
*Corresponding author: E-mail: ecnaxel@gmail.com;

British Journal of Applied Science & Technology
17(2): 1-19, 2016, Article no.BJAST.25046

ISSN: 2231-0843, NLM ID: 101664541

SCIENCEDOMAIN international

 www.sciencedomain.org

Microcomputer Based Multipoint Time Operated
Power Switching System (With Overload Protection)

Chukwuedozie N. Ezema1*, Okechi Onuoha2, Nwanyinnaya Nwogu2,

Albert C. Agulanna2 and Helen U. Nonyelu3

1
Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.

2
Projects Development Institute (PRODA), Enugu State, Nigeria.

3Scientific Equipment Development Institute (SEDI), Enugu State, Nigeria.

Authors’ contributions

The authors acknowledged that the manuscript submitted is their own original work. All authors
participated in the work in a substantive way and are prepared to take public responsibility for the

work. The submitted manuscript is reviewed and approved by all authors.

Article Information

DOI: 10.9734/BJAST/2016/25046

Editor(s):

(1) Samir Kumar Bandyopadhyay, Department of Computer Science and Engineering, University of Calcutta, India.

Reviewers:

(1) Kexin Zhao, University of Florida, Gainesville, USA.

(2) Rajen Pudur, National Institute of Technology, Arunachal Pradesh, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/15792

Received 15th February 2016
Accepted 15

th
 April 2016

Published 14
th

 August 2016

ABSTRACT

The objective of this research is to design a “Microcomputer Based Multipoint Time Operated Power
Switching System” (with overload protection). The system is made up of eight relays that can be
controlled independently through the parallel port of a computer using visual basic software. It is a
time operate electrical appliance controlling system and is a reliable circuit that takes over the task
of switching the electrical devices ON/OFF with respect to time. Once is set and device activated,
the device remain on till the set time elapses. With the aid of software devices on/off indicate the set
time perimeter (hr. Min: sec) and the corresponding real time clock are displayed at the front of the
panel. It can be time event, intervals of time and can definitely control AC appliances, it will trigger a
relay when it has timed down. The system makes use of a real time check built around the computer
system clock and keeps track of the time. When this time is equals to the programmed off time of a
device, then the corresponding relay for the devices is switched off. The switch time can be edited
using the peripherals devices like the keyboard and mouse.

Original Research Article

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

2

Keywords: Microcomputer; multipoint time; power switching system; overload protection.

1. INTRODUCTION

The subject of time and the traditions
surrounding it is sometimes taken for granted,
especially in Africa where we do things and say
“African Time”. But have we ever considered an
industrial production process where events done
in time, were neglected for once or to heat a
delicate substance for a specified period of time
was over looked; losses may amount. Even our
day to day activities is guided by time, time to
sleep, time to wake, time to eat etcetera. Hardly
anything is done without time. Time can be set
from a few seconds to several hours converted in
seconds as one chooses. Microcomputer Based
Multipoint Time Operated Power Switching
System” (with overload protection) can time
events, intervals of time and can definitely control
A.C. appliances; it will trigger a relay when it has
timed down [1,2]. It may be used for dark room or
PC board exposure timer, exit room timer. It can
be used in laboratories, kitchens, washers,
dishwashers, driers, and for competitions in
educational institutes, and can power any
electrical appliance rated below 1000 Watts or
more. Also other parameters or features
implemented in the research are the overload
protection, voltage level display which is
measured using a voltage monitor and an Analog
to digital converter (ADC0804). The research can
find uses in several applications [3].

This research is justified on the basis of the
purpose and importance of Timed Control and
Power regulation in various aspects. Timers are
in homes, Laboratories, Industries, Sports arena,
Gadgets or devices and Schools, and even in
Offices. The main purpose of a Timer is not
always only to keep interval of preset time but
can also be used to control devices according
the preset time, e.g. an alarm clock, a VCR, an
egg timer or a time bomb [4].

Practically all computers depend on an accurate
internal clock signal to allow synchronized
processing [5]. A few researches are developing
CPUs based on asynchronous circuits. Some
computers also maintain time and date for all
manner of operations whether they are for
alarms, event initiation or just to display the time
of day.

This simple and flexible timer is accurate like the
real-time clock of the computer used for the

purpose [6]. The timer is software based; the
program written in Visual Basic is self-
explanatory. In this research, “Microcomputer
Based Multipoint Time Operated Power
Switching System”, exposition will be done on
how application software can be used to
implement Timer and Control functions on a
Microcomputer [7].

1.1 The Timer

A Timer is a specialized type of clock. A timer
can be used to control the sequence of an event
or process [5,8]. Examples include: Mechanical
timers, Electromechanical Timers, Digital Timers
and Computer Timers.

