removed 
from the test (Balakrishnan and Aggarwala [2]).  
 

Progressive type-II censoring scheme can be described as follows. Consider an experiment in which � 
independent and identically units are placed on a life test and m failure are going to be observed. When the 

first failure occurs, say at time (1)t , 1r  of units are randomly removed from the remaining �−1 surviving 

units. The test continues until the �th failure occurs at which time, all the remaining surviving units 

1 2 1
...

m m
r n m r r r


       are all removed from the test. Note that, in this scheme, 

1 2, ,..., mr r r
are all prefixed. However, in some practical situations, these numbers may occur at random. For example, 
Yuen and Tse [3] pointed out that the number of patients that withdraw from a clinical test at each stage is 
random and cannot be prefixed. Therefore, the statistical inference on lifetime distributions under 
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progressive type II censoring with random removals has been studied by various authors, for instance;  Wu 
et al. [4], Yan et al. [5], Tse  et al. [6], and Dey and Dey [7]. 
 

Specifically, PALTs were studied under type-I and type-II censoring schemes by several authors; for 
example, see Goel [8] DeGroot and Goel [9], Bhattacharyya and Soejoeti [10], Bai and Chung [11], Abdel-
Ghani [12],  Abd-Elfattah et al. [13], Aly and Ismail [14], Hassan and Thobety [15]. Works for PALTs have 
been studied under progressive censoring, for instance; Ismail and Sarhan [16], Srivastava and Mittal [17], 
and Mohie EL-Din et al. [18]. 
 
The Pareto distribution is the most popular model for analyzing skewed data. The Pareto distribution was 
originally proposed to model the unequal distribution of wealth since it was observed the way that a larger 
portion of the wealth of any society is owned by a smaller percentage of the people. Ever since, it plays an 
important role in analyzing a wide range of real-world situations, not only in the field of economics. 
Examples of approximately Pareto distributed phenomena may be found in sizes of sand particles and 
clusters of Bose-Einstein condensate close to absolute zero. Exponentiated Pareto distribution has been 
received the greatest attention from theoretical and applied statisticians primarily due to its use in reliability 
and life testing studies since it has decreasing and upside-down bathtub shaped failure rates. It is considered 
to be useful for modeling and analyzing the life time data in medical and biological sciences, engineering, 
etc. A new two-parameter distribution, called the exponentiated Pareto (EP) distribution has been introduced 
by Gupta et al. [19]. The EP distribution can be defined by raising the distribution function of a Pareto 
distribution to a positive power. The probability density function of EP distribution, with two shape 

parameters  and  , is given by: 
 

 
 

The survival function of the EP distribution is as follows  
 

 
 

In this paper, the progressively type-II censored sampling with binomial removals data is used to obtain the 
point and approximate confidence interval estimates of the EP parameters in SS-PALTs. The paper can be 
arranged as follows. A description of the model, test procedure, and its assumptions are presented in Section 
2. In Section 3, the maximum likelihood estimates of the model parameters are provided in Section 3. 
Approximate confidence interval estimates of the model parameters are derived in Section 4. Simulation 
study is performed to illustrate theoretical results in Section 5. Some concluding remarks are summarized at 
last section.   
 

2 Model and Test Procedure  
 
The following assumptions of SS-PALT are considered: 
  

1. n  identical and independent units are put on the life under used condition and the lifetime of each 
testing unit has the EP distribution.  

2. The test is terminated at the mth failure, where m is prefixed m n . 
3. Each of the n units is first run under normal use condition. If it does not fail or remove from the 

test by a pre-specified time  , it is put under accelerated condition.  

4. At the ith failure a random number of the surviving units, 
i

r , 1,2,..., 1i m   are randomly 

selected and removed from the test. Finally, at the mth failure the remaining surviving units

 are all removed from the test and the test is terminated.  

