[1]
|
Yamaguchi, M., Masuda, T., Araki, K., Sato, D., Lee, K.-H., Kojima, N., Takamoto, T., Okumura, K., Satou, A., Yamada, K., Nakado, T., Zushi, Y., Yamazaki, M. and Yamada, H. (2020) Role of PV-Powered Vehicles in Low-Carbon Society and Some Approaches of High-Efficiency Solar Cell Modules for Cars. Energy and Power Engineering, 12, 375-395. https://doi.org/10.4236/epe.2020.126023
|
[2]
|
Yamaguchi, M., Masuda, T., Araki, K., Sato, D., Lee, K.-H., Kojima, N., Takamoto, T., Okumura, K., Satou, A., Yamada, K., Nakado, T., Zushi, Y., Ohshita, Y. and Yamazaki, M. (2021) Development of High-Efficiency and Low-Cost Solar Cells for PV-Powered Vehicles Application. Progress in Photovoltaics, 29, 684-693. https://doi.org/10.1002/pip.3343
|
[3]
|
Yamaguchi, M., Masuda, T., Nakado, T., Zushi, Y., Araki, K., Takamoto, T., Okumura, K., Yamada, K., Ota, Y., Nishioka, K., Tanimoto, T., Nakamura, K., Ozaki, R., Kojima, N. and Ohshita, Y. (2021) Importance of Developing Photovoltaics-Powered Vehicles. Energy and Power Engineering, 13, 147-162. https://doi.org/10.4236/epe.2021.135010
|
[4]
|
Shockley, W. and Queisser, H.J. (1961) Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32, Article No. 510. https://doi.org/10.1063/1.1736034
|
[5]
|
Yamaguchi, M., Dimroth, F., Geisz, J.F. and Ekins-Daukes, N.J. (2021) Multi-Junction Solar Cells Paving the Way for Super High-Efficiency. Journal of Applied Physics, 129, Article ID: 240901. https://doi.org/10.1063/5.0048653
|
[6]
|
Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N. and Hao, X. (2021) Solar Cell Efficiency Tables (Version 59). Progress in Photovoltaics, 29, 897-898. https://doi.org/10.1002/pip.3056
|
[7]
|
Yamaguchi, M., Warabisako, T. and Sugiura, H. (1994) Chemical Beam Epitaxy as a Breakthrough Technology for Photovoltaic Solar Energy Applications. Journal of Crystal Growth, 136, 29-36. https://doi.org/10.1016/0022-0248(94)90379-4
|
[8]
|
Horowitz, K.A.W., Remo, T., Smith, B. and Ptak, A. (2018) Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cell. NREL Technical Report. 2018. NREL/TP-6A20-72103 November 2018. https://www.nrel.gov/docs/fy19osti/72103.pdf
|
[9]
|
Essig, S., Allebé, C., Remo, T., Geisz, J.F., Steiner, M.A., Horowitz, K., Barraud, L., Ward, J.S., Schnabel, M., Descoeudres, A., Young, D.L., Woodhouse, M., Despeisse, M., Ballif, C. and Tamboli, A. (2017) Raising the One-Sun Conversion Efficiency of III-V/Si Solar Cells to 32.8% for Two Junctions and 35.9% for Three Junctions. Nature Energy, 2, Article No. 17144. https://doi.org/10.1038/nenergy.2017.144
|
[10]
|
Yamaguchi, M., Lee, K.-H., Araki, K. and Kojima, N. (2018) A Review of Recent Progress in Heterogeneous Silicon Tandem Solar Cells. Journal of Physics D: Applied Physics, 51, Article ID: 133002. https://doi.org/10.1088/1361-6463/aaaf08
|
[11]
|
Takamoto, T., Washio, H., Yamaguchi, H., Ijichi, R., Suzuki, Y., Shimada, K., Takahashi, N. and Ooka, S. (2017) IMM Triple-Junction Solar Cells and Module Optimized for Space and Terrestrial Conditions. The 44th IEEE Photovoltaic Specialist Conference, Washington DC, 25-30 June 2017. https://doi.org/10.1109/PVSC.2017.8366097
|
[12]
|
Yamaguchi, M., Lee, K.-H., Sato, D., Araki, K., Kojima, N., Takamoto, T., Masuda, T. and Satou, A. (2020) Overview of Si Tandem Solar Cells and Approaches to PV-Powered Vehicle Applications. MRS Advances, 5, 441-450. https://doi.org/10.1557/adv.2020.66
|
[13]
|
Yamaguchi, M., Wang, Y.C., Kojima, N., Yamamoto, A. and Ohshita, Y. (2021) Low-Temperature Direct Growth for Low Dislocation Density in III-V on Si towards High-Efficiency III-V/Si Tandem Solar Cells. Japanese Journal of Applied Physics, 60, SBBF14. https://doi.org/10.35848/1347-4065/abde2b
|
[14]
|
Schygulla, P., Müller, M., Lackner, D., Höhn, O., Hauser, H., Bläsi, B., Predan, F., Benick, J., Hermle, M., Glunz, S.W. and Dimroth, F. (2021) Two-Terminal III-V/Si Triple-Junction Solar Cell with Power Conversion Efficiency of 35.9% at AM1.5g. Progress in Photovoltaics.