1.1.1 Parallel port basics

In computers, ports are used mainly for two
reasons: Device control and communication [9,
10]. We can program PC's parallel ports for both.
Parallel ports are mainly meant for connecting
the printer to the PC. But we can program this
port for many more applications beyond that.

Parallel ports are easy to program and faster
compared to the serial ports. But main
disadvantage is it needs more number of
transmission lines. Because of this reason
parallel ports are not used in long distance
communications [11]. Let us know the basic
difference between working of parallel
port and serial port. In serial ports,
there will be two data lines: One transmission
and one receive line. To send a data in
serial port, it has to be sent one bit after another
with some extra bits like start bit, stop
bit and parity bit to detect errors [12]. But in
parallel port, all the 8 bits of a byte will be sent to
the port at a time and an indication will be
sent in another line. There will be some data
lines, some control and some handshaking lines
in parallel port [13].

2. SYSTEM ANALYSIS

2.1 Design Approach

Each individual module was designed and
constructed separately. After successful
simulation and testing, they were put together to
create the finalized version.

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

3

Fig. 1. Block diagram overview of the research

2.2 Software Development

There are different types of interfaces depending
on the application, but they are all used to
convert a program so that an electrical or a
robotic device can be controlled. Interfaces can
be connected to any computer because they all
do the same job [14,15]. A typical example is a
relay board. A ‘Relay Board is a Smart Box’, a
common interface and they can be connected to
most types of computer with parallel port. It is
possible to connect up to eight devices such as
motors temperature sensors, movement sensors;
light sensors and data acquisition etc.

Fig. 2. Typical parallel port interface

Digital outputs are items such as speakers,
lights, buzzers, LEDs and circuits etc. Digital
inputs are devices such as micro-switches and
relays. They are either ‘on’ or ‘off’.

2.3 Out Putting Data to the Parallel Port:
Relay Interface

To output data to a parallel port is simple and
straight forward. All that is needed is a 25 pin D
connector, a relay board that comprises of
Resistor to limit current, Transistors or relay

driver modules like (ULN2803) and 5V power
supply. Then locate the parallel port data lines
(D0-D7) which are pins (2-9) and the port ground
pins (18-25); then attach the board.

Using a typical Visual basic code - Port out (port
address, value), example Port Out (888, H01);
this will energize relay at D0 (Pin2) particularly.
This relay will have a Logic 1or High (5V) data
written to the data line. Subsequently a logic zero
(0) written to the data line well de-energize the
relay.

2.4 Reading Data from the Parallel Port

Parallel port status and control lines for reading
data from the parallel port is explained in the
figure below.

Fig. 3. Parallel port status and control lines

A standard parallel port has only 5 input lines,
while some support bi-directional mode [16-18].
To do this you can use the 5 input lines of the
Status Port and the 3 inputs (open collector) lines
of the Control Port. The inputs to the Parallel Port
have been chosen as such, to make life
easier for us. Busy just happens to
be the MSB (Bit 7) of the Status Port, then in
ascending order comes, Ack, Paper Out and
Select, making up the most significant nibble.
The Control port is used to read the least
significant nibble.

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

4

However to avoid conflicts and non-compatibility,
the Nibble mode is the preferred way of reading
8 bits of data without placing the port in reverse
mode and using the data lines [19,20]. Nibble
mode uses octal buffers and line drivers with 3-
state outputs (74ls244) or a Quad 2 line to 1 line
multiplexer (74LS157) to read a nibble of data at
a time. Then it "switches" to the other nibble and
reads it. Software can then be used to construct
the two nibbles into a byte. The only
disadvantage of this technique is that it is slower.
It now requires a few I/O instructions to read the
one byte, and it requires the use of an external
IC.

Fig. 4. Input interface

The diagram above shows 4 input lines of the
parallel port. The operation of the 74LS157,
Quad 2 line to 1 line multiplexer is quite simple. It
simply acts as four switches. When the A/B input
is low, the A inputs are selected. E.g. 1A passes
through to 1Y; 2A passes through to 2Y etc.
When the A/B is high, the B inputs are selected.
The Y outputs are connected up to the Parallel
Port's status port, in such a manner that it
represents the MSnibble of the status register.
While this is not necessary, it makes the software
easier.

To use this circuit, first we must initialize the
multiplexer to switch either inputs A or B. We will
read the LSnibble first, thus we must place A/B
low. The strobe is hardware inverted, thus we
must set Bit 0 of the control port to get a low on
Pin 1.