   
1( 1)

( ) 1 1 1 , , , 0 (1)f t t t t
 

  
       

 

 ( ) 1 1 1 . (2)S t t
    

 

1

1
m

m

i
i

R n m R
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5. Suppose that an individual unit being removed from the test is independent of the others but with 
the same removal probability .p  Then, the number of units removed at each failure time follows a 

binomial distribution. That is, 
1

~ ( , )bino n mR p  and for 2,3,..., 1i m  ,  

1

~ ( , )
m

i

i

i
bino n m r pR



   and 
1 2 1

...
m m

r n m r r r


        

6. The lifetime, say ,X  of a unit under SS-PALT can be rewritten as 

 

 

where, T  is the lifetime of an item at normal condition, and   is the acceleration factor. Thus, from the 

assumptions, the probability density function (3) of a total lifetime of test item takes the following form  
 

 
 

3 Parameters Estimation 
 
In this section, the maximum likelihood estimators of the model parameters;  ,   and   are                  

obtained in  step-stress PALT based on the progressively type II censored data with binomial removal.                 
We assume that the number of units removed from the test at each failure time follows a binomial 
distribution.  
 

Let
1 2( , , , ),i i i ix r u u 1,2,...,i m , be the observed values of lifetime X obtained from a progressively 

type-II censored sample under a step-stress PALT. Hence, for the progressive censoring with the pre 

determined number of the removals
1 1 2 2 1 1( , ,... ),m mR R r R r R r      the conditional likelihood 

function of the observations 
1 2{( , , , ), 1,2,..., }i i i ix x r u u i m  can be defined as follows  

 

 

 
where, 
 

 
 

Inserting the probability density functions 1 2( ), ( )f x f x  defined in (3) and their corresponding survival 

functions  in (5), then we have 

   

   

1( 1)

1

1( 1)

2

( ) 1 1 1 , 0
( ) (4)

( ) 1 ( 1 1 ( ) ,

f x x x x
f x

f x x x x

 

 

 

       

  

  

         
 

          
 

     1 2

1 1 2 1 1 2 2
1

( , , , , , ) ( ) ( ) ( ) ( ) , (5)
i i

i i

m u u
r r

i i i i i i i
i

L x u u R r f x S x f x S x  


 

   1 2( ) 1 1 1 , ( ) 1 1 1 ( ) .S x x S x x
  

  
             

   

(3)

T if T

X T
if T
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The number of units removed at each failure time assumed to follow a binomial distribution with the 
following probability mass function  
 

 

 

While, for 2,3,..., 1i m   

 

           

            

Moreover, suppose that 
i

R  is independent of 
i

X  for all .i  Hence the likelihood function can be expressed as 

follows  
 

 

 
Where 
 

 

 
That is, 
 

 

 

The natural logarithm of the conditional likelihood function, denoted by, 1ln L , can be obtained from (6) as 

follows  
 

 

     

     

1

2

1( 1)

1 1 2
1

1( 1)

( , , , , , ) 1 1 1 1 1 1

1 ( 1 1 ( ) 1 1 1 ( ) .(6)

i
i

i
i

urm

i i i
i

ur

L x u u R r x x x

x x x

   

   

   

         

   



   

                   
                       



1 1

1 1

1

( ) (1 ) .r n m r
n m

P R r p p
r

 
 

   
 

1

1

11 1 1 1( ,..., ) (1 ) .

i

i

ji

i
n m r

j r
ii i i i

i

n m r
P R r R r R r p p

r




 

 

        
 
 
 



1 1 2( , , , , ) ( , , , , , ) ( ), (7)i i i iL x p L x u u R r P R r       

1 1 2 2 1 1 1 1 2 2 1 1

2 2 3 3 1 1 2 2 1 1 1 1

( ) ( , ,..., ) ( ,..., )
( ,..., ) ... ( ) ( ).

m m m m m m

m m m m

P R r P R r R r R r P R r R r R r
P R r R r R r P R r R r P R r

     

   

         
      

1 1

1 1

( 1)( ) ( )

11

1 1

( )!
( ) (1 ) ,

( )!

