
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Moving Medical Image Analysis to GPU Embedded
Systems: Application to Brain Tumor Segmentation

Brad Niepceron, Ahmed Nait-Sidi-Moh & Filippo Grassia

To cite this article: Brad Niepceron, Ahmed Nait-Sidi-Moh & Filippo Grassia (2020) Moving
Medical Image Analysis to GPU Embedded Systems: Application to Brain Tumor Segmentation,
Applied Artificial Intelligence, 34:12, 866-879, DOI: 10.1080/08839514.2020.1787678

To link to this article: https://doi.org/10.1080/08839514.2020.1787678

Published online: 09 Jul 2020.

Submit your article to this journal

Article views: 751

View related articles

View Crossmark data

Citing articles: 3 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2020.1787678
https://doi.org/10.1080/08839514.2020.1787678
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1787678
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1787678
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1787678&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1787678&domain=pdf&date_stamp=2020-07-09
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1787678#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1787678#tabModule

Moving Medical Image Analysis to GPU Embedded Systems:
Application to Brain Tumor Segmentation
Brad Niepceron , Ahmed Nait-Sidi-Moh, and Filippo Grassia

Laboratory of Innovative Technologies (LTI, EA 3899), University of Picardie Jules Verne, Amiens, France

ABSTRACT
With the growth of medical data stored as bases for researches
and diagnosis tasks, healthcare providers are in need of auto
matic processing methods to make accurate and fast image
analysis such as segmentation or restoration. Most of the exist
ing solutions to deal with these tasks are based on Deep
Learning methods that require the use of powerful dedicated
hardware to be executed and address a power consumption
problem that is not compatible with the aforementioned
requests. There is thus a demand in the development of low-
cost image analysis systems with increased performances. In this
work, we address this problem by proposing a fully-automatic
brain tumor segmentation method based on a Convolutional
Neural Network, executed by a low-cost, Deep Learning ready
GPU embedded platform. We validated our approach using the
BRaTS 2015 dataset to segment brain tumors and proved that
an artificial neural network can be trained and used in the
medical field with limited resources by redefining some of its
inner operations.

Introduction

The development of brain tumor segmentation tools based on Deep Learning
(DL) methods has grown significantly over the last few years. Several models
like the InputCascadeCNN (Havaei et al. 2017) or the U-Net (Dong et al. 2017)
have already shown that great potential lies in the use of Convolutional Neural
Networks (CNNs) to help the detection of common tumors that are yet
difficult to segment due to the variety of their shapes and locations. With the
architectures of these models getting deeper over the years in a rush for
performances, a need for powerful platforms appeared to handle their execu
tion leading to the use of more power, resulting in high costs. To fulfill their
promises on the production level and be accessible, DL based methods for
medical image analysis must be able to be trained and executed on platforms
with limited computational resources (Qiu et al. 2016). Moreover, the constant
increase of medical data pushes healthcare providers to seek for fullyautomatic
image analysis methods in order to offer faster and better diagnoses.

CONTACT Brad Niepceron brad.niepceron@etud.u-picardie.fr Laboratory of Innovative Technologies (LTI, EA
3899), University of Picardie Jules Verne, Amiens 80025, France

APPLIED ARTIFICIAL INTELLIGENCE
2020, VOL. 34, NO. 12, 866–879
https://doi.org/10.1080/08839514.2020.1787678

© 2020 Taylor & Francis

http://orcid.org/0000-0002-9401-0634
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1787678&domain=pdf&date_stamp=2020-08-28

Hence, DL based solutions to computer vision tasks must succeed in
affordability, energy-efficiency and portability to be fully considered as real
and applicable solutions. The Low-Power Image Recognition Challenge
(LPIRC) (Alyamkin et al. 2018) appeared to emphasize the need to develop
such systems with a balance between performance and low power consump
tion as a mean to highlight their importance. In this dynamic, low-power
hardware accelerators for DL were developed and launched by several tech
nology companies. The Nvidia Jetson AGX Xavier (JAX) (Pujol et al. 2019) is
one of these accelerators built for machine learning that ease the development
and deployment of DL applications. Its CPU-GPU architecture supported by
CUDA, cuDNN and the TensoRT software libraries for inference speed up
makes it the perfect fit to run DL workloads in different domains such as
logistics, service, manufacturing, smart city applications and medical image
analysis.

