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aNeuro-Cognitive Modeling, Department of Computer Science and Department of Psychology, Faculty of 
Science, University of Tübingen, Tübingen, Germany; bDepartment of Stochastic Simulation and Safety 
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ABSTRACT
The finite volume neural network (FINN) is an exception among 
recent physics-aware neural network models as it allows the 
specification of arbitrary boundary conditions (BCs). FINN can 
generalize and adapt to various prescribed BC values not pro
vided during training, where other models fail. However, FINN 
depends explicitly on given BC values and cannot deal with 
unobserved parts within the physical domain. To overcome 
these limitations, we extend FINN in two ways. First, we inte
grate the capability to infer BC values on-the-fly from just a few 
data points. This allows us to apply FINN in situations, where 
the BC values, such as the inflow rate of fluid into a simulated 
medium, are unknown. Second, we extend FINN to plausibly 
reconstruct missing data within the physical domain via 
a gradient-driven spin-up phase. Our experiments validate that 
FINN reliably infers correct BCs, but also generates smooth and 
plausible full-domain reconstructions that are consistent with 
the observable data. Moreover, FINN can generate precise pre
dictions orders of magnitude more accurate compared to com
petitive pure ML and physics-aware ML models – even when the 
physical domain is only partially visible, and the BCs are applied 
at a point that is spatially distant from the observable volumes.
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Introduction

Physics-informed machine learning approaches incorporate physical 
knowledge as inductive bias (Battaglia et al. 2018). When applied to 
corresponding physical domains, they yield improvements in generaliza
tion and data efficiency when contrasted with pure machine learning 
(ML) systems (Karlbauer et al. 2021; Raissi, Perdikaris, and Karniadakis  
2019). Moreover, inductive biases often help ML models to play down 
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their “technical debt” (Sculley et al. 2015), effectively reducing model 
complexity while improving model explainability. Several recently pro
posed approaches augment neural networks with physical knowledge (Le 
Guen and Thome 2020; Li et al. 2020; Long et al. 2018; Seo, Meng, and 
Liu 2019; Sitzmann et al. 2020).

But these models do neither allow including – or structurally capturing – 
explicitly defined physical equations, nor do they generalize to unknown initial 
or boundary conditions (Raissi, Perdikaris, and Karniadakis 2019). The recently 
introduced finite volume neural network (FINN) (Karlbauer et al. 2022; 
Praditia et al. 2021, 2022) accounts for both: it combines the learning abilities 
of artificial neural networks with physical and structural knowledge from 
numerical simulations by modeling partial differential equations (PDEs) in 
a mathematically compositional manner. So far, FINN is the only physics- 
aware neural network that can handle boundary conditions that were not 
considered during training. Nonetheless, boundary conditions (BCs) need to 
be known and presented explicitly. But not even FINN can predict processes 
where unknown boundary conditions apply. In realistic application scenarios, 
however, a quantity of interest is measured for a specific, limited region only. 
The amount of the quantity that flows into the observed volumes through 
boundaries is notoriously unknown and hitherto impossible to predict. On top 
of that, the available systems are not able to expand their predictions beyond the 
boundaries of the observable volumes. One example of relevance is weather 
forecasting: a prediction system observes, e.g., precipitation or cloud density for 
a limited area. Incoming weather dynamics from outside of the observed region 
that strongly control the processes inside the domain cannot be incorporated, 
turning into one of the main error sources in numerical simulations.

Here, we expand on previous work by Can Horuz et al. (2022), which 
presented an approach to infer the explicitly modeled BC values of 
FINN on-the-fly, while observing a particular spatiotemporal process. 
The approach is based on the retrospective inference principle (Butz 
et al. 2019; Otte, Karlbauer, and Butz 2020), which applies a prediction 
error-induced gradient signal to adapt the BC values of a trained FINN 
model. Only very few data points are required to find boundary condi
tions that best explain the recently observed process dynamics and, 
moreover, to predict the observed process with high accuracy in closed- 
loop. We compare the quality of the inferred boundary conditions and 
the prediction error of FINN with two state-of-the-art architectures, 
namely, DISTANA (Karlbauer et al. 2020) and PhyDNet (Le Guen and 
Thome 2020).

The distributed spatiotemporal graph artificial neural network architec
ture (DISTANA) is a hidden state inference model for time-series predic
tion. It encodes two different kernels in a graph structure: First, the 
prediction kernel (PK) network predicts the dynamics at each spatial 
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position while being applied to each node of the underlying mesh. Second, 
the transition kernel (TK) network coordinates the lateral information flow 
between PKs, thus allowing the model to process spatiotemporal data. The 
PKs consist of feed-forward neural networks combined with long short- 
term memory (LSTM) units (Hochreiter and Schmidhuber 1997). Similar to 
Karlbauer et al. (2020), we use just linear mappings as TKs in this work 
since the data considered here is represented on a regular grid and does not 
require a more complex processing of lateral information. All PKs and TKs 
share weights. DISTANA has been shown to perform better compared to 
convolutional neural networks (CNN), recurrent neural networks (RNN), 
convolutional LSTM, and similar models (Karlbauer et al. 2020, 2021). The 
model’s performance and its applicability to spatiotemporal data makes it 
a suitable pure ML baseline for this paper.