m m

i i

i i

r m n m m i r

mm

i i
i i

n m
P R r p p

n m r r

 

 

   



 

 
  

   

1 1

1 2 2 2

1 2
1 1

1 1 1 1

ln ln ln ln ( 1) ln(1 ) ln[1 (1 ) ]

( 1) ln ( 1) ln(1 ) ln(1 (1 ) ) ( 1) ln ,

m m
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i i

m m m m

i i i i i
i i i i

L m m m D r D
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where, 

1 2

1 2
1 1

m m

i i
i i

m u u
 

       and 
       

 1 ( )i iH x       

 

Since ( )P R r  does not involve the parameters;  ,   and  , so the maximum likelihood estimators, 

ˆˆ ,  ,  and ̂ , can be obtained by maximizing 1ln L directly. Hence, the maximum likelihood estimates 

(MLEs) of  ,  and   can be obtained by solving the following non-linear equations 

 

                        

 
 

        

                                           
The maximum likelihood estimators of the model parameters

 
are determined by setting 

  to be zero. These equations cannot be solved analytically and statistical software 

can be used to solve them numerically via iterative technique.  
 

Similarly, since 1 1 2( , , , , , | )i i iL x u u R r    does not involve the binomial parameter ,p  the 

MLE of p can be derived by maximizing (6) directly. Hence the MLE of p is obtained by solving the 

following equation 
 

 

 

Hence,  
 

  

 1i iD x 

1 2 1 2

1

1 1 1 1

ln ln(1 ) ln(1 )
ln(1 ) ln(1 ) ,

[(1 ) 1] ((1 ) 1)

m m m m
i i i i

i i
i i i ii i
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D H

D H
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L m D r D D D
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4 Approximate Confidence Interval  
 
The most common method to set confidence bounds for the parameters is to use the asymptotic normal 
distribution of the MLEs (see VanderWiel and Meeker [20]).  The asymptotic variances and covariance 
matrix of the MLE of the parameters can be approximated by numerically inverting the asymptotic Fisher-

information matrix F . It is composed of the negative second and mixed derivatives of the natural logarithm 
of the likelihood function evaluated at the MLE. The asymptotic Fisher information matrix F can be written 
as follows 
 

 

 

The second and mixed partial derivatives of the natural logarithm of likelihood function with respect to 

,   and   are obtained as follows 
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In relation to the asymptotic variance-covariance matrix of the maximum likelihood estimators of the 

parameters, it can be approximated by numerically inverting the above Fisher's information matrix .F  

Thus, the approximate 100(1 )%  and two sided confidence intervals for ,   and  can be, 

respectively, easily obtained by 

 

 ,     ,    

                                                                          

where, z  is the
100(1 )

2

th
 

  
standard normal percentile and (.)  is the standard deviation for the 

maximum likelihood estimates. 

 

5 Simulation Study  

 
In this section, a simulation study is performed to examine the performance of the parameter estimates and 
the influence of the available information from the progressively censored data on these estimates. The 
performance of estimators has been considered in terms of their relative bias (RB), mean square error (MSE) 

and coverage probability (CP). For different choices of �, �, p and ,iR � = 1, 2, ..., �; the results are 

concluded in Tables 1, 2 and 3. A simulation study is performed according to the following steps:  

 

1. The value of n and m is specified.  

2. Three selected set of parameters are considered as; set ( 1.5, 1.2, 0.5)I        set 

( 1.5, 3, 1.5)II        and set ( 1.5, 3, 0.5)III       . Three levels of p are 

selected as 0.4, 0.6 and 0.8. Assuming that the value of   equals 7 throughout all experiments.  
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3. Generate a random sample with size 

�, from the random variable 

4. Generate a group value random number

1 2 1m m
r n m r r r     

5. The MLEs of the model parameters are computed for sample sizes 

6. Compute the values of relative biases, mean square errors and the coverage rate of the 
confidence interval of MLE of the parameters numerically for each sample size.