In this paper, we first discuss the advantages of the JAX to develop and run
DL applications. We then review the use of model compression methods as
well as a normalization scheme for the optimization of neural networks in
order to allow their deployment on limited resource devices. Finally, we
propose a training scheme of a compressed neural network architecture to
build an end-to-end automatic brain tumor segmentation tool applied to
glioma tumors.

Materials and Methods

The appearance of embedded computing systems gave rise to the develop
ment of IoT devices for healthcare (Dang et al. 2019), autonomous cars (Tian
et al. 2018), and drones (Tanwani et al. 2007), all taking advantage of power
efficiency and portability. The challenge in the development of dedicated
machine learning applications executable on this kind of systems followed
this growth and still has to be addressed because of the computational
complexity of most common algorithms. Designing lightweight DL applica
tions compatible with imposed memory constraints thus demands to rethink
and modify some operations to reduce the number of parameters that they
involve.

This section studies the efficiency of the JAX as well as modifications of
neural network operations for the development of lightweight CNNs.

Jetson AGX Xavier

The unique features of the JAX made it one of the most popular low-cost
machine learning accelerator available today. The motivation for using it as
a platform to develop and run end-to-end DL applications lays in the will to
take advantage of the power provided by its CPU-GPU architecture over the

APPLIED ARTIFICIAL INTELLIGENCE 867

use of FPGAs (Mittal and Vetter 2014) as well as its low weight and low power
consumption.

GPU based embedded computing systems like the JAX can thus be a good
choice for both training and inference of Deep Learning models in real-time
applications for several reasons. The first reason concerns the low weight
feature of the platform that is compatible with deployment requirements for
small or flying devices since the power required to hover a drone, for example,
increases with its mass (Tijtgat et al. 2017). The low power consumption is
the second reason as it reduces thermal problems that are inherent to domains
like autonomous driving and aims to reduce energy costs. As shown in Table 1,
both power consumption and weight features of the JAX are suitable for
embedded applications development.

The kit also embeds a modular scalable architecture, shown in Figure 1,
known as the Deep Learning Accelerator (DLA) and designed to ease the
integration and deployment of DL applications while optimizing energy effi
ciency. This architecture includes a support for most layers used in CNNs, like
convolution and deconvolution layers, pooling layers, fully-connected layers,
normalization layers and activation layers. This support makes the JAX a great
choice for developing CNN based image analysis tools.

Table 1. Nvidia Jetson AGX Xavier specifications.
Jetson AGX Xavier Module

CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3
GPU 512-core Volta GPU with Tensor Cores
Memory 16GB 256-Bit LPDDR4x | 137GB/s
Weight 630 grams
Dimension 100 mm x 87 mm x 16 mm
Storage 32GB eMMC 5.1

Figure 1. The Nvidia deep learning accelerator architecture. Nvdla.org.

868 B. NIEPCERON ET AL.

One other reason comes from the fact that the kit is ready to receive an
NVMe SSD drive to increase its memory and allow to store and process data
locally while many real-time DL applications involve the use of remote servers
for this same task. Gathering and processing data locally offers the advantage
of not relying on a server response that can imply high latency, connection
disruptions and possible security flaws when requesting or writing data.

The JAX also embeds the JetPack SDK that includes TensorRT, a high
performance deep learning inference runtime that aims to reduce the memory
footprint for convolutional neural networks and speeds up inference for image
segmentation tasks like the one we address in this paper.

All the mentioned reasons for using the JAX as a training and inference
platform for CNNs then motivate the transformation of existing neural net
work architectures to build smaller and faster models executable with limited
power by compressing their building blocks and find new regularization
schemes to make sure that these models do not suffer from the reduction of
parameters.