PhyDNet is a physics-aware encoder-decoder model. First, it encodes 
the input at time step t. Afterward, the encoded information is disen
tangled into two separate networks, PhyCell and ConvLSTM-Cell. 
Inspired from physics, PhyCell implements spatial derivatives up to 
a desired order and can approximate solutions of a wide range of PDEs, 
e.g., heat equation, wave equation, and the advection-diffusion equation. 
Moreover, the model covers the residual information that is not subsumed 
by the physical norms. Concretely, the ConvLSTM-Cell complements the 
PhyCell and approximates the residual information in a convolutional 
deep learning fashion. The outputs of the networks are combined and 
fed into a decoder in order to generate a prediction of the unknown 
function at time t þ 1 (Le Guen and Thome 2020). PhyDNet is a state- 
of-the-art physics-aware neural network, which is applicable to advection- 
diffusion equations and was therefore selected as a physics-aware baseline 
in this study.

Our results indicate that FINN is the only architecture that reliably 
infers BC values and outperforms all competitors in predicting non- 
linear advection-diffusion-reaction processes when the BC values are 
unknown. As an extension to Can Horuz et al. (2022), we additionally 
hide 40% of the data that connect the boundaries with the simulation 
domain and demonstrate FINN’s ability to accurately infer this hidden 
information in agreement with the boundary condition.

Finite Volume Neural Network

The finite volume neural network (FINN) introduced in (Karlbauer et al.  
2022; Praditia et al. 2021) is a physics-aware neural network model that 
combines the well-established finite volume method (FVM) (Moukalled, 
Mangani, and Darwish 2016) as an inductive bias with the learning 
abilities of deep neural networks. FVM discretizes a continuous partial 
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differential equation (PDE) spatially into algebraic equations over a finite 
number of control volumes. These volumes have states and exchange 
fluxes via a clear mathematical structure. The enforced physical proces
sing within the FVM structure constrains FINN to implement (partially) 
known physical-laws, resulting in an interpretable, well-generalized, and 
robust method.

Architecture

FINN solves PDEs that express non-linear spatiotemporal advection-diffusion 
-reaction processes, formulated in Karlbauer et al. (2022) as 

@u
@t
¼ DðuÞ

@2u
@x2 � vðuÞ

@u
@x
þ qðuÞ; (1) 

where u is the unknown function of time t and spatial coordinate x, which 
encodes a state. The objective of a PDE solver (if the PDE was fully known) is 
to find the value of u in all time steps and spatial locations. However, 
Equation 1 is composed of three, often unknown functions, which modify u, 
i.e., D, v, and q. D is the diffusion coefficient, which controls the equilibration 
between high and low concentrations, v is the advection velocity, which 
represents the movement of concentration due to the bulk motion of a fluid, 
and q is the source/sink term, which increases or decreases the quantity of u 
locally.

These unknown functions are approximated by neural network mod
ules, which imitate the structure of Equation 1 while applying it to a set 
of spatially discretized control volumes. Figure 1 and Equation 2 illus
trate how FINN models the PDE for a single control volume i. The first- 
and second-order spatial derivatives @u

@x ;
@2u
@x2

� �
, for example, can be 

approximated with a linear layer, φN , aiming to learn the FVM stencil, 
i.e., the exchange terms between adjacent volumes. In the current work, 
the first-order flux multiplier (i.e., advection velocity) is approximated 
by neural networks which take u as input. This applies to both Allen– 
Cahn and Burgers’ benchmarks and the networks have the size 
½1; 10; 20; 10; 1�, which makes 420 parameters (422 if BCs are learnt in 
the training as in Section 4.2). 
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¼ DðuiÞ
zfflffl}|fflffl{
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@2ui

@x2

z}|{
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@ui

@x

z}|{

φNi�
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φNiþ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fi¼fi� þfiþ

þ qðuiÞ
zffl}|ffl{

Φψ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Si

(2) 

Furthermore, and in order to account for the structure of Equation 1, FINN 
introduces two kernels that are applied to each control volume with index i; 
similar to how convolution kernels are shifted over an input image. First, 
the flux kernel F ¼ f� þ fþ models both the diffusive DðuÞ @2u

@x2 and the 
advective flux vðuÞ @u

@x, respectively, via the feedforward network modules 
φD and φA. Second, the state kernel S models the source/sink term q for 
each volume. All modules’ outputs are summed up to conclude in @u

@t , which 
results in a system of ODEs with respect to time that is solved by NODE 
(Chen et al. 2018). Accordingly, FINN predicts u in time step ðt þ 1Þ, that 

is ûðtþ1Þ, and the error is computed via L ûðtþ1Þ
i ; uðtþ1Þ

i

� �
, where i corre

sponds to the discretized spatial control volume index and L is the mean 
squared error. FINN operates entirely in a closed-loop manner, i.e., only 
the initial condition uðt¼0Þ is fed into the model to unroll a prediction ûð1:TÞ

into the future, with sequence length T. Note that learning the diffusive 
flux has been demonstrated in earlier studies (Karlbauer et al. 2022; 
Praditia et al. 2021) and is not part of this work. Therefore, instead of 
approximating DðuÞ by a neural network φD, we set it to the actual value 
used for data generation.

