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ABSTRACT

Parkinson's disease is a neurodegenerative disorder associated with loss of
dopaminergic neurons in substantianigra caused by severe neuro-degeneration, which is
the second most common neurodegenerative disorder after Alzheimer’s
disease.Parkinson's disease has a high prevalence of psychiatric comorbidity including
depression. The neuropsychiatric symptoms are common in Parkinson's disease and
may precede onset of motor symptoms. Increasing interest is often addressed to the
selective targeting of some of metabotropic glutamate receptors that inhibit the
transmitter release at synapses in the basal ganglia. The metabotropic glutamate
receptors may be coupled to the phosphatidylinositol-3-kinase (PI3K), AKT, and PTEN
pathways, whichplay a central role in cell survival. A better understanding of the
molecular connections in the PI3K pathways could uncover new targets for drug
development in Parkinson's disease.
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ABBREVIATIONS

GAP: GTPase-activating protein; GSK-3: Glycogen synthase kinase 3;HtrA2: high
temperature requirement protein A2; MARK2: Microtubule affinity-regulating kinase 2;mGlu:
metabotropic glutamate;mTOR: mammalian target of rapamycin;PARL: presenilin-
associated rhomboid-like;PD: Parkinson’s disease;PDK1: phosphoinositide-dependent
kinase 1;PDZ: PSD-95, DLG1, and ZO-1;PEST: proline, glutamic acid, serine and
threonine;PH: plekstrin homology;PINK1: PTEN-induced kinase-1, phosphatase and tensin
homologue-induced kinase 1; PIP2: phosphatidylinositol 4,5- bisphosphate;PIP3:
phosphatidylinositol 3,4,5-triphosphate;PTEN: phosphatase and tensin homolog;TRAP1:
tumor necrosis factor receptor-associated protein-1; TSC1: tuberous sclerosis complex
1;ZnPP: Zinc proto-porphyrin IX.

1. INTRODUCTION

Parkinson’s disease (PD) is a movement disorder represented by the production of tremor,
rigidity, and bradykinesia [1]. In addition, PD patients also suffer from non-motor symptoms
such as cognitive impairment and depression [2]. PD is the most common
neurodegenerative disorder after Alzheimer’s disease, which affects the central nervous
system [3,4]. The major disturbances in PD patients are due to the loss of dopaminergic
neurons in the substantianigra which results in the alterations of striatal synaptic
transmission in the basal ganglia [5]. Metabotropic glutamate (mGlu) receptors have been
shown to play a key role in the striatal function both in physiological and in pathological
conditions affecting this neuronal area [6]. The dopaminergic neurons are susceptible to
inflammations and oxidative stresses due to the environment of the dopamine biosynthetic
pathways and the low mitochondrial reserve compared to other neuronal populations [7,8].
Furthermore, advances in the treatment of Parkinson's disease have led to improvement in
many of the motor symptoms of the disease, but often on the cost of neuropsychiatric side-
effects, which include psychosis, dopamine dysregulation syndrome, and mood disorders.
Current treatments for PD are designed at addressing motor symptoms, but there is no
therapy focused on modifying the progression of the disease. So, treatment strategies have
been restricted.

The mGlu receptors have received much attention, driven by a belief in the potential of these
modulatory glutamate receptors as drug targets. Some evidence emphasizes the role of
certain mGlu receptors in reversing motor deficits in PD and dopamine-deficient animals [9-
11]. The mGlu receptors modulate synaptic transmission in the central nervous system and
represent promising therapeutic targets for symptomatic treatment of PD. The mGlu
receptors also regulate PI3K and AKT signaling pathway (Fig. 1), which plays a crucial role
in the mechanisms of PD [12]. Activation of the mGlu receptors/AKT signaling pathway
seems to play a crucial role in the mechanisms of PD pathogenesis. This paper provides a
concise overview of the potential cellular functions of the mGlu receptors and the AKT
signaling, and the molecular interplay in the processes underlying the neurodegenerative
disorders.
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Fig. 1.There are three groups of mGlu receptors, which are associated with
heterotrimeric G proteins. Implication of the initial molecular mechanisms that

regulate the mGlu receptors signaling is shown. Note that some critical molecules
have been omitted for clarity