PortOut (Address, Value); /* Select Low
Nibble */

Once the low nibble is selected, we can read the
LSnibble from the Status Port. Take note that the

Busy Line is inverted; however we won't tackle it
just yet. We are only interested in the MSnibble
of the result, thus we add the result with 0xF0, to
clear the LSnibble.

a = (PortIn (Address) and &HF0); /* Read
Low Nibble */

Now it's time to shift the nibble we have just read
to the LSnibble of variable a,

a = a >> 4; /* Shift Right 4 Bits */

But Visual Basic does not have the above
function but we found another way to maneuver
this shift instruction. Don’t forget the busy line is
always toggled. We are now half way there. It's
time to get the MSnibble, thus we must switch
the multiplexer to select inputs B. Then we can
read the MSnibble and put the two nibbles
together to make a byte,

PortOut (address, Value And & HFE); /*
Select High Nibble (B)*/

a = PortIn (address,) and &HF0); /* Read
High Nibble */

Note the LPT1 input port address decimal ‘889’
and the Control lines address decimal ‘890’. The
state of the 4 lines is received as a single 8 bit
number between 0-255 which is stored as the
value of (V). Each switch input represents a
decimal value of 16,32,64 and 128 which
correspond to pins 13,12,10 and 11. The last 4
bits (1, 2, 4 and 8) are not used and should
return a high level.

2.5 Voltage Measurement and Calibration

This is done using the ADC0804 input channels
(D 0-D1). Here to set the voltage, the
potentiometer VR. Adj is connected to +9V half
wave rectifier through the 5V zener diode. For
the purpose of testing, you can vary VR1 to
adjust the voltage from 0 to 5V.

For this, transformer half wave rectified supply
provides a proportional voltage to the ADC chip.
The VR. Adj. point gives a voltage that varies
with mains voltage. At exactly 220V mains, the
9V transformer gives a peak voltage of
approximately, 9V - Diode drop (0.7V) = 8.3V. At
point VR Adj the value is 2.3 V. It increases
approximately to 5V when the mains voltage
rises to 259V and drops to zero when mains
voltage drops to 172V in effect, giving 0 to 5V

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

5

over this range. The Value of VR1 is in such a
manner that the output Voltage is never greater
than 5.0V.

Fig. 5. Voltage measurement

With this arrangement the high voltage
and low voltage protection can be
implemented. Likewise the overload protection
function is also implemented and it arises when
there is low voltage the component being power
will tend to draw more current causing an
overload [21,22]. However this is prevented, by
detecting the low voltage and high voltage
situations. Also when a short circuit happens, the
current increases drastically and voltage drops
drastically this situation is also detected by low
voltage function.

2.6 Voltage Calibration

The input voltage from normal AC to worst case
conditions 259V can be adjusted from 0 to 5V
because the ADC can only measure voltages
between 0 - 5V and represent the values
measured as a 8 bit binary number from 0 - 255.

At AC (259V) = Vmax dc (15V) = V input
max ADC (5V)

At AC (220V) = Vmax dc (9V) = V input ADC
(2.3V)

In order to determine the voltage increments
which can be measured one has to divide the
scaled input voltage by 255 and that equals:
15V/255 = 58.8 mV.approx 59 mV.

This means that at every count of ADC voltage
increases by 59mV. With this idea the AC
voltage can easily be measured.

2.7 Functional Description

The ADC0804 contains a circuit equivalent of the
256R network [23]. Analog switches are
sequenced by successive approximation logic to
match the analog difference input voltage [V in
(+) − V in (−)] to a corresponding tap on the R -
network. The most significant bit is tested first
and after 8 comparisons (64 clock cycles) a
digital 8-bit binary code (11111111 = full-scale) is
transferred to an output latch and then an
interrupt is asserted (INTR makes a high-to-low
transition). A conversion in process can be
interrupted by issuing a second start command
[16]. The device may be operated in the free-
running mode by connecting INTR to the WR
input with CS =0. To ensure start-up under all
possible conditions, an external WR pulse is
required during the first power-up cycle.

On the high-to-low transition of the WR input the
internal SAR (Successive Approximation
Register) latches and the shift register stages are
reset. As long as the CS input and WR input
remain low, the A/D will remain in a reset state.
Conversion will start from 1 to 8 clock periods
after at least one of these inputs makes a low-to-
high transition.