|
[15]
|
Rau, U. (2007) Reciprocity Relation between Photovoltaic Quantum Efficiency and Electroluminescent Emission of Solar Cells. Physical Review B, 76, Article ID: 085303. https://doi.org/10.1103/PhysRevB.76.085303
|
[16]
|
Green, M.A. (2012) Radiative Efficiency of State-of-the-Art Photovoltaic Cells. Progress in Photovoltaics, 20, 472-476. https://doi.org/10.1002/pip.1147
|
[17]
|
Yao, J., Kirchartz, T., Vezie, M.S., Faist, M.A., Gong, W., He, Z., Wu, W.H., Troughion, J., Watson, T., Bryant, D. and Nelson, J. (2015) Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells. Physical Review Applied, 4, Article ID: 014020. https://doi.org/10.1103/PhysRevApplied.4.014020
|
[18]
|
Yamaguchi, M., Yamada, H., Katsumata, Y., Lee, K.H., Araki, K. and Kojima, N. (2017) Efficiency Potential and Recent Activities of High-Efficiency Solar Cells. Journal of Materials Research, 32, 3445-3457. https://doi.org/10.1557/jmr.2017.335
|
[19]
|
Yamaguchi, M., Lee, K.H., Araki, K., Kojima, N., Yamada, H. and Katsumata, Y. (2018) Analysis for Efficiency Potential of High-Efficiency and Next Generation Solar Cells. Progress in Photovoltaics, 26, 543-552. https://doi.org/10.1002/pip.2955
|
[20]
|
Yamaguchi, M., Zhu, L., Akiyama, A., Kanemitsu, Y., Tampo, H., Shibata, H., Lee, K.H., Araki, K. and Kojima, N. (2018) Analysis of Future Generation Solar Cells and Materials. Japanese Journal of Applied Physics, 57, 04FS03. https://doi.org/10.7567/JJAP.57.04FS03
|
[21]
|
Green, M.A. (1998) Solar Cells. UNSW, Kensington.
|
[22]
|
Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N. and Hao, X. (2021) Solar Cell Efficiency Tables (Version 58). Progress in Photovoltaics, 29, 657-667. https://doi.org/10.1002/pip.3444
|
[23]
|
Lackner, D., Höhn, O., Müller, R., Beutel, P., Schygulla, P., Hauser, H., Predan, F., Siefer, G., Schachtner, M., Schön, J., Benick, J., Hermle, M. and Dimroth, F. (2020) Two-Terminal Direct Wafer-Bonded GaInP/AlGaAs//Si Triple-Junction Solar Cell with AM1.g Efficiency of 34.1%. Solar RRL, 4, Article ID: 2000210. https://doi.org/10.1002/solr.202000210
|
[24]
|
Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J.A., Morales Vilches, A.B., Kasparavicius, E., Smith, J.A., Phung, N., Menzel, D., Grischek, M., Kegelmann, L., Skroblin, D., Gollwitzer, C., Malinauskas, T., Jošt, M., Matič, G., Rech, B., Schlatmann, R., Topič, M., Korte, L., Abate, A., Stannowski, B., Neher, D., Stolterfoht, M., Unold, T., Getautis, V. and Albrecht, S. (2020) Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction. Science, 370, 1300-1039. https://doi.org/10.1126/science.abd4016
|
[25]
|
Carmody, M., Mallick, S., Margetis, J., Kodama, R., Biegala, T., Xu, D., Bechmann, P., Garland, J.W. and Sivananthan, S. (2010) Single-Crystal II-VI on Si Single-Junction and Tandem Solar Cell. Applied Physics Letters, 96, Article ID: 153502. https://doi.org/10.1063/1.3386529
|
[26]
|
Sasaki, K., Agui, T., Nakaido, K., Takahashi, N., Onitsuka, R. and Takamoto, T. (2013) Development of InGaP/GaAs/InGaAs Inverted Triple Junction Concentrator Solar Cell. AIP Conference Proceedings, 1556, Article No. 22. https://doi.org/10.1063/1.4822190
|
[27]
|