2. EXPRESSION AND CHARACTERISTICS OFMETABOTROPIC GLUTAMATE
RECEPTORS

The mGlu receptors are a part of a family of eight G-protein-coupled receptors classified into
three groups (I, II and III, Fig. 1) according to their sequence homologies, second messenger
coupling, and ligand selectivity [13]. Group II and III mGlu receptors are primarily
presynaptic, however, mGlu1 and mGlu5 receptors (group I)are predominantly found
postsynaptically [14]. The mGluR3 and mGluR5 receptors are expressed by astrocytes as
part of the tripartite synapse [15]. Glutamate is the neurotransmitter at the vast majority of
excitatory synapses in the brain, and mGlu receptors act as important pre- and postsynaptic
regulators of neurotransmission in the central nervous system, providing a mechanism by
which fast synaptic responses through ligand-gated cation channels can be adjusted [16].
Thus, mGlu receptors are controlled to participate in a wide variety of functions of the central
nervous system. So far, major drug discovery programs have largely focused on group I
(mGlu1 and mGlu5) and II (mGlu2 and 3) mGlu receptors, which have been implicated in
neuropathological and various psychiatric disorders [17]. The activation of group II mGlu
receptors (mGlu2 and mGlu3), which couple through Gi/Go leading to inhibition of neuronal
transmission, has proven effective in some experimental models of PD [18]. The group III
mGlu receptors (mGlu4, mGlu6, mGlu7 and mGlu8) have been gradually understood. All but
mGlu6, which is expressed only in the retina, receptors play important neuromodulatory
roles in the brain [19]. The mGlu4 receptor contributes substantially to the high-affinity
binding site for amino-4-phosphonobutyrate in several regions of brain including
substantianigra and hippocampal dentate gyrus [20]. Three receptors from group III (mGlu4,
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mGlu 7, and mGlu 8) are of interest because their presynaptic activation reduces
neurotransmitter release, which are found on pre-synaptic terminals of basal ganglia
pathways whose overactivity is implicated not only in the generation of motor symptoms in
PD, but also in driving the progressive substantianigra degeneration. [21,22.]. The concept
of group III mGlu receptors activation to improve parkinsonian symptoms has been
suggested [23]. Recent advances also revealed important insights into the potential role of
the group III receptors in the pathophysiology of mood disorders [17]. So, activation of the
mGlu4 receptor seems to be beneficial for treating both Parkinson-like symptoms and mood
disorders [17]. Similarly, genetic inactivation studies support the involvement of the mGlu8
receptor for anxiety disorders [17,24]. Accordingly, modulating mGlu and mGlu receptors
has emerged as an attractive promising treatment for PD, depression, and
neuroinflammation [25]. Group II mGlu receptors, mGlu2 and mGlu3 receptors, regulate AKT
and Wnt signaling and LY379268, a potent mGlu2/3 receptor agonist, treatment has
overlapping effects with D2 dopamine receptor antagonists [26]. In addition, granule cells
respond to the group III mGlu receptors agonist with an increased phosphorylation of PI3K
and AKT [27]. Furthermore, basal synaptic transmission relies on persistent activity of the
mGlu receptors, PI3K and mammalian target of rapamycin (mTOR) [28]. Increased
glutamate transmission contributes to the symptoms in PD [29].