Normalization

Normalization methods are known for their capacity to fasten training (LeCun
et al. 1998) and have been widely used in deep learning. The most well-known
normalization method used to train Deep Neural Networks (DNNs) is called
Batch Normalization (Ioffe and Szegedy 2015) (BN). BN has proven to be
a very efficient normalization solution to ease neural networks optimization
and convergence by performing a global feature normalization along the batch
dimension. The stochastic uncertainty of the batch statistics also allows to use
BN as a powerful regularizer and helps DNNs to avoid overfitting.

However, despite all of the aforementioned advantages of this method,
normalizing along the batch dimension requires BN to work with large
batch sizes because small mini-batches lead to inaccurate batch statistics
estimation and thus increase the model’s error. Since training on an embedded
system requires to be able to use a small amount of memory, it is important to
use very small input mini-batches and normalize features along another
dimension without penalty on the training performances.

Several methods like the Synchronized Batch Normalization (Peng et al.
2018) and Batch Renormalization (Ioffe 2017) have been proposed to get
better performances while solving the batch statistics estimation problem
when using BN with small mini-batches. However, these methods stay batch
dependent and only move the size problem elsewhere or simply solve it by
adding computational power according to the mini-batch size.

Group Normalization (GN) (Wu and He 2018) appears to be one normal
ization solution when working with resource-constrained systems. The gen
eral purpose of a GN layer is to divide input channels into groups and apply

APPLIED ARTIFICIAL INTELLIGENCE 869

normalization on the features present in each of these groups. It avoids the
batch statistic computation and stays completely independent to the batch
dimension. Considering a regular feature normalization, the standard devia
tion σ and the mean μ are formulated as in Eq. (1) where Si is the set of pixels
on which the normalization is performed and m is the size of the set being
processed. x represents the features being computed and ε is a small constant.

μi ¼
1
m

X

k2Si

xk; σi ¼

ffiffiffiffi
1
m

r
X

k2Si

ðxk � μiÞ
2
þ ε (1)

Therefore, GN is defined as the computation of σ and μ in a set formulated as
follows:

Si ¼ kjkN ¼ iN; b
kC

C=G
c ¼ b

iC

C=G
c (2)

where N is the batch axis, G the number of groups and C=G the number of
channels per group. Note that in Eq. (2), if G ¼ 1, a Layer Normalization (Ba,
Kiros, and Hinton 2016) is applied and if G ¼ C, where C is the number of
input channels, an Instance Normalization (Ulyanov, Vedaldi, and Lempitsky
2016) is applied. This method has shown its potential obtaining lower training
error values by replacing BN layers in existing models like the ResNet-50 (He
et al. 2016). Hence, using GN as a normalization and regularization layer
allows DNNs to be trained on smaller batches, fastens training and avoid
memory constraints. In this work, we combined GN with Dropout (Srivastava
et al. 2014) to create Independent-Component (IC) layers (Chen et al. 2019),
as illustrated in Figure 2, that build a regularization scheme by reducing the
correlation between pairs of neurons during training.

IC Layer
GN + Dropout

1x1
Convolution

Leaky ReLU Leaky ReLU

Add

1x1
Convolution

1x1
Convolution

IC Layer
GN + Dropout

IC Layer
GN + Dropout

Figure 2. Modified separable convolution block replacing each of the U-net regular and trans
posed convolutions.

870 B. NIEPCERON ET AL.

Model Compression

Convolutional neural networks have proven their efficiency in solving visual
tasks like object detection or image segmentation but still suffer from high
computation costs when deployed on devices with limited resources. With the
appearance of deeper models, CNNs need to be redefined to be trained on
these devices and used for inference in real-time applications.