Takamoto, T., Ikeda, E., Kurita, H., Ohmori, M., Yang, M.-J. and Yamaguchi, M. (1997) Two-Terminal Monolithic In0.5Ga0.5P/GaAs Tandem Solar Cells with a High Conversion Efficiency of over 30%. Japanese Journal of Applied Physics, 36, Article No. 6215. https://iopscience.iop.org/article/10.1143/JJAP.36.6215 https://doi.org/10.1143/JJAP.36.6215
|
[28]
|
Karan, K.R. and Shewchun, J. (1978) A Better Approach to the Evaluation of the Series Resistance of Solar Cells. Solid State Electronics, 22, 193-197. https://doi.org/10.1016/0038-1101(79)90112-6
|
[29]
|
Agarwal, S.K., Muralidharan, R., Agarwal, A., Tiwary, V.K. and Jain, S.C. (1981) A New Method for the Measurement of Series Resistance of Solar Cells. Journal of Physics D: Applied Physics, 14, Article No. 1643. https://doi.org/10.1088/0022-3727/14/9/011
|
[30]
|
Priyanka, M.L. and Singh, S.N. (2007) A New Method for the Measurement of Series and Shunt Resistance of Silicon Solar Cells. Solar Energy Materials and Solar Cells, 91, 137-142. https://doi.org/10.1016/j.solmat.2006.07.008
|
[31]
|
Khan, F., Singh, S.N. and Husain, M. (2010) Effect of Illumination Intensity on Cell Parameters of a Silicon Solar Cell. Solar Energy Materials and Solar Cells, 94, 1473-1476. https://doi.org/10.1016/j.solmat.2010.03.018
|
[32]
|
Hishikawa, Y., Doi, T., Yamagoe, K., Ohshima, H., Takenouchi, T. and Yoshita, M. (2018) Voltage-Dependent Temperature Coefficient of the I-V Curves of Crystalline Silicon Photovoltaic Modules. IEEE Journal of Photovoltaics, 8, 48-53. https://doi.org/10.1109/JPHOTOV.2017.2766529
|
[33]
|
Yamaguchi, M., Ozaki, R., Nakamura, K., Lee, K-H., Kojima, N., Ohshita, Y., Masuda, T., Okumura, K., Satou, A., Nakado, T., Yamada, K., Araki, K., Ota, Y., Nishioka, K., Takamoto, T., Zushi, Y., Tanimoto, T., Thiel, C., Tsakalids, A. and Jager-Wldau, A. (2021) Development of High-Efficiency Solar Cell Modules for Photovoltaics-Powered Vehicles. Solar RRL. https://doi.org/10.1002/solr.202100429
|
[34]
|
Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, K.T., Adachi, D., Kanematsu, M., Uzu, H. and Yamamoto, K. (2017) Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photo Conversion Efficiency over 26%. Nature Energy, 21, Article No. 17032. https://doi.org/10.1038/nenergy.2017.32
|
[35]
|
Hishikawa, Y., Imura, Y., Sekimoto, T. and Oshiro, T. (2002) Irradiance-Dependence and Translation of the I-V Characteristics of Various Kinds of Solar Cells. Transactions IEE Japan, 122-B, Article No. 26. (In Japanese) https://www.jstage.jst.go.jp/article/ieejpes1990/122/1/122_1_26/_pdf https://doi.org/10.1541/ieejpes1990.122.1_26
|
[36]
|
Yamaguchi, M., Tampo, H., H. Shibata, H., Schygulla, P., Dimroth, F., Kojima, N. and Ohshita, Y. (2021) Analysis for Efficiency Potential of II-VI Compound, Chalcopyrite, and Kesterite-Based Tandem Solar Cells. Journal of Materials Research. (To be published)
|
[37]
|
Schygulla, P., Heinz, F.D., Dimroth, F. and Lackner, D. (2021) Middle Cell Development for Wafer-Bonded III-V//Si Tandem Solar Cells. IEEE Journal of Photovoltaics, 11, 1264-1270. https://doi.org/10.1109/JPHOTOV.2021.3090159
|
[38]
|
Bläsi, B., Höhn, O., Hauser, H., Tucher, N., Cariou, R., Benick, J., Feldmann, F., Beutel, P., Lackner, D., Siefer, G., Glunz, S.W., Bett, A.W., Dimroth, F. and Hermle, M. (2018) Photonic Structures for III-V//Si Multijunction Solar Cells with Efficiency >33%. Photonics for Solar Energy Systems, 7, Article ID: 1068803. https://doi.org/10.1117/12.2307831
|