A functional diagram of the A/D converter is
shown in Fig. 6. All of the package pin outs are
shown and the major logic control paths are
drawn in heavier weight lines. The converter is
started by having CS and WR simultaneously
low. This sets the start flip-flop (F/F) and the
resulting “1” level resets the 8-bit shift register,
resets the Interrupt (INTR) F/F and inputs a “1” to
the D flop, F/F1, which is at the input end of the
8-bit shift register. Internal clock signals then
transfer this “1” to the Q output of F/F1. The AND
gate, G1, combines this “1” output with a clock
signal to provide a reset signal to the start F/F. If

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

6

the set signal is no longer present (either WR or
CS is a “1”) the start F/F is reset and the 8-bit
shift register then can have the “1” clocked in,
which starts the conversion process. If the set
signal were to still be present, this reset pulse
would have no effect (both outputs of the start
F/F would momentarily be at a “1” level) and the
8-bit shift register would continue to be held in
the reset mode. This logic therefore allows for
wide CS and WR signals and the converter will
start after at least one of these signals returns
high and the internal clocks again provide a reset
signal for the start F/F.

After the “1” is clocked through the 8-bit shift
register (which completes the SAR search) it
appears as the input to the D-type latch, LATCH

1. As soon as this “1” is output from the shift
register, the AND gate, G2, causes the new
digital word to transfer to the TRI-STATE output
latches. When LATCH 1 is subsequently
enabled, the Q output makes a high-to-low
transition which causes the INTR F/F to set. An
inverting buffer then supplies the INTR input
signal.

Note that this SET control of the INTR F/F
remains low for 8 of the external clock periods
(as the internal clocks run at 1⁄8 of the frequency
of the external clock). If the data output is
continuously enabled (CS and RD both held low),
the INTR output will still signal the end of
conversion (by a high-to-low transition), because
the SET input can control the Q output of the

Fig. 6. ADC function diagram

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

7

INTR F/F even though the RESET input is
constantly at a “1” level in this operating mode.
This INTR output will therefore stay low for the
duration of the SET signal, which is 8 periods of
the external clock frequency (assuming the A/D
is not started during this interval).

When operating in the free-running or
continuous conversion mode (INTR pin tied to
WR and CS wired low), the START F/F is SET
by the high-to-low transition of the INTR signal.
This resets the SHIFT REGISTER which causes
the input to the D-type latch, LATCH 1, to go low.
As the latch enable input is still present, the Q

output will go high, which then allows the INTR
F/F to be RESET. This reduces the width
of the resulting INTR output pulse to
only a few propagation delays (approximately
300 ns).

When data is to be read, the combination of both
CS and RD being low will cause the INTR F/F to
be reset and the TRI-STATE output latches will
be enabled to provide the 8-bit digital outputs.

The complete circuit diagram, Visual Basic Timer
program and the Visual Basic Timer program are
presented below.

Fig. 7. Circuit diagram

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

8

Fig. 8. Visual basic timer program

Fig. 9. System flow chart

3. SYSTEM IMPLEMENTATION

Analysis of the theories in design
and specifications was made to govern the
construction. After successful simulation and
testing, the research was put together to create
the finalized version.

3.1 System Implementation Included Four
Procedures

1 Components Sourcing.
2 Bread Board Implementation.
3 Strip/Vero Board Construction.
4 Software Coding

3.2 Component Sourcing

Gathering of components from the specification
in the circuit design precedes assembly or
construction of the project. We started with listing
the component according to types and values.

3.3 Strip/Vero Board Construction

This involves the actual construction, which is the
hard wiring of the circuit already prototyped. This
consists of thin copper strips on one side and
plain insulator board on the other side
with hole at 0.1- inch matrix interval.
Components are mounted on the plain side and
soldered on the copper side. The copper strip
runs from left to right and all components
soldered on the strip are automatically joined
together; where that is not required the strip is
cut at appropriate point with drill or sharp object.
All the components were mounted and soldered
taking care that the transistors, electrolytic
capacitors, diodes and the regulator were
mounted the correct way round. While soldering
the solder blobs should not touch the adjacent
tracks otherwise there will be short circuit. Finally
the IC should be mounted on the IC socket and
tracks under the socket were cut to separate the
pins.

3.4 Regulated Power Supply Design

This module will consist of a center tapped
Transformer that will step down the AC voltages
from 220V to 12 Vrms. Then this will pass
through a Full Wave Bridge Rectifier and then a
filtering capacitor to achieve close to DC voltage
level.

The transformer, 220 to 12 volts. The secondary
rms voltage is 12 Volt; we can calculate the V
peak after the diodes, using the formula:

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

9

3. SYSTEM IMPLEMENTATION

Analysis of the theories in design methodology
and specifications was made to govern the
construction. After successful simulation and
testing, the research was put together to create

Implementation Included Four

d Implementation.
Strip/Vero Board Construction.

Gathering of components from the specification
in the circuit design precedes assembly or
construction of the project. We started with listing

to types and values.

