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ABSTRACT

Aims: To determine if (and in which situations) Monte Carlo or asymptotically derived
critical values are more robust for the Winsorized t-test.
Study Design: A Monte Carlo simulation via FORTRAN 90 was used to test type I and II
error properties across 14 unique distributions for various combinations of sample sizes
and effect sizes for alpha = .01 and .05. Both Monte Carlo and asymptotically derived
sets of critical values were used. Each combination of parameters was used to run 1
million iterations.
Place and Duration of Study: Windows PC for a duration of 6.5 days (to obtain results
generated per each set of iterations).
Methodology: FORTRAN 90 code was used to do the following: For 1 (value) and 10%
of n1 + n2, samples were drawn per distribution and Winsorized. Next, t-tests were
conducted per the parameters specified above in the study design.
Results: Results generally supported the use of the new table of Monte Carlo derived
critical values over the classical asymptotically-derived critical values.
Conclusion: The Monte Carlo-derived Winsorized critical values are generally preferable
to asymptotically derived critical values.
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1. INTRODUCTION

The arithmetic mean is a well-known and “cherished” [1, p. 158] estimator of location due to

its ease of calculation. However, it is not robust due to its finite breakdown point of

1
N [2]

meaning that only one value, an outlier, can make the result arbitrarily large or small.
Hawkins [3] noted that outliers occur due to typographical error, measurement error, and
heavy-tailed population distribution. Grace and Sawilowsky [4, p. 306] maintained that when
a substantial portion of a data set can be modeled by a different mean and variance it is
dubious to view the dataset contaminated with outliers, and instead should be handled as a
mixed distribution.

There have been many attempts to create algorithms and rules to identify and reject outliers,
often for the purpose of eliminating (trimming) or adjusting (Winsorizing) to increase the
accuracy of the arithmetic mean. Trimming involves sorting an array of data and dropping
the outliers. Winsorizing involves taking those same values that would otherwise have been
trimmed and replacing them with the values that remain at the end(s) of the sorted, trimmed
array. Whereas typographical error, measurement error, and minor contamination warrant
trimming, Hawkins [3] suggested it is more appropriate to Winsorize outliers when the
sample is drawn from a heavy-tailed distribution. Hence, the null hypothesis of the
Winsorized t-test is that the Winsorized population means are the same. Dixon and Massey
[5] showed the Winsorized mean to be more efficient than the trimmed mean for Gaussian
and close to Gaussian distributions, but less efficient for distributions with very long tails.
Rivest [6] showed that Winsorizing is particularly helpful for skewed distributions.

Some researchers prefer to use arbitrary rules of thumb in determining when to Winsorize or
trim [7]. Maximum likelihood estimators, however, can be used to identify the exact number
of values at each end of a sample to Winsorize and has been shown by Sawilowsky [8] to
produce narrower bracketed (confidence) intervals with the real sets observed by Micceri [9]
for sample sizes < 50 than either light or heavy trimming (as defined by Wilcox [10]).

In the context of a two sample test, Dixon & Tukey [11] proposed the Winsorized t
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where wx is the Winsorized mean, 1 , ..., ny y are y ordered observations from a sample, and

is the number of Winsorized values, with  1 2 2h h  degrees of freedom. (Alternativek
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formulas were provided by Fung & Rahman [12], and Gans [13]). Obviously, if outliers are
not representative and are kept, the test becomes biased [14]. Fung and Rahman [12]
showed the trimmed and Winsorized t-tests to have immaterially small power differences.
Yuen and Dixon [15] reached the same conclusion with trimming.

Unfortunately, the removal of outliers through Winsorizing results in a decrease in variability,
and trimming results in both a decrease in degrees of freedom and variability. It is
hypothesized that a power loss will surface in subsequent use of the classical asymptotically
obtained critical t values, because the resultant values will be larger than they should be,
producing conservative Type I errors and inflated Type II error rates. It is also postulated that
using more precise critical values would better preserve correct Types I and II error rates,
and hence, increase comparative statistical power.

1.1 Statement of the Problem
The robustness properties of the Winsorized t have been based on estimated  1 2 2h h 

degrees of freedom and traditional critical values [10]. The aim here is to compare them with
Monte Carlo critical values recently derived by Farrell-Singleton [16]. The use of real social
and behavioral science data sets [9] as the referent distributions will provide results
researchers in these areas are likely to encounter. Various mathematical distributions will
also be sampled, as is more commonly done in Monte Carlo studies.