7. The above steps are repeated 1000 times for different values of 

8. The simulation results are listed in Tables 1 to 3 and represented through some figures

 

i.  From the results shown in Tables 1 
the parameter estimates decrease as the sample size increases.

ii.  For set I, the MSEs of ̂

MSEs of ̂  and ̂  have the smallest values at p=0.6 for different m and n (see for example Figs

1 and 2).  

iii.  For set III, the MSEs of ̂

the MSE of ̂   has the smallest values at p=0.4 for different m and n (see for example Figs

and 4).  

iv.  For set II, the MSEs of ̂
(see for example Fig. 5).  

v.  As seen from the Tables 1
0.95% for different n, m and selected set of parameters. 

 

 
 

 

Fig. 1. MSE of ̂  for set I for different values 
of p at sample sizes n=100 

and 150 
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Generate a random sample with size n and censoring size m with random removals R

, from the random variable X given by (4).  

Generate a group value random number
1

~ ( , )
m

j

j

i
bino n m r pR



  and 

1 2 1
...

m m
r n m r r r


      . 

The MLEs of the model parameters are computed for sample sizes n= 50, 75, 100, and150. 

Compute the values of relative biases, mean square errors and the coverage rate of the 
confidence interval of MLE of the parameters numerically for each sample size. 

The above steps are repeated 1000 times for different values of n, m, 
i

R  � = 1, 2, ..., �

The simulation results are listed in Tables 1 to 3 and represented through some figures

From the results shown in Tables 1 - 3, one can observe that the relative biases and the MSEs
the parameter estimates decrease as the sample size increases. 

̂  have the smallest values at p=0.8 for different m and n, while the 

have the smallest values at p=0.6 for different m and n (see for example Figs

̂  and̂  have the smallest values at p=0.6 for different m and n, while 

has the smallest values at p=0.4 for different m and n (see for example Figs

̂ ,  ̂ and ̂ have the smallest values at p=0.4 for different m and n, 

 

Tables 1-3, the coverage probabilities are close to the nominal confidence l
0.95% for different n, m and selected set of parameters.  

 

for set I for different values 
of p at sample sizes n=100  

 

Fig. 2. MSE of ̂  for set I for different values 
of p at sample sizes n=100 
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i
R , � = 1, 2, ..., 

= 50, 75, 100, and150.  

Compute the values of relative biases, mean square errors and the coverage rate of the 95% 

�, and p. 

The simulation results are listed in Tables 1 to 3 and represented through some figures. 

3, one can observe that the relative biases and the MSEs of 

have the smallest values at p=0.8 for different m and n, while the 
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Table 1. Relative bias, mean square error and coverage probability for set ( 1.5, 1.2, 0.5)I        

 
 P=0.4 P=0.6 P=0.8 

RB MSE CP RB MSE CP RB MSE CP 
n=50 m=20 α -0.36584 0.470873 1 0.257643 0.622268 0.995 0.315152 0.462891 0.9925 

β 2.058367 8.96585 0.9975 2.589204 7.82268 0.99 1.80752 6.334238 0.9925 
θ -0.65677 1.11526 1 0.81565 0.253836 0.9975 0.703428 0.424852 0.9975 

n=50 m=30 α -0.34593 0.443213 0.995 0.248641 0.591796 0.99 0.304162 0.43105 0.995 
β 1.812186 8.5526 0.9975 2.317242 7.392273 0.995 1.711599 5.905246 0.9875 
θ -0.61194 1.026 0.995 0.787201 0.251647 0.99 0.697659 0.421494 0.99 

n=50 m=40 α -0.29986 0.404714 0.9975 0.230459 0.596698 1 0.285065 0.433268 0.99 
β 1.582549 8.127966 0.9875 1.934896 6.905664 0.9925 1.706332 5.636779 0.9875 
θ -0.53155 0.99599 0.995 0.874282 0.251056 0.9875 0.935538 0.42028 0.9975 