3. FUNCTION AND CHARACTERIZATION FOR THE PI3K/AKT/ PTEN
PATHWAY

PI3K is a class of lipid kinase that phosphates PIP2 to generate PIP3, which in turn activates
AKT and other effectors. The PI3K pathways are well-known as regulating metabolism, cell
growth, and cell survival [30]. Active form of PI3K is an oncogene, and amplifications and
mutations of the PI3K are commonly found in many kinds of human cancers [30,31]. The
PI3K in mammalian cells forms a family that can be divided into three classes based on the
structure, distribution, and mechanism of activation [32]. Class I PI3Ks are further divided
into class IA and class IB based on different associated adaptors. Class IA PI3Ks are
activated by receptor tyrosine kinases, while class IB PI3Ks are activated by the G-protein-
coupled receptors such as the mGlu receptors. These PI3Ks are heterodimers consisting of
a regulatory subunit such as p85 and a catalytic subunit such as p110. The phospholipid
second messengers generated by the PI3Ks provide a common mechanism for multiple
steps during the cellular signal transduction. The AKT (also known as PKB, protein kinase B)
is a major downstream target of the PI3Ks.Human AKT has three isoforms: AKT1, AKT2,
and AKT3 [33]. The PIP3, a product of PI3K, binds to AKT and leads to the membrane
recruitment of the AKT, and also binds to phosphoinositide-dependent kinase 1 (PDK1) via
their plekstrin homology (PH) domains, then PDK1 phosphorylates AKT in the kinase
domain (Thr 308 in AKT1). For the full activation of AKT, the phosphorylation within the
carboxyl-terminal regulatory domain (Ser 473 in AKT1) of AKT by PDK2 is required [34].
Schematic structure of the predicted AKT1 protein is shown in Fig. 2. Once activated, AKT
moves to the cytoplasm and nucleus, where it phosphorylates, activates, or inhibits many
downstream targets to regulate various cellular functions (Fig. 3). AKT inhibits the GTPase-
activating protein (GAP) activity of the tuberous sclerosis complex 1 (TSC1) and TSC2
complex by phosphorylating TSC2 tuberin protein, leading to the accumulation and
activation of the mTOR complex [35]. The mTOR mediates the phosphorylation of the
ribosomal protein S6 kinases and eukaryotic translation initiation factor 4E-binding protein 1
leading to the release of the translation initiation factor eIF4E [36] (Fig. 3). Suppression of
the PI3K/AKT/mTOR signaling modulates PARKIN expression [37], which is an ubiquitin
ligase involved in PD. Glycogen synthase kinase 3 (GSK-3) is also a serine/threonine kinase
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that was initially identified as playing a role in the regulation of glycogen synthesis in
response to insulin receptor stimulation [38]. This molecule has also been shown to be
involved in cellular proliferation, programmed cell death, embryogenesis and circadian
entrainment, in addition to the regulation of glycogenesis [39]. Neuroprotective mechanisms
in response to estrogen have been shown to transmit via the GSK3 signaling [40]. In
addition, the PI3K/AKT signaling pathway may mediate the potential neuroprotective effect in
mouse model ofPD [41].

Phosphatase and tensin homolog (PTEN) is a dual-specificity phosphatase which has
protein phosphatase activity and lipid phosphatase activity that antagonizes PI3K activity
[42]. Schematic structure of the predicted PTEN protein is shown in Fig. 2. PTEN negatively
regulates the PI3K and hence the AKT signaling through converting phosphatidylinositol
3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5- bisphosphate (PIP2) [43]. PTEN
activity can be regulated by the post-translational regulation including phosphorylation,
acetylation, and oxidation [44]. PTEN protein consists of N-terminal phosphatase, and C-
terminal C2, and PDZ (PSD-95, DLG1, and ZO-1) binding domains. The PTEN CX5R(S/T)
motif resides within an active site that surrounds the catalytic signature with three basic
residues, which are critical for PTEN lipid phosphatase activity. The structure endows PTEN
with its preference for acidic phospholipid substrates such as PIP3. In addition, the C-
terminus of PTEN contains two PEST (proline, glutamic acid, serine and threonine)
sequences involved in protein degradation [45]. AKT activation leads to HIF-1a stabilization,
whereas PTEN attenuates hypoxia-mediated HIF-1a stabilization [46]. The instability of
mutant PTEN and the reduction of HIF-1a degradation have been shown to involve protein
interactions. Tissue-specific deletion of PTEN can result in autoimmunity, glucose
dysregulation or neurological deficits, in addition to carcinogenesis. In addition, PTEN may
be involved in a disease state such as Parkinson’s disease (PD) [47]. Several lines of
evidence imply that genes associated with familial PD regulate cell death and/or the cell
cycle related to AKT/PTEN pathway. For example, deletions of Parkin, a PD related gene, in
Drosophila result in AKT activation [48]. Furthermore, PTEN-induced putative kinase 1
(PINK1), which encodes a kinase downregulated in the absence of PTEN, has been
identified as the sixth locus (PARK6) associated with familial PD [49]. PINK1 is
transcriptionally transactivated by the PTEN gene. The biochemistry of the
neurodegeneration in PD points to mitochondrial oxidative stress as the mechanism driving
neuronal cell death [8]. The PINK1 is a mitochondrially targeted serine/threonine kinase,
which is linked to autosomal recessive early onset PD [50]. The PINK1 may exert a
protective effect on the cell that is abrogated by the mutations, resulting in increased
susceptibility to cellular stress. These findings provide a molecular link between
mitochondria and the pathogenesis of PD.
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Fig. 2.Schematic structures of AKT1, mTOR, and PTEN proteins. The predicted
consensual domain structures for each protein are depicted. The functionally