Figure 1. The composition of the modules to represent and learn different parts of an advection- 
diffusion equation. Red lines indicate gradient flow during training and retrospective inference. 
Figure from Karlbauer et al. (2022).
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The connection scheme of different kernels and modules ensures compli
ance with fundamental physical rules, such that advection can spatially pro
pagate exclusively to the left or to the right (R in Figure 1). Note that we only 
consider one-dimensional problems in this work, although FINN can also be 
applied to higher-dimensional equations. The reader is referred to Karlbauer 
et al. (2022) and Praditia et al. (2021) for an in-depth depiction of the model.

Boundary Condition Inference

The specification of boundary conditions (BCs) is required to obtain a unique 
solution of a PDE. Common BCs are Dirichlet (fixed values for u), periodic 
(any quantity leaving the field on one side enters on the opposing side), or 
Neumann (the derivative of u is specified at the boundary). In contrast to 
state-of-the-art physics-aware neural networks (Le Guen and Thome 2020; 
Long et al. 2018; Raissi, Perdikaris, and Karniadakis 2019; Yin et al. 2021), 
FINN allows the explicit formulation of a desired BC. Thus, FINN can deal 
with not only simple boundary conditions (Dirichlet or periodic) but also 
more complicated ones such as Neumann (Karlbauer et al. 2022).

FINN uses the boundary conditions strictly. The solid implementation of 
a BC type (Dirichlet, periodic, Neumann) enables the model to read out 
unknown/unseen BC values of a given dataset. So far, however, it was neces
sary to use explicit BCs for solving a PDE. However, due to the explicit 
integration of BCs into the formulation of FINN, it is predestined to learn 
which BC values best describe a specific dataset – during both training and 
prediction. Here, we show that it is possible to infer not only BC values in 
a much larger range via retrospective inference, but also to recover parts of the 
simulation domain that were unavailable to the model during training.

From a broader perspective, the need for BCs is often a modeling artifact for 
real-world problems – simply because we do not have the means to simulate 
an entire system but need to restrict ourselves to a bounded subdomain. Even 
if these boundaries do not exist in the original system, our resulting model 
needs to identify their conditions for accurate forecasting. Our aim is to infer 
appropriate BCs and their values quickly, accurately, and reliably. Technically, 
a BC value is inferred by setting it as a learnable parameter and projecting the 
prediction error over a defined temporal horizon onto this parameter. 
Intuitively, the determination of the BC values can thus be described as an 
optimization problem where, instead of the network weights, the BC values are 
subject to optimization.

Benchmark PDEs

We performed experiments on two different PDEs and will first introduce 
these equations and later report the respective experiments and results.

APPLIED ARTIFICIAL INTELLIGENCE e2204261-1361



Burgers’ Equation

Burgers’ equation is frequently used in different research fields to model, e.g., 
fluid dynamics, nonlinear acoustics, or gas dynamics (Fletcher 1983; 
Naugolnykh et al. 2000). It offers a useful toy example formulated as a 1D 
equation in this work as 

@u
@t
¼ � vðuÞ

@u
@x
þ D

@2u
@x2 ; (3) 

where u is the unknown function and vðuÞ is the advective velocity, which is 
defined as an identity function vðuÞ ¼ u here. The diffusion coefficient D is set 
to 0:01=π for data generation. During training, Burgers’ equation has constant 
values on the left and right boundaries defined as uð� 1; tÞ ¼ uð1; tÞ ¼ 0. 
However, these were modified to take different symmetric values at inference 
in order to assess the ability of the different models to cope with such 
variations. The initial condition is defined as uðx; 0Þ ¼ � sinðπxÞ.

Allen–Cahn Equation

Allen–Cahn is chosen and also defined as a 1D equation that could have 
periodic or constant boundary conditions. It is typically applied to model 
phase-separation in multi-component alloy systems and has also been used by 
Raissi, Perdikaris, and Karniadakis (2019) to analyze the performance of their 
physics-informed neural network (PINN). The equation is defined as 

@u
@t
¼ D

@2u
@x2 þ RðuÞ; (4) 

where the reaction term takes the form RðuÞ ¼ 5u � 5u3. The diffusion coeffi
cient is set to D ¼ 0:05, which is significantly higher than in Karlbauer et al. 
(2022), where it was set to D¼ 10� 4. The reason for this decision is to scale up 
the diffusion relative to the reaction, such that the effects of the BCs are more 
apparent.

Experiments

We have conducted three different experiments. First, the ability to learn BC 
values during training is studied in Section 4.1. Afterward, we analyze the 
ability of the pre-trained models to infer unknown BC values in Section 4.2. 
Finally, in Section 4.3, we investigate the ability of the models to reconstruct 
40% of the simulation domain while still inferring the BC of the dataset. Data 
were generated by numerical simulations using the Finite Volume Method, 
similarly to Karlbauer et al. (2022).
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Learning with Fixed Unknown Boundary Conditions

This experiment is conducted in order to discover whether it is possible for the 
model to approximate the boundary conditions of the given dataset. It can be 
utmost useful in real-world scenarios to determine the unknown BC values 
during training, where the model determines the BC values according to the 
data without depending on prior assumptions.