n=75 m=20 α -0.14493 0.441182 1 0.225889 0.544343 1 0.291654 0.39424 0.995 
β 1.830523 8.014031 0.9975 2.0502 6.362951 0.995 1.593127 5.423162 0.9975 
θ -0.6572 0.99139 0.9975 0.876078 0.227749 1 0.863305 0.37745 1 

n=75 m=50 α -0.36411 0.43256 0.9975 0.255503 0.54188 0.99 0.344289 0.396933 0.9875 
β 2.398017 6.011121 0.9875 2.170691 4.991654 1 1.850099 4.753422 0.995 
θ -0.71927 0.937114 0.995 0.823148 0.098317 0.9975 0.646523 0.120882 0.995 

n=75 m=70 α -0.34776 0.431113 0.985 0.244038 0.644473 0.99 0.325547 0.439897 0.995 
β 2.325195 5.644994 1 2.053912 4.897775 0.995 1.719185 4.650491 0.995 
θ -0.6665 0.867901 0.985 0.750672 0.090373 0.9925 0.55696 0.111293 1 

n=100 m=20 α -0.01985 0.422563 0.9975 0.231416 0.643355 1 0.31757 0.439181 0.995 
β 1.793146 6.26963 0.9825 1.746095 4.499268 0.9875 1.59607 4.574203 0.985 
θ -0.46352 0.851032 0.9975 0.890247 0.089337 0.9975 0.550567 0.108948 0.9975 

n=100 m=50 α -0.01697 0.41156 1 0.203816 0.63013 0.9925 0.277345 0.428551 0.9975 
β 1.660347 5.935514 0.98 1.681772 4.051209 0.99 1.576908 3.98056 1 
θ -0.39353 0.816596 1 0.808374 0.080527 0.995 0.487173 0.096466 0.995 

n=100 m=70 α 0.006452 0.40239 0.9875 0.137432 0.615122 0.99 0.221015 0.424595 0.995 
β 1.674137 5.939133 1 1.649779 4.02792 0.99 1.561328 4.231271 0.9875 
θ -0.35136 0.781813 0.995 0.823111 0.070576 0.995 0.518569 0.084215 0.985 

n=100 m=90 α -0.13906 0.40025 1 0.126759 0.554054 1 0.200533 0.383337 0.9875 
β 2.010123 5.65996 0.9875 1.616122 4.388505 0.995 1.542001 4.63472 1 
θ -1.16627 0.722694 0.98 0.817767 0.084936 0.9925 0.489233 0.11312 1 
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 P=0.4 P=0.6 P=0.8 
RB MSE CP RB MSE CP RB MSE CP 

n=150 m=20 α -0.38613 0.395632 1 0.162184 0.54729 1 0.262008 0.343217 1 
β 1.61644 4.596727 0.9925 1.762585 3.982524 0.9975 1.45078 4.305654 0.9975 
θ -1.14427 0.709742 0.9975 0.940723 0.062229 1 0.69313 0.086997 0.9975 

n=150 m=50 α -0.29493 0.357698 0.9925 0.153731 0.540267 0.9975 0.248161 0.363045 0.9925 
β 1.43557 4.282914 0.9975 1.584315 3.84409 0.9975 1.338698 4.248263 0.9875 
θ -0.99092 0.596428 1 0.726195 0.059019 0.995 0.731186 0.081842 0.9875 

n=150 m=100 α -0.33186 0.302878 0.9925 0.142419 0.451148 0.9975 0.264684 0.28105 0.9975 
β 1.475529 3.747086 1 1.832497 3.25632 0.9975 1.353053 4.02589 0.995 
θ -0.97294 0.57978 0.9975 0.668818 0.055027 0.9925 0.661044 0.07536 1 

n=150 m=140 α -0.33612 0.283574 1 0.088666 0.444267 0.9925 0.143085 0.276758 1 
β 1.353553 3.599838 0.99 1.644942 2.9998 0.995 1.429233 3.99856 1 
θ -0.96232 0.540338 1 0.66027 0.049757 0.99 0.65007 0.066142 1 