Strip/Vero Board Construction

This involves the actual construction, which is the
hard wiring of the circuit already prototyped. This
consists of thin copper strips on one side and
plain insulator board on the other side punched

inch matrix interval.
Components are mounted on the plain side and
soldered on the copper side. The copper strip
runs from left to right and all components
soldered on the strip are automatically joined

required the strip is
cut at appropriate point with drill or sharp object.
All the components were mounted and soldered
taking care that the transistors, electrolytic
capacitors, diodes and the regulator were

While soldering
the solder blobs should not touch the adjacent
tracks otherwise there will be short circuit. Finally
the IC should be mounted on the IC socket and
tracks under the socket were cut to separate the

Design

consist of a center tapped
Transformer that will step down the AC voltages
from 220V to 12 Vrms. Then this will pass
through a Full Wave Bridge Rectifier and then a
filtering capacitor to achieve close to DC voltage

. The secondary
rms voltage is 12 Volt; we can calculate the V
peak after the diodes, using the formula:

VDC(peak) = 12√2 – 1.4 = 17 – 1.4

This is the maximum value, for knowing the
minimum we need to subtract the ripple:

Let's assume that the circuit we are going to feed
requires that V ripple is not more than 2 Volt.

Vmin = 15.6 – 2 = 13.6V

Choosing the Right Capacitor:

The nearest available size is 2200uF.
Now we need to know what is the maximum
voltage that the capacitor is going to be exposed
to. We must consider the worst case; this is
the V rectified peak in no-load condition, which
means without deducting the voltage drop on
diodes:

Available commercial values are 16V, 25V, 35V,
50V, 63V. Well, 25V is ok for us. So, our
capacitor is completely defined as "Electrolytic
capacitor 2200uF x 25V".

3.5 The VB Programming Process

1. Start Visual Basic.
2. Create a new application or load an

existing application. Insert the necessary
object and adjust their properties and code
where necessary. Test your application
with the debugging tools Visual Basic
supplies. The debugging tools help you
locate and eliminate program errors (or
bugs) that can appear despite your best
efforts to keep them out. A
program error that you must correct
(debug) before your program will execute
properly.

3. However VB has quick compiler that
once you are typing your program, it is
compiling as you move to the next line.
Then finally run your finished application
project.

4. Connect your computer interface and run
the program, observe what happens.

5. Quit Visual Basic.

; Article no.BJAST.25046

1.4 ≈ 15.64V

This is the maximum value, for knowing the
minimum we need to subtract the ripple:

the circuit we are going to feed
requires that V ripple is not more than 2 Volt.

The nearest available size is 2200uF.
Now we need to know what is the maximum
voltage that the capacitor is going to be exposed
to. We must consider the worst case; this is

load condition, which
means without deducting the voltage drop on

es are 16V, 25V, 35V,
Well, 25V is ok for us. So, our

capacitor is completely defined as "Electrolytic

The VB Programming Process

Create a new application or load an
existing application. Insert the necessary
object and adjust their properties and code
where necessary. Test your application
with the debugging tools Visual Basic
supplies. The debugging tools help you

ate program errors (or
) that can appear despite your best

efforts to keep them out. A bug is a
program error that you must correct
(debug) before your program will execute

However VB has quick compiler that
once you are typing your program, it is
compiling as you move to the next line.
Then finally run your finished application

Connect your computer interface and run
the program, observe what happens.

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

10

Fig. 10. AC/DC converter schematic

4. SYSTEM TESTING AND INTEGRATION

4.1 Inspection and Resistance Tests

Inspection and resistance tests has to be
performed before connecting power to the
constructed circuit, to avoid system blowing up
and hours of efforts will be frustrated. By
inspection, it was ensured that all components
had been well soldered and no bridges across
conducting path. Using the ohmmeter at lowest
range, it was ensured that there is no short circuit
between supply live and neutral, and DC +ve and
–ve lines. Then the system was connected to
power.

4.2 D.C Voltage (Power Supply) Tests

The output voltage of the power supply was
measured to be 12V and 5V respectively, which
is the output of the voltage regulator in line with
the specification.

4.3 Functional Test

Here the system is checked for performance as
expected by connecting the system as show in
the diagram below. The computer system was
powered up, and then the Visual Basic
Application program (Relay Board Timer) started.
Next the control box was powered. An ON is set
anytime it is intended to leave a device powered
in the timer application software, finally the timer
is started.

From observations, after a thorough testing of
the program and the system in general, the

system performed as expected, switching
on the device and then switching it off
immediately the preset time has elapsed. The
timer program is interesting and shows features
like elapsed time, ON (Green) and OFF (Red)
Indicator colors, timer input error checks and
voltage isolation features of the control box and
so on.