We based our work on the use of the existing U-net architecture and aimed
to make it usable for both training and inference on the JAX platform. For this
purpose we used model compression to reduce the number of trainable
parameters and gain training speed. As a first compression method we rede
fined the convolutional operations with the use of depthwise separable con
volutions (Sifre and Mallat 2014). This type of convolution can factorize
standard convolutions by decomposing them into a depthwise convolution
followed by a regular convolution with a kernel of 1 × 1 called pointwise
convolution as shown in Figure 3. In contrast to regular convolutions, depth
wise separable convolutions apply a single filter for each channel in the input
independently. Hence, if K is the size of the convolutional kernel, M the
number of input channels, G the size of the output image and N the number
of output channels, the number of trainable parameters of regular convolu
tions is set as in Eq. (3) while the decomposition offered by depthwise separ
able convolutions sets the number of trainable parameters to Eq. (4).

K2 �M � G2 � N (3)

G2 �M � ðK2 þ NÞ (4)

Figure 3. Composition of a separable convolution block.

APPLIED ARTIFICIAL INTELLIGENCE 871

Taking advantage of this compression ability MobileNet (Howard et al. 2017)
and ShuffleNet (Zhang et al. 2018) are the most popular models implemented
using separable convolutions in order to achieve competitive results in com
mon visual tasks such as ImageNet (Deng et al. 2009). We thus replaced each
convolutions in both encoder and decoder part of the U-net architecture by
separable convolution blocks similar to the ones used by the MobileNetV2
(Sandler et al. 2018, June) architecture as shown in Figure 4. These blocks are
composed of three smaller convolution blocks. The first convolution sub-
block is a regular 1 × 1 convolution block, it is followed by a depthwise
convolution block and a pointwise convolution block. Only the regular and
depthwise convolution sub-blocks are activated by a LeakyReLU function.
Each of the sub-blocks uses the IC layer described previously for normal
ization and regularization. To compress the network even more, we set the
number of output maps in the bottleneck of the architecture to 512 and each
transposed convolution in the decoder part of the architecture is replaced by
an upsampling layer using bilinear interpolation (Pandey, Vasan, and
Ramakrishnan 2018; Parker, Kenyon, and Troxel 1983). The entire proposed
architecture of the network built with the operations, introduced previously, is
illustrated in Figure 4.

In addition to the compression of the convolution layers, neural network
quantization (Migacz 2017; Park, Ahn, and Yoo 2017) was used for inference.
Since the operations of DNNs can be clipped down to 8-bit fixed-point with
out major penalty in the inference performance, we compressed our model
even further by using a post-training 8-bit quantization to accelerate the
prediction phase of our method and reduce the time needed for segmentation.
The advantage of using quantization as a neural network compression method
is then twofold, it speeds up inference and offers a solution to the power

Figure 4. Our compressed U-net architecture. It consists of MobileNetV2-like separable convolu
tion blocks coupled with max-pooling for downsampling in the encoding part of the network and
bilinear upsampling in the decoding part.

872 B. NIEPCERON ET AL.

efficiency problem involved in most DL applications by reducing memory
access costs and memory bandwidth (Louizos et al. 2018).

Experiments and Results

Dataset

Our experiments were run using the BraTS 2015 (Menze et al. 2015) dataset.
The training set includes 220 cases of high-grade glioma (HGG) and 54 cases
of low-grade glioma (LGG). For each case, four sequences are available: Flair,
T2, T1, and T1 c. Each brain in the set also comes with a ground truth image
containing 5 labels corresponding to the tumor structures, namely non-tumor
(label 0), necrosis (label 1), edema (label 2), non-enhancing tumor (label 3)
and enhancing tumor (label 4). These structures are grouped in 3 regions, the
complete tumor region (containing all four labels), the core tumor region
(containing all labels except edema) and the enhancing tumor region (only
containing the enhancing tumor structure). Figure 5. shows the four sequences
in the given order and their associated ground truth from an LGG case on the
upper row and two HGG cases on the two bottom rows.

Before being processed by the neural network, we first applied some pre-
processing operations to the data by applying the N4ITK bias field correction
(Tustison et al. 2010) to the T1 and T1 c sequences using the SimpleITK library
(Lowekamp et al. 2013). We also randomly applied different data augmenta
tions like elastic transformation, flipping, gaussian noise or shifting to 40% of
the slices in order to prevent the model from overfitting.