2. METHODOLOGY

For each Monte Carlo study, the number of Winsorized outliers is equal across samples per
iteration, even when samples are unbalanced. For example, when 1 2 20n n  and the
Winsorized amount (denoted k) is 2 per end (10% of 1 2n n ), 6 original values (denoted h) will

remain per sample in addition to 4 Winsorized (k = 2) values. When this is applied to 1 5n 

and 2 15n  , n1 will be composed of 5 of the same values per the middle value from the
sorted sample, because two values are to be Winsorized at each end, leaving the middle
value as the only original value to use in the process. This is the only instance in the study
where Winsorizing will produce a sample composed of equal values throughout. In this case,
n2 is composed of 11 original values (h = 11) with 4 Winsorized (k = 2) values.

The characteristics of the data sets from Micceri [9] are depicted in Table 1 below.

Table 1. Descriptive information pertaining to eight real-world distributions

Distribution Type of
measure

 Median  Skew Kurtosis

Discrete mass at zero with
gap

Psychometric 1.85 0 3.8 1.65 3.98

Mass at zero Achievement 12.92 13 4.42 -0.03 3.31
Extreme asymmetry Psychometric 13.67 11 5.75 1.64 4.52
Extreme asymmetry Achievement 24.5 27 5.79 -1.33 4.11
Extreme bimodality Psychometric 2.97 4 1.69 -0.08 1.3
Multimodality and lumpy Achievement 21.15 18 11.9 0.19 1.8
Digit preference Achievement 536.95 535 37.64 -0.07 2.76
Smooth symmetric Achievement 13.19 13 4.91 0.01 2.66

Note: Table adapted from Sawilowsky & Blair [17].
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Data were also sampled from mathematical distributions, including Gaussian (normal),

Cauchy, t ( 3  ), Chi-Squared ( 2  ), Exponential ( 1   ), and Uniform ( 0,1 ) for
comparison with Boneau [18] and other published Monte Carlo studies. Effect sizes of 0.2σ,
0.5σ, 0.8σ, and 1.2σ [19] were modeled for the Type II error and comparative power portions
of the study.

A program was written in a Fortran 2008 superset to conduct all simulations. The Rangen
2.0 subroutines [20], a Fortran 90/95 update from the original Fortran 77 version [21]
provided the mathematical distributions. The Fortran 90 Realpops subroutines [22] was used
to provide real data sets from Micceri [9]. For detailed information on how the Monte Carlo-
derived critical values were generated, as compiled in Table 2 below, see Farrell-Singleton
[16].

Table 2. Critical values for the two sample t and Winsorized t

x(n) y(n) Outliers Df 0.01 0.01
((h1+h2)-2
df)

.01
(Monte
Carlo)

0.05 0.05
((h1+h2)-
2) df)

.05
(Monte
Carlo)

5 5 1 8 3.36 4.60 9.38 2.31 2.78 5.42
5 15 1 18 2.88 2.98 3.81 2.10 2.14 2.72
5 15 2 18 2.88 3.17 5.71 2.10 2.23 3.93
10 10 1 18 2.88 2.98 3.81 2.10 2.14 2.72
10 10 2 18 2.88 3.17 5.71 2.10 2.23 3.93
15 15 1 28 2.76 2.80 3.24 2.05 2.06 2.39
15 15 3 28 2.76 2.92 5.07 2.05 2.12 3.64
10 30 1 38 2.71 2.73 3.04 2.02 2.03 2.25
10 30 4 38 2.71 2.82 4.82 2.02 2.07 3.51
20 20 1 38 2.71 2.73 3.04 2.02 2.03 2.25
20 20 4 38 2.71 2.82 4.82 2.02 2.07 3.51
25 25 1 48 2.68 2.69 2.93 2.01 2.02 2.19
25 25 5 48 2.68 2.76 4.68 2.01 2.05 3.44
15 45 1 58 2.66 2.67 2.85 2.00 2.00 2.14
15 45 6 58 2.66 2.73 4.59 2.00 2.03 3.40
30 30 1 58 2.66 2.67 2.85 2.00 2.00 2.14
30 30 6 58 2.66 2.73 4.59 2.00 2.03 3.40
45 45 1 88 2.63 2.64 2.76 1.99 1.99 2.08
30 90 1 118 2.62 2.62 2.71 1.98 1.98 2.05
30 90 12 118 2.62 2.65 4.39 1.98 1.99 3.30
60 60 1 118 2.62 2.62 2.71 1.98 1.98 2.05
60 60 12 118 2.62 2.65 4.39 1.98 1.99 3.30
90 90 1 178 2.60 2.60 2.67 1.97 1.97 2.02
90 90 18 178 2.60 2.62 4.31 1.97 1.98 3.26
120 120 1 238 2.60 2.60 2.64 1.97 1.97 2.00
120 120 24 238 2.60 2.61 4.29 1.97 1.98 3.25