The shape of the generated training data was ð256; 49Þ, where Nx ¼ 49 
specifies the discretized spatial locations and Nt ¼ 256 the number of simula
tion steps. To train the models, we used the first 30 time steps of the sequence. 
The extrapolation data (remaining 226 time steps) is used to compute the test 
error. The learnt BC values are shown in Table 1 that neither DISTANA nor 
PhyDNet can deduce reasonable BC values.

The results imply that the complex nature of the equations combined with 
large ranges of possible BC values indeed yields a challenging optimization 
problem, in which gradient-based approaches can easily get stuck in local 
minima. For example, the fact that FINN uses NODE (Chen et al. 2018) to 
integrate the ODE may lead to the convergence into a stiff system and, hence, 
unstable solutions. Moreover, as FINN employs backpropagation through 
time (BPTT), it can easily produce vanishing/exploding gradients. During 
preliminary studies, however, we realized that FINN benefits from shorter 
sequences in this regard. Thus, only the first 30 time steps of the data are 
employed. As a result, FINN identifies the correct BCs and – although this was 
not necessarily the goal – even yields a lower test error.

Neither PhyDNet nor DISTANA provide the option to meaningfully repre
sent boundary conditions. Accordingly, the BCs are fed explicitly into the 
model on the edges of the simulation domain. The missing inductive bias of 
how to use these BC values, however, seemed to prevent the models to 
determine the correct BC (c.f. Table 1). Nevertheless, both PhyDNet and 
DISTANA can approximate the equation fairly accurately (albeit not reaching 
FINN’s accuracy), even when the determined BC values deviate from the true 
values. The learnt BC values by the two models do not converge to any point 
and persist around the initial values, which are ½0:5; � 0:5� for Burgers’ and 
½� 0:5; 0:5� for Allen–Cahn. Similarly, they remain around 0 when we set the 

Table 1. Comparison of the training error, test error, and the learnt BC values of all models. For 
each trial, the average results over 5 repeats are presented. Burgers’ dataset BC ¼ ½1:0; � 1:0� and 
Allen–Cahn dataset BC ¼ ½� 1:0; 1:0�.

Eqn. Model Training Error Test Error Learnt BC

Burgers’ DISTANA ð4:6� 3:0Þ � 10� 4 1:69� 1:14 ½0:5460� 0:0582; � 0:5179� 0:0455�
PhyDNet ð2:2� 0:5Þ � 10� 5 0:11� 0:07 ½0:3735� 0:3259; � 0:4068� 0:1849�
FINN ð9:6� 9:9Þ � 10� 8 5� 4 � 10� 4 ½1:0004� 0:0002; � 1:0004� 0:0002�

Allen–Cahn DISTANA ð1:7� 2:2Þ � 10� 4 1:50� 1:67 ½� 0:5573� 0:0372; 0:5293� 0:0149�
PhyDNet ð6:4� 3:1Þ � 10� 6 0:16� 0:03 ½� 0:5060� 0:0858; 0:4438� 0:0898�
FINN ð3:4� 4:5Þ � 10� 7 1� 1 � 10� 4 ½� 0:9955� 0:0049; 0:9994� 0:0006�
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initial BC values to 0. We conclude that PhyDNet and DISTANA do not seem 
to consider the BC values.

On the other hand, FINN appears to benefit from the structural knowl
edge about BCs when determining their values. The BC values in Table 1 
converged from ½4:0; � 4:0� to ½1:0; � 1:0�, well maintaining them for the 
rest of the training (c.f. first row of Figure 2). As it can be seen on 
the second row of Figure 2, FINN also manages to infer BC values for 
Allen–Cahn in a larger range. In Figure 2, FINN demonstrates an accu
rate determination of the true BCs without under- or overestimating their 
actual values once the gradients converged to zero. Note that we know the 
true BC values since we generated our own synthetic data. However, it 
would be possible to trust FINN, even when the BC values are unknown 
to the researcher. During training, the gradients of the boundary condi
tions converge to 0, maintaining the correctly learnt BC (see the right 
plots of Figure 2).

Boundary Condition Inference with Trained Models

The main purpose of this experiment is to investigate the possibility to 
infer an unknown BC value after having trained a model on a different BC 
value. The trained models are evaluated for their ability to infer the 
underlying BC values of the test data (generated by the same equation as 
the training data). Consequently, only the BCs are set as learnable para
meters, which results in two parameters. The models infer the values for 

Figure 2. Convergence of the boundary conditions and their gradients during training in FINN. The 
dataset BC ¼ ½1:0; � 1:0� for Burgers’ on the first row. On the second row for Allen–Cahn with 
BC ¼ ½� 6:0; 6:0�:.
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left- and right-boundary conditions through gradient-based optimization. 
Accordingly, we examined two different training algorithms while applying 
the identical inference process when evaluating the BC inference ability of 
the trained models.

Multi-BC Training and Inference
Ten different sequences with randomly sampled BC values from the ranges 
½� 1; 1� for Burgers’ and ½� 0:3; 0:3� for Allen–Cahn’s equation were used as 
training data. The sequences were generated with t ¼ ½0; 1�, Nt ¼ 128 and 
Nx ¼ 49. As the BCs of each sequence are different, the models have the 
opportunity to learn the effect of different BC values on the equation, allowing 
the weights to be adjusted accordingly.