 

Table 2. Relative bias, mean square error and coverage probability for set ( 1.5, 3, 1.5)II        
 

 P=0.4 P=0.6 P=0.8 
RB MSE CP RB MSE CP RB MSE CP 

n=50 m=20 α 0.287456 0.456963 1 0.191188 0.51968 0.995 0.338223 0.525631 0.9925 
β 0.660062 4.96523 1 0.930987 4.36523 0.9925 1.03535 5.3652 0.99 
θ 0.181381 0.221326 1 0.229919 0.278596 0.995 0.362677 0.302156 0.9925 

n=50 m=30 α 0.279113 0.429653 0.9925 0.184524 0.501632 0.9975 0.32785 0.522365 0.995 
β 0.584587 2.918183 0.985 0.880664 2.946317 0.9975 0.928046 5.0125 0.9925 
θ 0.177829 0.199652 1 0.227872 0.26896 0.9925 0.356269 0.298563 0.99 

n=50 m=40 α 0.272844 0.422565 0.9875 0.173109 0.474194 0.99 0.317653 0.515632 0.9925 
β 0.522486 2.427945 0.985 0.900225 2.535726 0.995 0.713118 4.241114 0.99 
θ 0.17196 0.17659 0.99 0.333098 0.239431 1 0.389068 0.256355 0.99 

n=75 m=20 α 0.270547 0.41256 0.9975 0.178151 0.47025 0.9975 0.318584 0.495331 0.9975 
β 0.496628 2.271742 0.9925 0.840278 2.355989 0.995 0.672595 3.998728 0.99 
θ 0.162541 0.142653 1 0.309462 0.224777 0.9925 0.366895 0.23569 0.9975 

n=75 m=50 α 0.274962 0.37956 0.9975 0.214579 0.44653 0.9975 0.335681 0.47856 0.99 
β 0.487214 2.320027 0.9975 0.972986 2.199652 0.995 0.683912 3.7565 0.9925 
θ 0.128803 0.123792 0.9925 0.245352 0.194324 0.9975 0.296036 0.191999 0.99 
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 P=0.4 P=0.6 P=0.8 
RB MSE CP RB MSE CP RB MSE CP 

n=75 m=70 α 0.291551 0.344659 0.985 0.200759 0.4026 0.99 0.345532 0.46529 0.995 
β 0.418437 2.02635 0.9825 0.849179 2.126261 0.99 0.585288 3.612796 0.9975 
θ 0.12856 0.122232 1 0.220058 0.178092 0.99 0.284947 0.170263 0.9975 

n=100 m=20 α 0.277746 0.316589 0.995 0.196207 0.389856 0.9925 0.330249 0.433569 0.995 
β 0.453414 1.918718 0.975 0.801555 2.126385 0.9925 0.62323 3.55962 0.9975 
θ 0.133727 0.11963 1 0.213986 0.179488 0.9925 0.29445 0.165359 0.9975 

n=100 m=50 α 0.19481 0.281742 0.995 0.162402 0.359856 0.9925 0.239706 0.436311 0.995 
β 0.436853 1.9228 0.985 0.810003 2.178826 0.9925 0.610566 3.46566 0.99 
θ 0.108382 0.113265 1 0.154132 0.175263 0.9925 0.163939 0.156903 0.995 

n=100 m=70 α 0.175323 0.245219 1 0.130854 0.317774 0.995 0.209773 0.411563 0.9925 
β 0.447201 1.94134 1 0.802002 2.160874 0.995 0.619092 3.333263 0.9875 
θ 0.10395 0.10326 0.9975 0.164041 0.15698 0.9925 0.16155 0.157098 0.995 

n=100 m=90 α 0.176289 0.243081 0.995 0.119829 0.304061 0.9975 0.208156 0.409965 0.9975 
β 0.45461 1.930303 0.9975 0.778 2.09629 0.99 0.620817 3.1326 0.9975 
θ 0.16459 0.095848 0.9975 0.137289 0.135569 1 0.228583 0.15563 0.995 