Since data have to be processed locally on the embedded system, we need to
define a fast and light pipeline to feed the neural network. We decided to extract
slices from each case by ignoring each empty slice, we cropped each of them to

Figure 5. Four sequences and ground truth of an LGG case and two HGG cases taken from the
BRaTS 2015 dataset.

APPLIED ARTIFICIAL INTELLIGENCE 873

128 × 128 in order to avoid extra computation over the MRIs background
regions. Our pipeline thus creates a training and a validation dataset separately
with a split ratio of 0.8/0.2 containing both HGG and LGG cases. Finally, to
reduce the dataset size in memory and gain reading speed for later processing,
the extracted slices are saved and encoded using a Protocol Buffer format.

Training and Implementation Details

The model was trained using an Adam Optimizer (Kingma and Ba 2014) with
a learning rate set to 0.0001. All biases were initialized to zeros and the kernels
were initialized using the glorot normal initialization (Glorot and Bengio
2010). To get better performances in terms of pixel-wise accuracy, we used
Eq. (7) as a combined loss function based on the Binary Cross-Entropy (BCE)
computed as in Eq. (5) and the Dice loss functions shown in Eq. (6).

BCEðy; ŷÞ ¼ �
1
N

XN

i¼1
½yilogðŷiÞ þ ð1 � yiÞlogð1 � ŷiÞ� (5)

DiceLossðy; ŷÞ ¼ 1 �
2
P

y � ŷ
P

yþ ŷ
(6)

CombinedLossðy; ŷÞ ¼ BCEðy; ŷÞ þ DiceLossðy; ŷÞ (7)

where N is the number of samples in the dataset, y represents the ground truth
labels and ̂y the model predictions. Since we dealt with the limitations of Batch
Normalization, we allow the model to be trained on small mini-batches of size
2. Early stopping is used to prevent the model from overfitting by monitoring
the values of the validation loss during training.

The last layer of the model outputs a pixel-wise probabilistic mask wherein
each pixel takes a value in the range [0,1] set by a sigmoid activation function.
This mask is then thresholded to recover a prediction mask comprising all 5
sparse labels. Finally, since the JAX comes with built-in DL accelerators and visual
accelerators that can be configured with 4 different power envelopes, we chose to
use the full potential of the embedded platform during training by setting the
configuration to the MAXN mode, allowing the use of every CPU Core and an
increased GPU Frequency as stated in Table 2. This configuration led to train the
model taking about 20 mins per epoch. Note that each of the modes were tested
and were all successful in running both training and inference of our model.

Results

Using the JAX maximum capacity, our segmentation method was successfully
able to be trained and to segment high and low grade gliomas. Moreover, while

874 B. NIEPCERON ET AL.

the uncompressed U-Net model involves more than 31 millions of parameters,
our compression scheme reduces this number down to about 2.1 millions
without major penalty in its training and inference performances in regards to
the parameter reduction factor. This reduction of the model memory footprint
allows this method to be deployable on embedded systems or be used as
a portable application for medical image analysis.

The Dice coefficient was computed over the validation dataset for each of
the tumor region described previously as a proof of similarity between the
ground truth and the predicted mask as follows:

DiceCoef ¼
2jy \ ŷj
jyj þ jŷj

(8)

Although other segmentation methods like the ones shown in Table 3
achieve higher dice scores, our method can fairly compare in terms of number
of parameters involved to achieve the segmentation task. Figure 6 shows three
examples of segmentation achieved by our compressed model where the
column A represents the input image as a cropped slice containing all 4
sequences, followed by its ground truth in the B column and the thresholded
predicted mask found by the neural network in column C.

Other compression methods could have been used to go further in the
reduction of the model footprint, like Knowledge Distillation (Hinton,
Vinyals, and Dean 2015) or Parameter Pruning (Suzuki, Horiba, and Sugie
2001). However, we think that such solutions would not be compatible with
the development of fast real-time applications for devices with limited
resources since they need heavier pre-trained networks to be used, which
may not be suitable for the problem stated in this paper since our main interest
is to develop and train a DL based segmentation tool without using any
prerequisite model.