Note. See Farrell-Singleton [16].
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All descriptions of robustness refer to direction (conservative or liberal) and magnitude
(liberal or stringent) according to Bradley’s [23] definitional ranges. P-values between 0.9

and 1.1 ( ) are considered to meet a stringent criteria for robustness, whereas p-

values between 0.5 and 1.5 ( ) (i.e. for =.05, between .025 and .075) are
considered to be meet a liberal criteria. To describe non-robust results that fall outside of
Bradley’s liberal range, the phrase “outside of the liberal range” is used.

The three sets of simulations being compared are:

1. Student’s t-test with no outliers present in each sample.
2. Winsorized t-test with Dixon and Tukey’s [11] ((h1 + h2) – 2 degrees of freedom) t

critical values (outliers Winsorized).
3. Winsorized t-test with Monte Carlo critical values (outliers Winsorized).

3. RESULTS AND DISCUSSION

3.1 Type I Error: Without Winsorizing

These results verified previous findings of factors that impact robustness properties, such
small sample size, the interaction of skew and unbalanced samples, and the Discrete Mass
at Zero with Gap distribution results being less robust for smaller samples see [17].

The results obtained from sampling the mathematical distributions were also consistent with
previous studies. Normal distribution results were generally stringently robust for the Monte
Carlo critical values (as shown in Fig. 1) and all liberal, outside of Bradley’s liberal range of
robustness for approximate critical values.

3.2 Type I Error: With Winsorizing

Generally, Winsorizing samples and using alternative critical values led to less conservative
(yet robust) p-values. Using the Monte Carlo-derived critical values produced results that
were generally more robust than for the adjusted critical values as suggested by Dixon and
Tukey [11].

The 10% Winsorized results for approximate critical values were generally liberal, non-
robust. Though the Monte Carlo-derived critical values were almost always more robust to
type I error, there were cases, with one Winsorized value per end, where the approximate
critical values were within Bradley's liberal or stringent definitions of robustness and, if used,
would be more robust to type II error (for one Winsorized value per end only). Such cases
are outlined in Table 3.



 10
p  

  2
p   
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In Fig. 2, results for the Discrete Mass at Zero with Gap distribution show how skew can
interact with small sample size and unbalanced samples to impact robustness. Fig. 3 shows
that increased Winsorizing can amplify the impact of these factors. Because Winsorized,
unbalanced samples were Winsorized by the exact same amount per end as with balanced
samples, the process of Winsorizing reduced variance in the smaller sample more so than in
the larger one. This created samples with unequal variances and negatively impacted
robustness of the results. The role of skew in this respect was more pronounced with non-
mathematical distributions.

Results were still generally more robust when Winsorizing and using the Winsorized (more
so with Monte Carlo-derived) critical values. Fig. 4 shows just how vulnerable p-values are
for the normal distribution with just one outlier per end.

3.3 Type II Error: Without Winsorizing

In general, as Fig. 5 shows, an increase in effect size led to larger portions of data points
that fell into the upper tails and less for the lower tails since larger effect sizes mean a
greater the shift in mean (or distribution). When examining the results, it is noticeable that
the Uniform distribution had the highest rejection (of the null) rates and the Cauchy
distribution had the lowest. For balanced, small sample sizes, the Discrete Mass at Zero with
Gap distribution also had noticeably lower rejection rates. The rest of the distributions tended
to be relatively close in rejection rates, which increased as a function of effect size, alpha
level, and sample size.

3.4 Type II Error: With Winsorizing

Winsorizing, in tandem with using the new Monte Carlo-derived critical values, reduced type
II error while providing more exact type I error rates. As previous research has shown,
Winsorized results generally involved less type II error due to decreases in variance.

As with the results for type I error, increased Winsorizing amplified the impact of skew
combined with unbalanced samples on type II error (Figs. 6 and 7). The Extreme Asymmetry
(A/G) distribution showed a higher rejection rate for unequal samples, yet the Extreme
Asymmetry (P/D) distribution showed the opposite effect. The trend shows that for
distributions with high concentrations of values on the upper tail, unequal samples were a
benefit to rejection rates and for those with concentrations on the lower tail, the opposite was
true. Again, this trend is more pronounced among the non-mathematical distributions.
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Fig. 1. Type I error rates for independent-samples t test for various sample sizes and
alpha levels when sampling is from a normal distribution, 1,000,000 repetitions, 10%

(of n1 + n2) Winsorized critical values
Note: SU025 = proportion of rejections in upper-tail. L025 = proportion of rejections in the lower-tail.

