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Abstract 
The study is carried out in imperfect contact with a concrete slab wall at-
tached to a panel based on rice straw compressed in a dynamic frequency re-
gime. We will propose the characterization of thermal insulation for thermal 
resistance of contact (x = 0.05 m). The impact of heat exchange coefficients 
on the front face (x = 0 m) and the rear face (x = 0.1 m) on these resistors is 
shown. 
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1. Introduction 

The two necessary criteria of the thermal design [1] [2] [3] of the buildings are 
the protection of the occupants in an automatic and passive way, climatic fac-
tors: rain, wind, radiation, hot or cold walls and optimization of energy con-
sumption [4] [5]. The designer must ensure that this consumption (production 
of hot or cold) remains within the limits set by the regulations and the financial 
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possibilities of the occupants while ensuring a level of comfort defined by the 
client. The thermal insulation introduced by the different elements of the build-
ing envelope constitutes an important criterion of energy performance. It re-
duces heat loss, saves heating, limits greenhouse gas emissions and provides bet-
ter living comfort [6].  

For years, many researchers have been studying the characterization [7] and 
optimization of plant and agricultural materials [8] [9] for the energy perfor-
mance of buildings. It is in these perspectives that we have turned to research by 
proposing the study of a concrete slab adjoining a compressed board of rice 
straw in imperfect contact. So in this study, we will try to determine the value of 
the optimal and critical thermal resistance [10]-[15]. 

2. Presentation and Mathematical Modelling of the  
Insulation System: The Wall 

The diagram of the wall [12] [14] consisting of concrete and rice straw is shown 
in Figure 1. Temperatures T1 and T2 of the outdoor and indoor environments 
respectively are defined in a frequency dynamic regime with an excitatory pulsa-
tion ω . The time is noted t. 

The phenomenon of heat diffusion in the wall is governed by the equation of 
heat. In the absence of a heat source and sink, it is given by Equation (1) below: 
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( ),T x t  is the material temperature at a depth x and time t. 
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( )2 1m siα
−⋅  is the material’s thermal diffusivity coefficient i. 

i = 1 or 2 for concrete slab or rice straw board respectively. 
The boundary conditions [11] [12] [13] reflecting the different thermal ex-

changes at the interfaces and the initial condition are given by the equations be-
low. 
 

 
Figure 1. Study model diagrams. T01 = 45˚C; T02 = 20˚C; Ti = 23˚C; Ti is the initial wall 
temperature. h1 and h2 are the thermal exchange coefficients at the interface of the exter-
nal and internal media, respectively. 
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Considering that the wall is at an initial temperature iT  
( ),T x t  the addition temperature is therefore: 

( ) ( ) 0, ,i i iT x t x tT T= +  Avec 1,2i =                  (6) 

The expression of Equation (1) of heat becomes: 
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New boundary conditions become:  
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The resolution of Equation (7) leads to the following solution: 

( ) ( ) ( )1 1 2 1 1 2 1, , , , , sinh cosh e j th h x t A x A xT ωα ω β β= ⋅ + ⋅           (12) 
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coefficients A1, A2, A3 et A4 are determined from boundary conditions. 

3. Results and Discussion 

The changes in temperature and heat flux density as a function of the thermal re-
sistance of contact are described below under the influence of the heat exchange 
coefficients on the front and rear faces (yielding respectively Table 1 and Table 2). 
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Table 1. Thermal resistance of critical and optimal contact under the influence of the heat exchange coefficient on the front face. 

CONTACT AREA OF BOTH MATERIALS 

Front face heat 
exchange 

coefficient 
(W∙m−2∙K−1) 

Maximal 
thermal flow 

(W∙m−2) 

Critical 
RTC 

(W∙m−2∙K−1) 

Critical interstitial 
heat exchange 

coefficient 
(W∙m−2∙K−1) 

Minimal 
thermal flow 

(W∙m−2) 

Optimal 
RTC 

(W∙m−2∙K−1) 

Optimal interstitial 
heat exchange 

coefficient 
(W∙m−2∙K−1) 

 12.133 10−1.3 20 0.35 101.3 0.05 

 16.319 10−1.3 20 0.471 101.3 0.05 

 23.927 10−1.3 20 0.688 101.3 0.05 

60 29.752 10−1.3 20 0.848 101.3 0.05 

100 32.355 10−1.3 20 0.916 101.3 0.05 

 
Table 2. Thermal resistance of critical and optimal contact under the influence of the heat exchange coefficient on the rear face. 