Table 2. Nvidia Jetson AGX Xavier power modes.
MAXN 10 W 15 W 30W_ALL

CPU Cores 8 2 4 8
CPU Max Freq. (MHz) 1377 520 6700 900
GPU Max Freq. (MHz) 2265.6 1200 1200 1200
Memory Max Freq. (MHz) 2133.6 1066 1333 1600

Table 3. Results of our proposed approach compared to other similar deep learning
based brain tumor segmentation methods.

Dice Score

Method Complete Core Enhancing

Proposed 0.81 0.77 0.53
Zhao (Zhao et al. 2018) 0.82 0.72 0.62
Pereira (Pereira et al. 2016) 0.84 0.72 0.62
Dong (Dong et al. 2017) 0.86 0.86 0.65

APPLIED ARTIFICIAL INTELLIGENCE 875

Conclusion

In this paper, we reviewed some methods used for neural networks optimiza
tion and compression and proved that they can successfully be applied to
move medical image analysis to limited resources embedded systems. We
provided a lightweight neural network training development scheme by inte
grating model compression in an existing CNN architecture. Using depthwise
separable convolutions coupled with Independent-Component layers gives the
benefit of reducing the number of trainable parameters without compromising
training and inference performances. We compared these performances with
other state of the art similar approaches involving the training of Deep Neural
Networks and proved that our method can reach comparable results in regards
to the reduction of parameters that we applied. We tested the capacity of an
affordable embedded platform in the execution of a brain tumor segmentation

Figure 6. Example of tumor segmentation results. With a 128x128x4 input slice in A, its associated
ground truth in B and the compressed model output in C.

876 B. NIEPCERON ET AL.

method and proved that it can be sucessfully used to develop end-to-end Deep
Learning based applications for medical image analysis and reduce their cost
in production due to the reduction of training and inference time, and the
reduction of the general amount of energy used by the system to proceed the
segmentation task.

Acknowledgments

This work was supported and partially funded by Région Hauts-de-France, Agglomération du
Saint-Quentinois and the city of Saint-Quentin.

ORCID

Brad Niepceron http://orcid.org/0000-0002-9401-0634

References

Alyamkin, S., M. Ardi, A. Brighton, A. C. Berg, Y. Chen, H.-P. Cheng, . . . S. Zhuo. 2018. 2018
low-power image recognition challenge. ArXiv, abs/1810.01732.

Ba, J. L., J. R. Kiros, and G. E. Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Chen, G., P. Chen, Y. Shi, C.-Y. Hsieh, B. Liao, and S. Zhang. 2019. Rethinking the usage of
batch normalization and dropout in the training of deep neural networks. arXiv preprint
arXiv:1905.05928.

Dang, L. M., K. Min, D. Han, M. Jalil Piran, and H. Moon. June 2019. A survey on internet of
things and cloud computing for healthcare. Electronics 2019, 8, 768.

Deng, J., W. Dong, R. Socher, L. Li, L. Kai, and L. Fei-Fei. June 2009. Imagenet: A large- scale
hierarchical image database. In 2009 ieee conference on computer vision and pattern recogni
tion, 248–55. Miami, FL. Ieee.

Dong, H., G. Yang, F. Liu, Y. Mo, and Y. Guo. 2017. Automatic brain tumor detection and
segmentation using u-net based fully convolutional networks. Medical Image Understanding
and Analysis 506–17. https://doi.10.1007/978-3-319-60964-544

Glorot, X., and Y. Bengio. 13–15 May 2010. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, Y. W. Teh and M. Titterington ed., vol. 9, 249–56. Chia
Laguna Resort, Sardinia, Italy: PMLR. http://proceedings.mlr.press/v9/glorot10a.html

Havaei, M., A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin,
and H. Larochelle. January 2017. Brain tumor segmentation with deep neural networks..
Medical Image Analysis 35:18–31. doi: 10.1016/j.media.2016.05.004.