n=150 m=20 α 0.361161 0.223652 0.9875 0.1349 0.300965 0.995 0.395972 0.401563 1 
β 0.469598 1.89563 0.985 0.802073 2.06596 0.985 0.63683 3.00963 1 
θ 0.148327 0.095553 0.9875 0.202261 0.131347 0.99 0.127029 0.14523 1 

n=150 m=50 α 0.343505 0.22123 0.99 0.129485 0.256323 0.9825 0.377411 0.38785 0.9975 
β 0.432965 1.854228 0.995 0.746069 2.054241 0.99 0.591549 2.96523 0.995 
θ 0.134775 0.09312 0.995 0.186369 0.12122 0.9975 0.116128 0.122326 0.995 

n=150 m=100 α 0.300788 0.20365 1 0.11321 0.233656 1 0.269165 0.34956 1 
β 0.448176 1.78563 0.9975 0.807924 2.0085 0.9975 0.667582 2.785 0.9975 
θ 0.127189 0.089886 0.9975 0.175936 0.115347 0.995 0.111462 0.10236 0.995 

n=150 m=140 α 0.292634 0.196323 1 0.110182 0.201236 0.995 0.261437 0.28965 0.9975 
β 0.415215 1.799953 1 0.748147 1.963256 0.995 0.615555 2.66532 0.9975 
θ 0.112078 0.081091 1 0.15798 0.105546 1 0.101834 0.0996 0.995 
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Table 3. Relative bias, mean square error and coverage probability for set 
( 1.5, 3, 0.5)III      

 
 

 P=0.4 P=0.6 P=0.8 
RB MSE CP RB MSE CP RB MSE CP 

n=50 m=20 α 0.906507 1.9652 0.9925 1.026663 1.212353 0.995 1.107203 1.28804 0.995 
β 0.943828 2.447085 0.99 0.810852 3.02 0.99 0.888061 2.268926 0.9925 
θ 2.25084 1.20065 1 1.447395 0.688709 0.9975 1.878515 1.3569 0.995 

n=50 m=30 α 0.878308 1.623782 0.9975 0.991061 1.170955 0.99 1.068763 1.24381 0.9975 
β 0.852658 2.224574 1 0.755192 3.011434 0.995 0.824736 2.093338 0.9975 
θ 2.214567 1.206739 1 1.430451 0.679904 0.99 1.854767 1.12563 0.9925 

n=50 m=40 α 0.847302 1.560821 0.995 0.934263 1.108447 1 1.007716 1.176307 0.99 
β 0.618451 1.575762 0.995 0.719332 2.808705 0.9925 0.788854 1.973897 0.995 
θ 2.536376 1.1985 0.9925 1.901741 0.70659 0.9875 2.36806 1.11236 1 

n=75 m=20 α 0.85188 1.573756 0.995 0.958053 1.133868 1 1.032344 1.202387 0.9975 
β 0.583186 1.485656 0.9825 0.66838 2.612546 0.995 0.731948 1.832355 0.995 
θ 2.384657 1.102563 0.9925 1.778973 0.699953 1 2.220014 1.096533 0.9925 

n=75 m=50 α 0.916308 1.563562 0.99 1.115182 1.301435 0.99 1.194216 1.37441 0.9975 
β 0.604022 1.561555 0.9925 0.748663 2.42156 1 0.815617 1.65963 0.995 
θ 1.893311 1.053932 0.9875 1.490169 0.691507 0.9975 1.894987 1.049231 0.9975 

n=75 m=70 α 0.933022 1.556963 0.9925 1.041146 1.233496 0.99 1.109594 1.289015 0.99 
β 0.517004 1.350518 0.9975 0.609597 2.367516 0.995 0.641057 1.55802 0.99 
θ 1.805633 0.993829 0.9975 1.40549 0.654429 0.9925 1.828146 1.017993 0.99 