During inference, the models had to infer BC values outside of the respec
tive training ranges (up to ½4:0; � 4:0� for Burgers’ and ½� 5:0; 5:0� for Allen– 
Cahn in our studies) when observing 30 simulation steps only. The rest of the 
dataset, that is, the remaining 98 time steps, was used for simulating the 
dynamics in closed-loop depicted in Table 2 as test error. As can be seen in 
Table 2, FINN is superior in this task compared to DISTANA and PhyDNet. 
All three models have small training errors, but DISTANA and PhyDNet 
mainly fail to infer the correct BC values as well as to predict the equations 
accurately. FINN, however, manages to find the correct BC values with high 
precision and exceptionally small deviations. After finding the correct BC 
values, FINN manages to predict the equations correctly.

Figure 3 shows how the prediction error changes in different models as 
the BC range drifts away from the BC range of the training set. On the other 
hand, Figure 4 depicts the predictions of the multi-BC trained models after 
inference, highlighting once again the precision of FINN.

Single-BC Training and Inference
In this experiment, the models receive only one sequence with t ¼ ½0; 2�, 
Nt ¼ 256 and Nx ¼ 49 in training. The BC values of the dataset are constant 
and set to ½0:0; 0:0�. Hence, the models do not see how the equations behave 
under different BC values. This is substantially harder compared to the 

Table 2. Comparison of multi-BC training and prediction errors along with the inferred BC values 
by the corresponding models. The experiments were repeated 5 times for each trial and the 
average results are presented. Burgers’ dataset BC ¼ ½3:0; � 3:0� and Allen–Cahn dataset BC 
¼ ½� 1:0; 1:0�.

Eqn. Model Training error Test error Inferred BC

Burgers’ DISTANA ð3:9� 1:2Þ � 10� 5 3:19� 0:14 ½4:4� 1:12; � 4:0� 1:27�
PhyDNet ð1:9� 1:0Þ � 10� 4 4:04� 0:29 ½3:6� 2:03; � 4:4� 2:49�
FINN ð1:5� 1:3Þ � 10� 7 0:05� 0:02 ½3:1� 0:06; � 3:1� 0:06�

Allen–Cahn DISTANA ð7:6� 4:4Þ � 10� 5 0:05� 0:02 ½� 1:05� 0:189; 3:20� 2:302�
PhyDNet ð1:2� 0:6Þ � 10� 4 0:09� 0:07 ½� 1:24� 0:524; 0:22� 0:451�
FINN ð2:6� 3:7Þ � 10� 6 ð8� 8Þ � 10� 6 ½� 0:99� 0:006; 0:99� 0:005�
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Figure 3. Average prediction errors of 5 multi-BC trained models for Allen–Cahn-Equation. As 
the BC-range grows larger, the error and the standard deviation (SD) increases. This phenomenon 
applies to FINN as well (SD range from 4� 10� 6 to 1� 10� 3). However, due to the scale of the 
plot, it is not possible to see this shift.

Figure 4. The predictions of the multi-BC trained Allen–Cahn dynamics after inference. First row 
shows the models’ predictions over space and time. Areas below the red line are the 30 simulation 
steps that were used for inference and filled with data for visualization. Test error is computed only 
with the upper area. Second row shows the predictions over x and uðt ¼ 1; xÞ, i.e., u in the last 
simulation step. Data is represented by the red dots and the predictions by the blue line. Best 
models are used for the plots.

Table 3. Comparison of single-BC training and prediction errors along with the inferred BC values 
by the corresponding models. The experiments were repeated 5 times for each trial and the 
average results are presented. Burgers’ dataset BC ¼ ½3:0; � 3:0� and Allen–Cahn dataset BC 
¼ ½� 1:0; 1:0�.

Eqn. Model Training error Test error Inferred BC

Burgers’ DISTANA ð8:4� 1:7Þ � 10� 7 4:14� 0:82 ½� 2:5� 3:41;þ3:0� 7:31�
PhyDNet ð1:4� 0:9Þ � 10� 4 5:12� 0:47 ½þ4:1� 3:24;þ2:5� 8:36�
FINN ð1:7� 1:5Þ � 10� 7 0:17� 0:16 ½þ3:0� 0:01; � 3:0� 0:01�

Allen–Cahn DISTANA ð1:5� 0:4Þ � 10� 5 0:09� 0:03 ½� 3:87� 3:18; 0:12� 11:26�
PhyDNet ð4:8� 2:2Þ � 10� 5 0:08� 0:04 ½� 1:35� 1:23; 1:92� 1:610�
FINN ð2:9� 4:2Þ � 10� 6 ð1:7� 1:4Þ � 10� 5 ½� 0:99� 0:01; 0:99� 0:006�
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previous experiment, as clearly reflected in the results (see Table 3 and 
Figure 5). Despite low training errors, DISTANA and PhyDNet fail to infer 
correct BC values. The prediction errors when testing in closed-loop after BC 
inference also indicate that these models have difficulties solving the task. 
Although FINN manages to capture the correct BC values, its prediction error 
increases significantly when compared to the training error, particularly in the 
case of Burgers’ equation. Nonetheless, FINN produces the lowest test error by 
orders of magnitude for both equations. These results demonstrate that FINN 
significantly benefits from sequences with various BC values, enabling it to 
infer and predict the same equations over a larger range of novel BCs. Due to 
space constraints, we only report the results of one set of boundary conditions 
for each experiment. We observed similar results in experiments with several 
other BC values.