important sites including the sites of protein phosphorylation are also shown. Note
that the sizes of protein are modified for clarity. PH domain= pleckstrin homology

domain; C2 domain= a protein structural domain involved in targeting proteins to cell
membranes; PDZ= a common structural domain in signaling proteins (PSD95, Dlg,

ZO-1, etc); HEAT= huntington, elongation factor 3, a subunit of PP2A and TOR1;
FAT=FRAP-ATM-TRRAP; FRB= FKBP12-Rapamycin Binding; FATC= FAT-C-terminal

Fig. 3.Schematic representation of PI3K/AKT/GSK3/mTOR signaling in cells.Examples
of molecules known to act on the regulatory pathways are shown. Note that some

critical pathways have been omitted for clarity
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4. PI3K/AKT SIGNALING IS INVOLVED IN THE ACTIONS OF ANTIPSYCHOTICS

While atypical antipsychotic agents are often used for the treatment of PD with psychosis,
adverse effects including extrapyramidal symptoms often hinder its continuation.
Antidepressants may be effective for PD with psychosis, especially for the visual
hallucinations, without worsening the motor symptoms [51]. Antidepressants acting on
serotonin neurotransmission have been reported to activate AKT and inhibit GSK3 [52,53].
Several psychoactive drugs have also been shown to modulate the activity of the AKT/GSK3
signaling. AKT has a diverse array of known substrates including the GABA (B) receptor
[54]. Indeed, reductions in AKT activation in neurons may increase excitability through
reductions in GABA neurotransmission [55]. Drugs like SSRIs and MAO inhibitors that
elevate serotonin synaptic transmission have been shown to inhibit GSK3 [56]. On the
contrary, drugs that elevate dopamine neurotransmission reduce the inhibitory
phosphorylation of GSK3and therefore increase the kinase activity [57]. By blocking
dopamine D2 receptors, classic antipsychotics can prevent the inhibition of AKT by
dopamine and concomitant activation of GSK3 [58]. Atypical antipsychotics are also
antagonists of serotonin receptors and may interfere with the regulation of GSK3 by the
serotonin [59]. Such regulation of AKT and GSK3 activity has also been reported in mice
after treatment with haloperidol [60]. Interestingly, AKT/GSK3 pathway is thus regulated by
different types of psychiatric drugs. Lithium activates PI3K itself, which in turn results in
PI3K-dependent phosphorylation and activation of the AKT, then phosphorylation and
inactivation of the GSK3 [61], protecting against neuronal toxicity. Glutamate-induced
reduction of AKT activity as well as the associated neuronal toxicity and caspase-3 activation
in apoptosis pathways are prevented by the lithium treatment [62]. The mood stabilizers
such as valproate have also been reported to inhibit GSK3 [63]. In addition, direct inhibition
of GSK3 isoforms has been shown to have effects that are similar to some of those of
antidepressants in animal models [64]. Activation of AKT and inhibition of GSK3 may be
characterized as fundamental effects for some shared action of psychoactive drugs.