n=100 m=20 α 0.895172 1.32563 0.995 1.006242 1.190123 1 1.069626 1.24012 0.9925 
β 0.541312 1.393307 0.995 0.607709 2.383244 0.9875 0.64558 1.502563 0.9925 
θ 1.844461 0.8212 1 1.385076 0.650685 0.9975 1.807091 1.015655 0.9925 

n=100 m=50 α 0.661687 1.282169 0.9975 0.725575 0.867575 0.9925 0.731711 0.96563 0.9925 
β 0.532717 1.371419 0.99 0.623517 2.336563 0.99 0.66879 1.49652 0.9925 
θ 0.94008 0.76543 0.9975 1.017023 0.464423 0.995 1.366499 0.936563 0.9925 

n=100 m=70 α 0.573932 1.099959 0.99 0.601322 0.723268 0.99 0.610889 0.902563 0.995 
β 0.538883 1.38462 0.99 0.618251 2.0256 0.99 0.662971 1.4526 0.995 
θ 0.93689 0.69532 0.995 1.061907 0.481244 0.995 1.416323 0.769845 0.9925 

n=100 m=90 α 0.562927 1.065036 0.9975 0.574977 0.694834 1 0.590074 0.996523 0.9975 
β 0.538524 1.380419 0.995 0.599598 1.56326 0.995 0.641916 1.33652 0.99 
θ 1.257445 0.495633 0.995 0.966495 0.467438 0.9925 1.317057 0.765148 1 
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 P=0.4 P=0.6 P=0.8 
RB MSE CP RB MSE CP RB MSE CP 

n=150 m=20 α 1.004306 1.02653 0.9975 0.860034 0.605963 1 0.93416 0.85632 0.995 
β 0.547742 1.392861 1 0.622665 1.42563 0.9975 0.668826 1.302156 0.985 
θ 1.024771 0.475632 1 0.628025 0.239536 1 2.991843 0.705963 0.99 

n=150 m=50 α 0.958751 0.99652 1 0.827519 0.596532 0.9975 0.899805 0.832563 0.9825 
β 0.512578 1.31111 0.9975 0.587297 1.425223 0.9975 0.634574 1.298563 0.99 
θ 0.937822 0.464282 0.995 0.579491 0.220866 0.995 2.764986 0.465329 0.9975 

n=150 m=100 α 0.634439 0.85632 1 0.578435 0.60123 0.9975 0.521361 0.801562 1 
β 0.603897 1.29632 0.9975 0.705539 1.2356 0.9975 0.792789 1.12563 0.9975 
θ 0.904999 0.450492 0.995 0.553103 0.21088 0.9925 2.682004 0.365962 0.995 

n=150 m=140 α 0.615309 0.778563 0.9975 0.561686 0.5896 0.9925 0.505751 0.579183 0.995 
β 0.557785 1.1235 0.9975 0.651596 1.12563 0.995 0.73392 1.021566 0.995 
θ 0.830681 0.416783 0.995 0.503626 0.192633 0.99 2.478344 0.325634 1 

 

  

Fig. 3. MSE of ̂  for set III for different values of p for 
different sample sizes 

Fig. 4. MSE of ̂  for set III for different values of p for 
different sample sizes 
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Fig. 5. MSE of  ̂ for set II for different values of p at sample sizes n=100
 

6 Conclusion  
 
In this paper, a SS-PALT is presented under the progressive type II censored data with binomial removals. 
The life times of the testing items are assumed to follow exponentiated Pareto distribution. The MLEs of the 
considered parameters are obtained and studied their performance through their relative biases and MSEs. 
Also, approximate confidence intervals for the parameters are constructed. Generally, based on the above 
analysis, one can say that a large sample size with a large c
sense of having smaller relative bias and MSE. Also the values of binomial parameter p have influence on 
the accuracy of the parameter estimates. Furthermore, the coverage probabilities are close to the nomina
confidence level 0.95% for different censoring schemes, samples sizes and set of parameters.   
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