Physical Domain Reconstruction

Our final experiment differs from the previous two in that not only the BCs 
were inferred, but also a large part of the simulation domain itself. The 
training process is similar to Section 4.2.1. Ten sequences are created with 
t ¼ ½0; 1�, Nt ¼ 128 and Nx ¼ 29 (compared to 49 earlier). In analogy to 
Section 4.2.1, we train the models on a variety of different BC values randomly 
sampled from the same range as before, that is, ½� 1; 1� and ½� 0:3; 0:3� for 
Burgers’ and Allen–Cahn’s equation, respectively. The inference dataset is 
generated with Nx ¼ 49 and the outside-of-training-range BCs are set to 
½1:5; � 1:5� for Burgers’ and ½� 1:0; 1:0� for Allen–Cahn. At inference, the 
models’ field of view remains restricted to the 29 out of 49 spatial data points. 

Figure 5. The predictions of the single-BC trained Burgers’ dynamics after inference. First row 
shows the models’ predictions over space and time. Areas below the red line are the 30 simulation 
steps that were used for inference and filled with data for visualization. Test error is computed only 
with the upper area. Second row shows the predictions over x and uðx; t ¼ 2Þ, i.e., u in the last 
simulation step. Data is represented by the red dots and the predictions by the blue line. Best 
models are used for the plots.
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Moreover, the BCs are also unknown to the models. Intuitively, the inference 
process could correspond to the situation where the models obtain data only 
from Germany. However, they need to predict the weather not only for 
Germany but also for the whole of Central Europe. Needless to say that the 
models need to infer reasonable BC values for the larger domain as well.

In order to approach this problem, we applied active tuning (AT, Otte, 
Karlbauer, and Butz 2020). Technically, along with retrospectively inferring 
unknown values, that is, BCs and unobserved domain sections, AT involves 
forward passing cycles to incrementally clean its current solution and make it 
consistent with the model dynamics before generating predictions. The latter 
can be regarded as a repeatedly applied spin-up phase known from physics 
simulations. The algorithm and task are visualized in Figure 6.

As our approach is a gradient-based optimization procedure, the weight 
updates and error minimization are realized on the basis of the error signal (we 
apply the mean squared error). However, the error signal does not represent 
the internal state of the models. That is, a predicted ut

i and ut
iþ1 (i.e., two 

adjacent volumes) can differ meaningfully, but still yield a small error when 
unrolling the model into the future. Notwithstanding, such large local differ
ences are not a realistic scenario. In fact, FINN’s internal state can provide 
a measure for such nonrealistic states, as the adjacent volumes are computed 
with respect to each other in the underlying FVM. Therefore, we optimize and 
search for an arbitrary solution at t ¼ � R and recruit the model’s simulation 
output at t ¼ 0 (starting from t ¼ � R) as initial state. A visualization of how 
the model tunes its predictions in the past is provided in Figure 7 for R ¼ 10. 
Although the optimized retrospective initial states at t ¼ � R are ragged, FINN 
smooths its prediction during the forward pass and thus produces an initial 
state at t ¼ 0 that is consistent with the model’s physics and has been cleared 
from all implausible artifacts. The initial state prediction of all models can be 

Figure 6. Active tuning algorithm. R corresponds to the retrospective tuning horizon as stated in 
Otte, Karlbauer, and Butz (2020). The blue column represents the retrospective initial state and the 
BCs, which are optimized depending on the gradient-signal. The red areas in the middle of the 
columns are so-called seen areas from which the models receive information and that provide the 
error signal. The brown areas are called unseen area and models need to reconstruct the equation, 
i.e., the u values for the entire domain. Black and red arrows represent the model forward and 
backward passes, respectively. The gradient information (red arrows) is used to infer the BCs.
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seen in Figure 8 DISTANA and PhyDNet neither manage to predict how the 
equation would unfold for the seen domain after inference (i.e., time steps 
between 60 � 128), nor can they reconstruct the unseen domain. Figure 8(b) 

Figure 7. Retrospective state inference. The red lines at t ¼ 0 show the ground truth, i.e., the initial 
state of the dataset. The brownish faces indicate the seen area. Best models are used.

Figure 8. Initial state inference. Figures depict the initial state prediction of the models for 5 trials. 
Each light blue line corresponds to one trial. Dataset BC are [1.5, −1.5]. BC-Errors are computed as 
root mean squared error and are depicted as red lines showing the deviation from the red dots 
which represent the actual BC values. The plots correspond to the results reported in Table 4.

Table 4. Comparison of seen domain and whole-domain prediction errors along with the 
inferred BC values by the corresponding models. The experiments were repeated 5 times for 
each trial and the average results are presented. Burgers’ dataset BC ¼ ½1:5; � 1:5� and Allen–Cahn 
dataset BC ¼ ½� 1:0; 1:0�. R = 10. As 60 data points were used in this experiment (compared to 30 
time steps in the previous ones) an error comparison with the other experiments is not possible.