Fig. 11. Relay board timer control system

setup test

5. CONCLUSION

The research, “Microcomputer Based Time
Operated Power Switching System (with
overload protection)”, proved to be a very
interesting research to embark on, however
whenever there is a task to perform, there could
be problems likely to come up. In the course of
this research different designs were tried in other
to come up with easier and simplified approach
to the “Timer Program”. Creating an error check
in the program proved to be a challenging
experience that demands a lot of thinking and
trials.

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

11

The areas of continued work could involve
improving the timer program and the control
box to control more than one device
simultaneously. Finally, any improvement on the
design would depend on an individual’s choice of
design.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Somalraju S, Murali V, Saha G, Vaidehi V.

Robust railway crack detection scheme
(RRCDS) using LED- LDR assembly.
International Conference on Recent
Trends in Information Technology
(ICRTIT). 2012;477-482.

2. Noor MH, Razak MF, Saaid MS. Design
and development of “smart basket” system
for resource optimization 2015. IEEE
Control and System Graduate Research
Colloquium (ICSGRC); 2015.

3. Goggle Search engine.

Available:www.google.com

ADC0804, ULN2803, 74LS244, 74LS157
Datasheets.

4. Anon V. Automatic transfer switch; 2013.
Available:www.wikipedia.org/wiki/Transfer
_switch
(Accessed: February 10, 2013)

5. Okafor EC. Digital devices and
applications. Immaculate Publications Ltd
Enugu, Nigeria; 2003.

6. Ezema CN, et al. Energy efficient hybrid
digital weighing scale. International Journal
of Engineering Research and Reviews.
2016;4(1):74-81.

7. Fuller JP. Reference Manual Visual Basic
Programming; 1997.

8. Tocci NS, Widmer R, Mos GL. Digital
systems: Principles and applications, 9

th

ed. Pearson Prentice hall; 2007.
9. Das M, Sanaullah HM, Sarower MM,

Hassan CK. Development of a cell phone
based remote control system: An effective
switching system for controlling home and
office appliances. International Journal of
Electrical and Computer Sciences IJECS-
IJENS. 2009;9(10).

10. Anon V. Electrical and electronic
components; 2013.
Available:www.getprice.com.au/electronic-
components.htm
(Accessed: April 1, 2013)

11. Ezema CN, et al. Design and construction
of enhanced microcontroller based
electronic voting machine with digital
display. International Journal of Electrical
and Electronics Research. 2016;4(1):93-
103.

12. Theraja BL, Theraja AK. A textbook of
electrical technology. S. Chand &
Company Ltd; 2004.

13. Paul H, Winfield H. The art of electronics.
Cambridge University Press; 1995.

14. Jain RP. Modern digital electronics, 3rd ed.
Tata Mcgraw-Hill Publishing Company
Limited; 2004.

15. Anderson WJ. Automatic transfer switches
and engine control; 2003.
Available:www.file-ee-patents.com
Accessed: February 10, 2013.

16. Mano MM. Digital logic and computer
design. Prentice Hall of India Pvt. Ltd;
2008.

17. Aguinaga J. Study of transfer switches.
MSc Thesis Report, Helsinki University of
Technology, Espoo, Finland. 2008;102.

18. Anon V. Automatic transfer switch-owner’s
manual, generac power systems Inc.,
Whitewater, USA. 2012;1-20.

19. Akparibo RA. A solar radiation tracker for
solar energy optimization. BSc Project
Report, University of Mines and
Technology, Tarkwa. 2011;20-32.

20. Anon V. Electronic components; 2013.
Available:www.futurlec.com/Components.s
html
(Accessed: April 1, 2013)

21. Anon V. Low voltage automatic transfer
switch system; 2010.
(Available:www.asco.com
Accessed: December 20, 2012)

22. Anon V. Proteus PCD design package;
2013.
Available:www.labcenter.com/products/pcb
overview.cfm
(Accessed: January 2, 2013)

23. Anon V. Automatic transfer switches
international; 2012.
Available:www.cumminspower.com
(Accessed: December 20, 2012)

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

12

APPENDIX

SOURCE CODE

Option Explicit
'Dim Msg1 As Variant
Dim Check1 As Variant
Dim KeyAscii As Integer
Dim OutNum As Integer
Dim PortState As Integer
Dim PortNum As Integer
Dim StartMsg As Variant
Dim StartTime As Variant
Dim nibble1 As Byte, nibble2 As Byte, convert As Integer, flag As Boolean
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)
Private Sub ChkBit1_Click()
If ChkBit1.Value = 1 And Text1 > 0 Then
 Timer3.Interval = 1000
 Timer3.Enabled = True
 OutNum = 1
 Call Outport
 Text1.BackColor = vbGreen
Else
 ChkBit1.Value = 0
 Text1 = 0
 End If
End Sub