He, K., X. Zhang, S. Ren, and J. Sun. June 2016. Deep residual learning for image recognition.
In Proceedings of the 2016 IEEE conference on computer vision and pattern recognition
(CVPR), 770–78. Las Vegas.

Hinton, G., O. Vinyals, and J. Dean. 2015. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, . . . H. Adam. 2017.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861

APPLIED ARTIFICIAL INTELLIGENCE 877

https://doi.10.1007/978-3-319-60964-544
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1016/j.media.2016.05.004

Ioffe, S. 2017. Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models. In Advances in neural information processing systems, 1945–53. Long
Beach, USA.

Ioffe, S., and C. Szegedy. 2015. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd international conference on
international conference on machine learning - volume 37, 448–56. Lille, France. JMLR.org.
http://dl.acm.org/citation.cfm?id=3045118.3045167.

Kingma, D. P., and J. Ba. 2014. Adam: A method for stochastic optimization. CoRR, abs/
1412.6980.

LeCun, Y., L. Bottou, G. Orr, and K. Muller. 1998. Efficient backprop. In Neural networks:
Tricks of the trade, ed. G. Orr and K. Muller, 9-48, Springer, Berlin, Heidelberg. doi:10.1007/
978-3-642-35289-83.

Louizos, C., M. Reisser, T. Blankevoort, E. Gavves, and M. Welling. 2018. Relaxed quantization
for discretized neural networks. ArXiv, abs/1810.01875.

Lowekamp, B. C., D. T. Chen, L. Ibáñez, and D. J. Blezek. 2013. The design of simpleitk.
Frontiers in Neuroinformatics 7. doi:10.3389/fninf.2013.00045.

Menze, B. H., A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz,
J. Slotboom, and R. Wiest. October 2015. The multimodal brain tumor image segmentation
benchmark (brats). IEEE Transactions On Medical Imaging 34 (10):1993–2024. doi: 10.1109/
TMI.2014.2377694.

Migacz, S. 2017. Gpu technology conference. In 8-bit inference with tensorrt. San Jose
Convention Center, Silicon Valley.

Mittal, S., and J. S. Vetter. 2014 August. A survey of methods for analyzing and improving gpu
energy efficiency. ACM Computing Surveys 47 (2). 19:1–19:23 http://doi.acm.10.1145/
2636342

Pandey, R. K., A. Vasan, and A. G. Segmentation of liver lesions with reduced complexity deep
models. arXiv preprint arXiv:1805.09233.

Park, E., J. Ahn, and S. Yoo. 2017, July. Weighted-entropy-based quantization for deep neural
networks. In 2017 ieee conference on computer vision and pattern recognition (cvpr),
7197–205. Honolulu, HI, USA.

Parker, J. A., R. V. Kenyon, and D. E. Troxel. March 1983. Comparison of interpolating
methods for image resampling. IEEE Transactions On Medical Imaging 2 (1):31–39. doi:
10.1109/TMI.1983.4307610.

Peng, C., T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, . . . J. Sun. 2018, June. Megdet: A large
mini-batch object detector. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. doi:10.1109/CVPR.2018.00647

Pereira, S., A. Pinto, V. Alves, and C. A. Silva. May 2016. Brain tumor segmentation using
convolutional neural networks in mri images. IEEE Transactions On Medical Imaging 35
(5):1240–51. doi: 10.1109/TMI.2016.2538465.