Eqn. Model Seen domain error Whole domain error Inferred BC

Burgers’ DISTANA 0:165� 0:133 0:166� 0:136 ½3:19� 0:819; � 2:12� 0:451�
PhyDNet 0:243� 0:056 0:715� 0:284 ½0:81� 3:415; � 0:27� 1:314�
FINN 0:006� 2 � 10� 5 0:003� 3 � 10� 5 ½1:49� 0:008; � 1:49� 0:003�

Allen–Cahn DISTANA 0:272� 0:173 0:466� 0:422 ½þ1:195� 2:76; � 1:07� 4:02�
PhyDNet 0:517� 0:270 0:736� 0:236 ½� 0:003� 0:26; � 0:83� 1:07�
FINN ð2� 0:5Þ � 10� 5 0:013� 0:003 ½� 1:038� 0:07;þ0:67� 0:03�
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clearly shows how DISTANA can make use of the information it receives as it 
predicts well inside the seen data boundaries. However, DISTANA is incap
able of reconstructing the areas from which it receives no information. We see 
this as further evidence for the importance of incorporating physical inductive 
biases, which are not present in DISTANA.

The quantitative results depicted in Table 4 demonstrate, once again, clear 
superiority of FINN compared to DISTANA and PhyDNet. The seen domain 
error corresponds to the error for the time steps after the inference and within 
the domain from which the models obtained information during inference. 
The whole domain error, on the other hand, subsumes the seen domain error 
while also including the reconstruction error from the unseen domain. The 
larger whole-domain error over the seen domain error of FINN for Burgers’ 
Equation is likely caused by the high non-linearity of Burgers’ equation in the 
middle of the spatial domain, compared to more linear dynamics on the edges 
(c.f. Figure 5). Another interesting point is the inferred BC values of FINN. 
Despite the significant increase in task complexity and the availability of less 
data compared to the previous experiments, FINN still achieves accurate BC 
predictions. However, this is not the case for the right BC in Allen–Cahn. The 
predicted value stays consistently below the true BC. This might result from 
arbitrary and nonrealistic BC values chosen for inference data. Furthermore, 
the BCs contravene with the initial state. As depicted in Figure 7b at t ¼ 0, the 
right edge of the data’s initial state (red line) is as low as � 0:91. The gradients 
reaching the spatial domain push the prediction to fit the initial state. On the 
contrary, gradients going to the boundary conditions drive the prediction 
upward because the right BC is 1. This is evident in Figure 7b, where the 
predictions of the right-hand side tend to raise toward the BC. FINN's reaction 
to this nonrealistic contradiction, however, underlines its strive to find a most 
plausible and overall consistent explanation. Note that this situation does not 
occur in the left BC because both the domain and the BC have a higher match.

Physical Domain Reconstruction with Noise

In this section, we tested the performance of the models to reconstruct the 
missing spatial data and infer unknown boundary conditions from noisy data. 
The noise robustness of FINN has formerly been demonstrated in Karlbauer 
et al. (2022). Therefore, the same trained models as in Section 4.3 are used. 
However, at inference, the models now receive the masked and noisy data.

Data is generated with the same parameters besides that normal-distributed 
noise with standard deviation 0:05 is added, following the experimental setup 
in Karlbauer et al. (2022). Figure 9 gives an idea how strong the noise is in 
relation to the signal’s magnitude. As it is harder to realize the underlying 
structure of the equation with noisy data, a longer sequence was needed to 
make FINN generate meaningful predictions. Thus, we used 80 time steps 
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instead of 60 in the previous section. The inference length and data noise are 
the only differences in the experiment design. The test sequence, i.e., the 
remaining 42 time steps from the whole sequence, does not contain any noise.

The results in Table 5 support the previous indications. FINN’s robust and 
adaptable architecture allows to extract an accurate structure from noisy data, 
whereas the other two models fail to generate meaningful predictions. 
Notwithstanding, noisy data brings its challenges and this can also be seen 
in FINN’s performance. In particular, the standard deviations of the inferred 
BCs are relatively high compared to the results in Table 4.

Discussion

The aim of our first experiment (see Section 4.1) was to assess whether 
FINN, DISTANA, and PhyDNet are able to learn the fixed and 
unknown Dirichlet BC values of data generated by Burgers’ and 
Allen–Cahn equations. This was achieved by setting the value of 
the BC as a learnable parameter to optimize it along with the models’ 

Figure 9. FINN prediction with noisy data. The red dots show the data and the blue line is the 
prediction of the model. The area between brown lines indicates the seen area. Best models are 
used.

Table 5. Comparison of seen domain and whole-domain prediction errors along with the 
inferred BC values by the corresponding models inferred on noisy data. The experiments were 
repeated 5 times for each trial and the average results are presented. Burgers’ dataset BC 
¼ ½1:5; � 1:5� and Allen–Cahn dataset BC ¼ ½� 1:0; 1:0�. R = 10. As 80 data points were used in 
this experiment (compared to 30 and 60 time steps in the previous ones) a direct error comparison 
with the other experiments is not possible.