Private Sub ChkBit2_Click()
If ChkBit2.Value = 1 And Text2 > 0 Then
 Timer4.Interval = 1000
 Timer4.Enabled = True
 OutNum = 2
 Call Outport
 Text2.BackColor = vbGreen
 Else
 ChkBit2.Value = 0
 Text2 = 0
End If
End Sub

Private Sub ChkBit3_Click()
If ChkBit3.Value = 1 And Text3 > 0 Then
 Timer5.Interval = 1000
 Timer5.Enabled = True
 OutNum = 4
 Call Outport
 Text3.BackColor = vbGreen
 Else
 ChkBit3.Value = 0
 Text3 = 0
End If
End Sub

Private Sub ChkBit4_Click()
If ChkBit4.Value = 1 And Text4 > 0 Then
 Timer6.Interval = 1000

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

13

 Timer6.Enabled = True
 OutNum = 8
 Call Outport
 Text4.BackColor = vbGreen
 Else
 ChkBit4.Value = 0
 Text4 = 0
End If
End Sub

Private Sub ChkBit5_Click()
If ChkBit5.Value = 1 And Text5 > 0 Then
 Timer7.Interval = 1000
 Timer7.Enabled = True
 OutNum = 16
 Call Outport
 Text5.BackColor = vbGreen
 Else
 ChkBit5.Value = 0
 Text5 = 0
End If
End Sub

Private Sub ChkBit6_Click()
If ChkBit6.Value = 1 And Text6 > 0 Then
 Timer8.Interval = 1000
 Timer8.Enabled = True
 OutNum = 32
 Call Outport
 Text6.BackColor = vbGreen
 Else
 ChkBit6.Value = 0
 Text6 = 0
End If
End Sub

Private Sub ChkBit7_Click()
If ChkBit7.Value = 1 And Text7 > 0 Then
 Timer9.Interval = 1000
 Timer9.Enabled = True
 OutNum = 64
 Call Outport
 Text7.BackColor = vbGreen
 Else
 ChkBit7.Value = 0
 Text7 = 0
End If
End Sub

Private Sub ChkBit8_Click()
If ChkBit8.Value = 1 And Text8 > 0 Then
 Timer10.Interval = 1000
 Timer10.Enabled = True
 OutNum = 128
 Call Outport
 Text8.BackColor = vbGreen
 Else

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

14

 ChkBit8.Value = 0
 Text8 = 0
End If
End Sub

Private Sub cmdExit_Click()
Call PortOut(888, 0)
Call PortOut(890, 0)
Unload Me
End
End Sub

Private Sub Command1_Click()

 If Text9 > 0 Then
 Call PortOut(888, &HFF)
 Timer2.Interval = 1000
 Timer2.Enabled = True
 Text9.BackColor = vbGreen
 flag = True
 Image1.Visible = True
 Else
 Call PortOut(888, &H0)
 Timer2.Enabled = False
 Check1 = MsgBox("Please Enter Countdown Time in Seconds in All Device Timer Box")
 flag = False

 End If
End Sub

Private Sub Command2_Click()
 Call PortOut(888, &H0)
 Timer2.Enabled = False
 Text9.BackColor = vbRed
 Text9 = 0
 flag = False
 Image1.Visible = False

End Sub

Private Sub Form_Load()
 Call PortOut(888, 0)
 Call PortOut(890, 0)
 Form1.Show
 StartMsg = MsgBox("Please,First Enter the Countdown Time in Seconds in device box then Select
Device!", vbCritical)
 Text1 = 0
 Text2 = 0
 Text3 = 0
 Text4 = 0
 Text5 = 0
 Text6 = 0
 Text7 = 0
 Text8 = 0
 Text9 = 0
 flag = False
End Sub

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

15

Private Sub Text1_KeyPress(KeyAscii As Integer)
'
' Invalidate keystroke if not a digit, or backspace.
'
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Private Sub Text2_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Private Sub Text3_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Private Sub Text4_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Private Sub Text5_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub
Private Sub Text6_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Private Sub Text7_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Private Sub Text8_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

16

Private Sub Text9_KeyPress(KeyAscii As Integer)
If (Not IsNumeric(Chr$(KeyAscii)) And Chr$(KeyAscii) <> vbBack) Then
KeyAscii = 0
Check1 = MsgBox("Please You Must Enter Time in Seconds", vbCritical)
End If
End Sub

Public Sub Timer1_Timer()
Dim Value As Byte
Dim value1 As Byte
Dim Volt As Integer
 lblTime.Caption = Format(Time, "hh:mm:ss ampm")
 'voltage level
Call PortOut(890, 1)
 Sleep (100)
 get_val ((PortIn(889) Or &H80) And &HF8)
 nibble1 = convert