Guanosine has a neuroprotective effect in a cellular oxidative stress model, which increases
AKT and GSK3β phosphorylation confirming this pathway plays an important role in the
neuro-protective effect [65], suggesting that it could represent a new potential
pharmacological tool to be studied in the therapeutic approach to PD [66]. Actually,
Protective activity of guanosine in an in vitro model of PD has recently been reported
[66].Guanosine produces an antidepressant-like effect through the modulation of the
PI3K/AKT/mTOR pathway [67]. The guanosine also induces the antioxidant enzymeHO-1
expression. The protective effects of guanosine are partially prevented by HO-1 inhibitor,
SnPP. In addition, bilirubin, an antioxidant and physiologic product of HO-1, is protective
against oxidative stress. When blocking the AKT pathway with LY294002, a selective
inhibitor of PI3K, the neuro-protective effect of guanosine is abolished. Zinc proto-porphyrin
IX (ZnPP), a selective inhibitor of HO-1, attenuates apoptosis and oxidative stress in PC12
neuronal cells [68]. As H2O2 preconditioning enhances phosphorylation of AKT, treatment
with the LY294002 before H2O2 preconditioning blocks not only H2O2 induced HO-1
induction, but also the protective effect of H2O2 preconditioning against the cytotoxicity. In
this way, increasing evidences pointing to AKT pathway-modification in depression provide a
novel implication of antidepressant mechanisms.
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5. DISCUSSION AND PERSPECTIVE

Although the evidence for the link between group III mGlurecptors and the PI3K/AKT
pathway in the situation of PD is not clearly established, activation of the mGlu
receptors/PI3K/AKT signaling pathway may play a critical role in the mechanisms of PD.
Otherwise, modulation of neurotransmission via presynaptic mechanisms by group III mGlu
receptors might provide protection against neuro-degeneration in PD.However, prodigious
evidence supports the group III mGlu receptors as potentially important drug targets for
providing both symptom help and neuroprotection in PD [21,22.]. Indeed, the group III mGlu
receptors may be promising targets for drug discovery in PD. It is speculated that
improvement or modulation of these signaling pathways will reveal potential therapeutic
targets. In particular, the mGlu4 receptor subtypes may be an efficient target for PD
treatment, and open promising perspectives for the development in the pharmacological
resource for this disease. Positive modulation of the ligand of the mGlu receptor remains one
of the attractive non-dopaminergic therapies for PD as well as for accompanied indications
such as pain, depression, and diabetes [25]. Similarly, selective ligands of mGlu7 receptor
subtypes may also be considered as promising compounds for the development of
antiparkinsonian therapeutic strategies. However, the possible precise involvement of the
PI3K/AKT/PTEN/GSK3/mTOR in neuropsychiatric cell signaling has remained unexplored.
Between neuro-degeneration and neurogenesis, there might be common pathways including
the PI3K/AKT pathway. Whereas many questions remain to be answered about the role of
the PI3K/AKT signaling in PD and mental disorders, it is possible that inhibition of the
signaling in specific neuronal populations could be associated with distinct behavioral
outcomes. The challenge of treatment could be a trade-off between the emergence of the
side-effects and the amelioration of the disease. More understanding of the intracellular
mechanisms downstream of PI3K/AKT/PTEN changes in PD could provide novel insights
into the development of new therapeutic approaches having superior efficacy against the
disease.

6. CONCLUSION

The mGlu receptors may be coupled to the phosphatidylinositol-3-kinase (PI3K), AKT, and
PTEN pathways, whichplay a central role in cell survival and play a critical role in the
mechanisms of PD. Modulation of neurotransmission via presynaptic mechanisms by group
III mGlureceptors might provide protection against neuro-degeneration.
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