Eqn. Model Seen domain error Whole domain error Inferred BC

Burgers’ DISTANA 0:148� 0:080 0:160� 0:101 ½4:20� 0:919; � 3:22� 1:480�
PhyDNet 0:259� 0:021 0:658� 0:166 ½0:45� 3:415; � 1:83� 2:253�
FINN ð9:3� 0:3Þ � 10� 3 ð5:6� 0:2Þ � 10� 3 ½1:50� 0:016; � 1:49� 0:010�

Allen–Cahn DISTANA 0:211� 0:163 0:444� 0:428 ½þ0:66� 1:414; � 0:67� 2:621�
PhyDNet 0:603� 0:301 0:839� 0:363 ½� 0:07� 0:248; � 0:18� 0:269�
FINN ð3:94� 1:8Þ � 10� 5 0:009� 0:011 ½� 0:884� 0:44;þ0:82� 0:141�

APPLIED ARTIFICIAL INTELLIGENCE e2204261-1371



weights during training. The results, as detailed in Table 1, suggest two 
conclusions: First, all models can satisfactorily approximate the equa
tions by achieving error rates far below 10� 1. Second, only FINN can 
infer the BC values underlying the data accurately. Although DISTANA 
and PhyDNet simulate the process with high accuracy, they apparently 
do not exhibit an explainable and interpretable behavior. Instead, they 
treat the BC values in a way that does not reflect their true values and 
physical meaning. This is different in FINN, where the inferred BC 
values can be extracted and interpreted directly from the model. This 
is of great value for real-world applications, where data often come with 
an unknown BC, such as in weather forecasting or traffic forecasting in 
a restricted simulation domain.

In the second experiment (see Section 4.2), we addressed the question of 
whether the three models can infer an unknown BC value when they have already 
been trained on (a set of) known BC values. Technically, this is a traditional test for 
generalization. The results in Table 2 suggest that both DISTANA and PhyDNet 
decently learn the effect of the different BC values on the data when being trained 
on a range of BC values. Once the models are trained on one single BC value only 
(c.f. Table 3); however, the inferred BC values of DISTANA and PhyDNet are far 
off the true values. This is different for FINN: although the test error on Burgers’ 
drops considerably, FINN still determines the underlying BC values in both cases 
accurately, even when trained on one single BC value only.

In the third experiment (see Section 4.3), we extended the BC inference and 
examined the ability of the models to simultaneously reconstruct a solid 
amount of data surrounding the simulation domain. Indeed, Table 4 shows 
that FINN is able to reconstruct a physical spatial domain while only receiving 
information from a small domain. In order to achieve this goal, a temporal 
gradient-based algorithm, Active Tuning (Otte, Karlbauer, and Butz 2020), 
was applied to optimize domain and BC values in the past. Afterward, these 
optimized values were employed as initial conditions such that the model 
could tune its prediction solely depending on its own internal dynamics. With 
this method, FINN reaches a smooth initial state on the basis of which it starts 
its prediction at t ¼ 0 (see Figures 7 and 8). A key advantage of FINN 
compared to DISTANA and PhyDNet is recognized in the physical knowledge 
it has about the equations (i.e., Burgers’ and Allen–Cahn). In the last experi
ment (see Section 4.4, we created a more challenging task and added noise to 
the data. We used essentially the same experimental design (except for longer 
inference sequences) and showed FINNs’ robustness in noisy-data regimes.

Our main aim was to infer physically plausible, interpretable BC 
values and reconstruct a spatial domain. Although FINN is a well- 
tested model and has been compared with several models such as 
ConvLSTM, TCN, and CNN-NODE in Karlbauer et al. (2022), we 
applied FINN to 1D equations in this work only. However, since the 
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same principles underlie in higher dimensional equations, we anticipate 
the applicability of the proposed method to higher dimensional pro
blems and leave it as an interesting topic for future research.

Conclusion

In a series of experiments, we found that the physics-aware finite 
volume neural network (FINN) is the only model – among DISTANA 
(a pure spatiotemporal processing ML approach) and PhyDNet (another 
physics-aware model) – that can determine an unknown boundary 
condition value of data generated by two different PDEs with high 
accuracy. While finding the correct BC values, FINN can also deal 
with missing data and reproduce around 40% of the spatial domain. 
So far, the universal pure ML models stay too general to solve the 
problem studied in this work. State-of-the-art physics-aware networks, 
e.g., in Le Guen and Thome (2020) or Em Karniadakis et al. (2021) are 
likewise not specific enough. Instead, this work suggests that 
a physically structured model, which can be considered as an applica
tion-specific inductive bias, is indispensable and should be paired with 
the learning abilities of neural networks. FINN integrates these two 
aspects by implementing multiple feedforward modules and mathemati
cally composing them to satisfy physical constraints. This structure 
allows FINN to determine unknown boundary condition values both 
during training and inference, which, to the best of our knowledge, is 
a unique property among physics-aware ML models. Besides, setting BC 
values in the form of hyper-parameters on real-world data is an unde
sirable situation for researchers. Therefore, we interpret this latest com
ponent as valuable contribution to the spatiotemporal modeling scene. 
Moreover, FINN offers explanations of the modeled process, 
including BC and substance properties, which need to be explored in 
further detail.

In future work, we will investigate how different BC types (Dirichlet, 
periodic, Neumann, etc.) – and not only their values – can be inferred from 
data. Moreover, an adaptive and online inference scheme that can deal with 
dynamically changing BC types and values is an exciting direction to 
further advance the applicability of FINN to real-world problems. Our 
long-term aim is to apply FINN to a variety of real-world scenarios of 
a larger scale, such as to local weather forecasting tasks, and to extend 
previous work by Praditia et al. (2022). We expect that FINN will be able to 
generate complete model simulations from sparse data and potentially 
unknown BCs.
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