Pujol, R., H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla. 2019. Generating and
exploiting deep learning variants to increase heteroge- neous resource utilization in the
nvidia xavier. In 31st eu- romicro conference on real-time systems (ecrts 2019), S. Quinton ed.,
vol. 133, 23:1–23:23. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. http://drops.dagstuhl.de/opus/volltexte/2019/10760

. Qiu, J., J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, . . . H. Yang. 2016. Going deeper with
embedded fpga platform for convolutional neural network, Proceedings of the 2016 acm/
sigda international symposium on field-programmable gate arrays, 26–35. New York, NY,
USA: ACM. http://doi.acm.10.1145/2847263.2847265

878 B. NIEPCERON ET AL.

http://dl.acm.org/citation.cfm?id=3045118.3045167
https://doi.org/10.1007/978-3-642-35289-83
https://doi.org/10.1007/978-3-642-35289-83
https://doi.org/10.3389/fninf.2013.00045
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1109/TMI.2014.2377694
http://doi.acm.10.1145/2636342
http://doi.acm.10.1145/2636342
https://doi.org/10.1109/TMI.1983.4307610
https://doi.org/10.1109/TMI.1983.4307610
https://doi.org/10.1109/CVPR.2018.00647
https://doi.org/10.1109/TMI.2016.2538465
http://drops.dagstuhl.de/opus/volltexte/2019/10760
http://doi.acm.10.1145/2847263.2847265

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L. Chen (2018, June). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on com
puter vision and pattern recognition, 4510–20. Salt Lake City

Sifre, L., and S. Mallat (2014). Rigid-motion scattering for texture classification. CoRR, abs/
1403.1687. http://arxiv.org/abs/1403.1687

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research 15:1929–58. http://jmlr.org/papers/v15/srivastava14a.html.

Suzuki, K., I. Horiba, and N. Sugie. 2001 February. A simple neural network pruning algorithm
with application to filter synthesis. Neural Processing Letters 13 (1):43–53. doi:10.1023/
A:1009639214138.

Tanwani, A., J. Galdun, J.-M. Thiriet, S. Lesecq, and S. Gentil. 2007, July. Experimental
networked embedded mini drone - part i. consideration of faults. In European control
conference, ecc’07. Kos, Greece: ECC. https://hal.archives-ouvertes.fr/hal–00129457

Tian, Y., K. Pei, S. Jana, and B. Ray. 2018. Deeptest: Automated testing of deep-neural-network
-driven autonomous cars. Proceedings of the 40th international conference on software
engineering - ICSE ’18. doi: 10.1145/3180155.3180220

Tijtgat, N., W. V. Ranst, B. Volckaert, T. Goedemé, and F. D. Turck. 2017, October. Embedded
real-time object detection for a uav warning system. In 2017 ieee international conference on
computer vision workshops (iccvw), 2110–18. doi: 10.1109/ICCVW.2017.247

Tustison, N. J., B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee.
June 2010. N4itk: Improved n3 bias correction. IEEE Transactions On Medical Imaging 29
(6):1310–20. doi: 10.1109/TMI.2010.2046908.

Ulyanov, D., A. Vedaldi, and V. Lempitsky. 2016. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

Wu, Y., and K. He. 2018. Group normalization. Lecture Notes in Computer Science 3–19.
doi:10.1007/978-3-030-01261-81.

Zhang, X., X. Zhou, M. Lin, and J. Sun. 2018, June. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In 2018 ieee/cvf confer- ence on computer
vision and pattern recognition, 6848–56. http://doi.10.1109/CVPR.2018.00716

Zhao, X., Y. Wu, G. Song, Z. Li, Y. Zhang, and Y. Fan. 2018. A deep learning model
integrating fcnns and crfs for brain tumor seg- mentation. Medical Image Analysis
43:98–111. http://www.sciencedirect.com/science/article/pii/S136184151730141X.

APPLIED ARTIFICIAL INTELLIGENCE 879

http://arxiv.org/abs/1403.1687
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1023/A:1009639214138
https://doi.org/10.1023/A:1009639214138
https://hal.archives-ouvertes.fr/hal%201300129457
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1109/ICCVW.2017.247
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1007/978-3-030-01261-81
https://doi.org/http://doi.10.1109/CVPR.2018.00716
http://www.sciencedirect.com/science/article/pii/S136184151730141X

	Abstract
	Introduction
	Materials and Methods
	Jetson AGX Xavier
	Normalization
	Model Compression

	Experiments and Results
	Dataset
	Training and Implementation Details
	Results

	Conclusion
	Acknowledgments
	ORCID
	References