 Call PortOut(890, 2)
 Sleep (100)
 get_val ((PortIn(889) Or &H80) And &HF8)
 nibble2 = convert

 Volt = (((Val("&H" & Hex(nibble2) & Hex(nibble1))) * 19.60784) / 1000)
 Select Case Volt
 Case 0: Label3.Caption = (210)
 Case 1: Label3.Caption = (220)
 Case 2: Label3.Caption = (230)
 Case 3: Label3.Caption = (240)
 Case 4: Label3.Caption = (250)
 Case 5: Label3.Caption = (260)
 End Select

 If (Label3.Caption) > 240 Then
 Call PortOut(888, 0)
 Else
 End If
 End Sub

Public Sub Outport()
If OutNum = 0 Then
 Call PortOut(888, 0)
 Else
 PortState = PortIn(888)
 PortNum = PortState + OutNum
 Call PortOut(888, PortNum)
 End If
End Sub
Private Sub Timer2_Timer()
If Text9 = 0 Then
 Timer2.Enabled = False
 OutNum = 0
 Call Outport
 Text9.BackColor = vbRed
 flag = False
 Image1.Visible = False
 Exit Sub

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

17

 Else
 Text9 = Text9 - 1
End If
End Sub

Private Sub Timer3_Timer()

 If Text1 = 0 Then
 Timer3.Enabled = False
 OutNum = 0
 Call Outport
 Text1.BackColor = vbRed
 ChkBit1.Value = 0
 Exit Sub
 Else
 Text1 = Text1 - 1
End If
End Sub

Private Sub Timer4_Timer()
If Text2 = 0 Then
 Timer4.Enabled = False
 OutNum = 0
 Call Outport
 Text2.BackColor = vbRed
 ChkBit2.Value = 0
 Exit Sub
 Else
 Text2 = Text2 - 1
End If
End Sub

Private Sub Timer5_Timer()
If Text3 = 0 Then
 Timer5.Enabled = False
 OutNum = 0
 Call Outport
 Text3.BackColor = vbRed
 ChkBit3.Value = 0
 Exit Sub
 Else
 Text3 = Text3 - 1
End If
End Sub

Private Sub Timer6_Timer()
If Text4 = 0 Then
 Timer6.Enabled = False
 OutNum = 0
 Call Outport
 Text4.BackColor = vbRed
 ChkBit4.Value = 0
 Exit Sub
 Else
 Text4 = Text4 - 1
End If
End Sub

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

18

Private Sub Timer7_Timer()
If Text5 = 0 Then
 Timer7.Enabled = False
 OutNum = 0
 Call Outport
 Text5.BackColor = vbRed
 ChkBit5.Value = 0
 Exit Sub
 Else
 Text5 = Text5 - 1
End If

End Sub

Private Sub Timer8_Timer()
If Text6 = 0 Then
 Timer8.Enabled = False
 OutNum = 0
 Call Outport
 Text6.BackColor = vbRed
 ChkBit6.Value = 0
 Exit Sub
 Else
 Text6 = Text6 - 1
End If

End Sub

Private Sub Timer9_Timer()
If Text7 = 0 Then
 Timer9.Enabled = False
 OutNum = 0
 Call Outport
 Text7.BackColor = vbRed
 ChkBit7.Value = 0
 Exit Sub
 Else
 Text7 = Text7 - 1
End If

End Sub
Private Sub Timer10_Timer()
If Text8 = 0 Then
 Timer10.Enabled = False
 OutNum = 0
 Call Outport
 Text8.BackColor = vbRed
 ChkBit8.Value = 0
 Exit Sub
 Else
 Text8 = Text8 - 1
End If

End Sub
Private Sub get_val(Value As Integer)
 Select Case Value
 Case &H80:

Ezema et al.; BJAST, 17(2): 1-19, 2016; Article no.BJAST.25046

19

 convert = 0
 Case &H88:
 convert = 1

 Case &H90:
 convert = 2
 Case &H98:
 convert = 3
 Case &HA0:
 convert = 4
 Case &HA8
 convert = 5

 Case &HB0:
 convert = 6

 Case &HB8:
 convert = 7

 Case &HC0:
 convert = 8

 Case &HC8:
 convert = 9

 Case &HD0:
 convert = 10

 Case &HD8:
 convert = 11

 Case &HE0:
 convert = 12
 Case &HE8:
 convert = 13

 Case &HF0:
 convert = 14
 Case &HF8:
 convert = 15
 Case Else:
 convert = &HFF

 End Select
 End Sub

© 2016 Ezema et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/15792