CONTACT AREA OF BOTH MATERIALS 

Rear face heat 
exchange 

coefficient 
(W∙m−2∙K−1) 

Maximal 
thermal flow 

(W∙m−2) 

Critical 
RTC 

(W∙m−2∙K−1) 

Critical interstitial 
heat exchange 

coefficient 
(W∙m−2∙K−1) 

Minimal 
thermal flow 

(W∙m−2) 

Optimal 
RTC 

(W∙m−2∙K−1) 

Optimal interstitial 
heat exchange 

coefficient 
(W∙m−2∙K−1) 

0.1 31.693 10−1.3 20 0.918 101.3 0.05 

0.5 29.675 10−1.3 20 0.928 101.3 0.05 

1 28.456 10−1.3 20 0.941 101.3 0.05 

5 27.938 10−1.3 20 0.991 101.3 0.05 

10 28.476 10−1.3 20 1.005 101.3 0.05 

 
Figure 2 shows that the temperature module at the contact zone evolves along 

a strip of contact thermal resistances. For values of RTC ≤ 102 W∙m−2∙K−1 and 
RTC ≥ 102 W∙m−2∙K−1, the temperature module hardly evolves corresponding to 
a quasi-static regime. For values of contact thermal resistance between 10−2 
W∙m−2∙K−1 ≤ RTC ≤ 102 W∙m−2∙K−1, the temperature module varies considerably 
with the increase of the contact thermal resistance describing a dynamic velocity 
at the contact area. 

For this purpose, the thermal flux density module (Figure 3) decreases with 
the increase in the thermal resistance of contact. The density of heat flux re-
mains important for the large values of heat exchange coefficient on the front 
face due to the strong heat exchange between the external medium and the sur-
face of the wall of the material leading to heat propagation by deep conduction. 
So according to the evolution of the thermal flux density at the contact area, the 
critical and optimal contact thermal resistance values describing the maximum 
and minimum flux density limit value at the contact area are defined. 

We give below the value table of the critical and optimal thermal contact re-
sistance under the influence of the heat exchange coefficient on the front face 
(Table 1). 
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(a) 

 
(b) 

Figure 2. (a) Temperature variation as a function of the contact heat resistance. Influence 
of the exchange coefficient on the front face. x = 0.05 m, h2 = 0.01 W∙m−2∙K−1. ω = 2 × 10−4 
rad/s. (b) Temperature variation as a function of the contact heat resistance. Influence of 
the exchange coefficient on the rear side. x = 0.05 m, h2 = 0.01 W∙m−2∙K−1. ω = 2 × 10−4 
rad/s. 
 

Below we will study the evolution of the temperature as a function of the 
depth by highlighting the effect of the exchange coefficient on the front and rear 
face in imperfect contact with an optimal thermal contact resistance value and 
critical (Table 1 and Table 2). 

Figure 4 and Figure 5 shows that the temperature module decreases with in-
creasing depth. The temperature module is important at the wall surface for 
large values of heat exchange coefficients on the front face. The heat exchange 
between the exterior and the surface of the wall thanks to the manpower, leads to 
conduction of the heat received on the front face of the first layer in the depth of 
the materials. At the level of the contact zone, a discontinuity of the temperature  
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(a) 

 
(b) 

Figure 3. Evolution of heat flux density as a function of contact heat resistance. Influence 
of exchange coefficients on the front (x = 0 m) and rear side (x = 0.05 m), ω = 2 × 10−4 
rad/s. 
 
module is observed, thus generating a temperature gap that varies according to 
the increase of the exchange coefficient on the front face but remains invariant 
for values of exchange coefficients on the rear face. 
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(a) 

 
(b) 

Figure 4. Temperature evolution through the wall as a function of its depth; Influences of 
the exchange coefficient on the front face w = 2 × 10−4 rad/s, h2 = 0.01 W∙m−2∙K−1. (a) op-
timal contact resistance Rcop = 101.3 W∙m−2∙K−1. (b) critical contact resistance Rcc = 10−1.3 
W∙m−2∙K−1. 
 