Excerpted from Lance [24, p. 60].
Based on Bradley's (1978) definitions of type I robustness:

Table 3. Minimum sample sizes per distribution where approximate critical values are
recommended (for k=1, n1 = n2)

Note: At , there were no sufficient trends to warrant such recommendations.

Distribution n1 ( = .05)
Discrete mass at zero with gap 45
Mass at zero n/a
Extreme asymmetry (P/D) 90
Extreme asymmetry (A/G) 90
Extreme bimodality 20
Multimodality and lumpy 45
Digit preference 90
Smooth symmetric 90
Normal 90
Uniform 45
Exponential n/a
t with 3 degrees of freedom n/a
Chi-squared with 2 degrees of freedom n/a
Cauchy n/a
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Fig. 2. Type I error rates for independent-samples t test for various sample sizes and
alpha levels when sampling is from a discrete mass at zero with gap (psychometric)

distribution, 1,000,000 repetitions, 1 outlier/end Winsorized, Monte Carlo C.V
Note: SU025 = proportion of rejections in upper-tail. L025 = proportion of rejections in the lower-tail.

Excerpted from Lance [24, p. 47]
Based on Bradley's (1978) definitions of type I robustness:
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Fig. 3. Type I error rates for independent-samples t test for various sample sizes and
alpha levels when sampling is from a discrete mass at zero with gap (psychometric)

distribution, 1,000,000 repetitions, 10% Winsorized Outliers, Monte Carlo C.V
Note: SU025 = proportion of rejections in upper-tail. L025 = proportion of rejections in the lower-tail.

Excerpted from Lance [24, p. 48].
Based on Bradley's (1978) definitions of type I robustness:
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Fig. 4. Type I error rates for independent-samples t test for various sample sizes and
alpha levels when sampling is from a normal distribution, 1,000,000 repetitions, 1

outlier vs. 1 Winsorized value (both per end)
Note: SU025 = proportion of rejections in upper-tail. L025 = proportion of rejections in the lower-tail.

Excerpted from Lance [24, p. 49].
Based on Bradley's (1978) definitions of type I robustness:
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Fig. 5. Type II error rates for independent-samples t test (no outliers) for various
sample sizes, effect sizes, and distributions (1,000,000 repetitions)

Note: Longer bars indicate higher rejection rates. Adapted from Lance [24, p. 50]

Fig. 6. Type II error rates for Winsorized independent-samples t test (using monte
carlo critical values) for various sample sizes, effect sizes, and distributions

(1,000,000 repetitions).
Note: Longer bars indicate higher rejection rates. Adapted from Lance [24, p. 56].
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Fig. 7. Type II error rates for Winsorized independent-samples t test (using monte
carlo critical values) for various sample sizes, effect sizes, and distributions

(1,000,000 repetitions)
Note: Longer bars indicate higher rejection rates. Adapted from Lance [24, p. 57].

4. CONCLUSION

When data are non-normally distributed, non-parametric tests are robust and powerful
alternatives when the treatment alternative is a shift in means [25,26]. However, when the
data essentially follow a parametric model with perturbations, the classical normal theory
tests remain useful via trimming or Winsorizing. The purpose of this study, therefore, was to
compare approximate critical values due to Dixon and Tukey [11] and Monte Carlo-derived
critical values for the Winsorized t test for independent samples with respect to robustness to
Type I and II errors. The Monte Carlo-derived Winsorized critical values produced more
robust Type I error rates than using the Dixon and Tukey estimation, and led to dramatic
improvement in Type I and II errors (Fig. 1).

Because Winsorizing serves to decrease variance and increase rejections, it follows that
alternative critical values would be larger to offset the potential increase in rejected nulls.
The degree to which the alternative critical values does this, however, makes a difference in
how robust the results are to type I and II errors, as was found in this study. In general, the
Monte Carlo-derived critical values are recommended for 10% (of n1 + n2) Winsorized
samples.
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Type I and II errors. The Monte Carlo-derived Winsorized critical values produced more
robust Type I error rates than using the Dixon and Tukey estimation, and led to dramatic
improvement in Type I and II errors (Fig. 1).

Because Winsorizing serves to decrease variance and increase rejections, it follows that
alternative critical values would be larger to offset the potential increase in rejected nulls.
The degree to which the alternative critical values does this, however, makes a difference in
how robust the results are to type I and II errors, as was found in this study. In general, the
Monte Carlo-derived critical values are recommended for 10% (of n1 + n2) Winsorized
samples.
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