Note that at the contact area level (Table 3 and Table 4) the gap is much 
more for a value of optimal contact thermal resistance thus promoting the insu-
lating character of the contact zone with a value of the interstitial exchange coef-
ficient h0. 
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Table 3. Development of the temperature gap at the contact zone for different values of 
the exchange coefficient on the front face. 

Front face heat 
exchange 

coefficient h1 

(W∙m−2∙K−1) 

Thermal flux 
density 

(contact area) 
(W∙m−2) 

Contact wall 
1st layer T1 

Contact wall 
2nd layer T2 

Gap of 
temperature 

ΔT (˚C) = T2 – T1 

1.3 1 2 2 1
op opRc 10 W m K, 0 0.05 W m Kh− − −= ⋅ ⋅ = ⋅ ⋅  

10 0.25 23,727 22,824 0.9˚C 

15 0.35 24,953 22,824 2.1˚C 

30 0.55 28,723 22,824 5.9˚C 

60 0.78 33,213 22,824 10.3˚C 

100 0.81 35,771 22,824 12.9˚C 

1.3 1 2 2 1
ccRcc 10 W m K, 0 20 W m Kh− − − −= ⋅ ⋅ = ⋅ ⋅  

10 9.1624 23,653 23,24 0.41˚C 

15 12.582 24,752 24,134 0.61˚C 

30 19.486 28,152 27,179 0.97˚C 

60 25.719 32,296 31,072 1.22˚C 

100 28.896 34,722 33,405 1.31˚C 

 
Table 4. Evolution of the temperature gap at the contact zone for different values of the 
exchange coefficient on the rear face. 

Heat exchange 
coefficient on 

the rear face h2 

(W∙m−2∙K−1) 

Thermal flux 
density 

(contact area) 
(W∙m−2) 

Contact wall 
1st layer T1 

Contact wall 
2nd layer T2 

Gap of 
temperature 

ΔT (˚C) = T2 – T1 

1.3 1 2 2 1
op opRc 10 W m K, 0 0.05 W m Kh− − −= ⋅ ⋅ = ⋅ ⋅  

0.1 0.81 35,802 22,864 12.9˚C 

0.5 0.81 35,802 22,864 12.9˚C 

1 0.81 35,802 22,864 12.9˚C 

5 0.81 35,802 22,864 12.9˚C 

10 0.81 35,802 22,864 12.9˚C 

1.3 1 2 2 1
ccRcc 10 W m K, 0 20 W m Kh− − − −= ⋅ ⋅ = ⋅ ⋅  

0.1 28.89 34,735 33,402 1.33˚C 

0.5 28.89 34,735 33,402 1.33˚C 

1 28.89 34,735 33,402 1.33˚C 

5 28.89 34,735 33,402 1.33˚C 

10 28.89 34,735 33,402 1.33˚C 
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(a) 

 
(b) 

Figure 5. Evolution of the density of heat flow through the wall as a function of its depth; 
Influences of h1. h2 = 0.01 W∙m−2∙K−1. (a) optimal contact resistance RTcop = 101.3 
W∙m−2∙K−1; (b) critical contact resistance RTcc = 10−1.3 W∙m−2∙K−1. 

4. Conclusion 

The study of the contact area between the concrete slab and the compressed 
panel shows the important role in the installation of two-layer materials. The 
ideal thermal resistance of contact characterizing a low heat exchange in this 
zone favors a significant drop in temperature leading to the existence of a con-
ducto-convective flux. These heat losses in the contact area are essential to miti-
gate heat diffusion to the interior environment. 
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