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Moving Medical Image Analysis to GPU Embedded Systems: 
Application to Brain Tumor Segmentation
Brad Niepceron , Ahmed Nait-Sidi-Moh, and Filippo Grassia

Laboratory of Innovative Technologies (LTI, EA 3899), University of Picardie Jules Verne, Amiens, France

ABSTRACT
With the growth of medical data stored as bases for researches 
and diagnosis tasks, healthcare providers are in need of auto-
matic processing methods to make accurate and fast image 
analysis such as segmentation or restoration. Most of the exist-
ing solutions to deal with these tasks are based on Deep 
Learning methods that require the use of powerful dedicated 
hardware to be executed and address a power consumption 
problem that is not compatible with the aforementioned 
requests. There is thus a demand in the development of low- 
cost image analysis systems with increased performances. In this 
work, we address this problem by proposing a fully-automatic 
brain tumor segmentation method based on a Convolutional 
Neural Network, executed by a low-cost, Deep Learning ready 
GPU embedded platform. We validated our approach using the 
BRaTS 2015 dataset to segment brain tumors and proved that 
an artificial neural network can be trained and used in the 
medical field with limited resources by redefining some of its 
inner operations.

Introduction

The development of brain tumor segmentation tools based on Deep Learning 
(DL) methods has grown significantly over the last few years. Several models 
like the InputCascadeCNN (Havaei et al. 2017) or the U-Net (Dong et al. 2017) 
have already shown that great potential lies in the use of Convolutional Neural 
Networks (CNNs) to help the detection of common tumors that are yet 
difficult to segment due to the variety of their shapes and locations. With the 
architectures of these models getting deeper over the years in a rush for 
performances, a need for powerful platforms appeared to handle their execu-
tion leading to the use of more power, resulting in high costs. To fulfill their 
promises on the production level and be accessible, DL based methods for 
medical image analysis must be able to be trained and executed on platforms 
with limited computational resources (Qiu et al. 2016). Moreover, the constant 
increase of medical data pushes healthcare providers to seek for fullyautomatic 
image analysis methods in order to offer faster and better diagnoses.
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Hence, DL based solutions to computer vision tasks must succeed in 
affordability, energy-efficiency and portability to be fully considered as real 
and applicable solutions. The Low-Power Image Recognition Challenge 
(LPIRC) (Alyamkin et al. 2018) appeared to emphasize the need to develop 
such systems with a balance between performance and low power consump-
tion as a mean to highlight their importance. In this dynamic, low-power 
hardware accelerators for DL were developed and launched by several tech-
nology companies. The Nvidia Jetson AGX Xavier (JAX) (Pujol et al. 2019) is 
one of these accelerators built for machine learning that ease the development 
and deployment of DL applications. Its CPU-GPU architecture supported by 
CUDA, cuDNN and the TensoRT software libraries for inference speed up 
makes it the perfect fit to run DL workloads in different domains such as 
logistics, service, manufacturing, smart city applications and medical image 
analysis.

In this paper, we first discuss the advantages of the JAX to develop and run 
DL applications. We then review the use of model compression methods as 
well as a normalization scheme for the optimization of neural networks in 
order to allow their deployment on limited resource devices. Finally, we 
propose a training scheme of a compressed neural network architecture to 
build an end-to-end automatic brain tumor segmentation tool applied to 
glioma tumors.

Materials and Methods

The appearance of embedded computing systems gave rise to the develop-
ment of IoT devices for healthcare (Dang et al. 2019), autonomous cars (Tian 
et al. 2018), and drones (Tanwani et al. 2007), all taking advantage of power 
efficiency and portability. The challenge in the development of dedicated 
machine learning applications executable on this kind of systems followed 
this growth and still has to be addressed because of the computational 
complexity of most common algorithms. Designing lightweight DL applica-
tions compatible with imposed memory constraints thus demands to rethink 
and modify some operations to reduce the number of parameters that they 
involve.

This section studies the efficiency of the JAX as well as modifications of 
neural network operations for the development of lightweight CNNs.

Jetson AGX Xavier

The unique features of the JAX made it one of the most popular low-cost 
machine learning accelerator available today. The motivation for using it as 
a platform to develop and run end-to-end DL applications lays in the will to 
take advantage of the power provided by its CPU-GPU architecture over the 
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use of FPGAs (Mittal and Vetter 2014) as well as its low weight and low power 
consumption.

GPU based embedded computing systems like the JAX can thus be a good 
choice for both training and inference of Deep Learning models in real-time 
applications for several reasons. The first reason concerns the low weight 
feature of the platform that is compatible with deployment requirements for 
small or flying devices since the power required to hover a drone, for example, 
increases with its mass (Tijtgat et al. 2017). The low power consumption is 
the second reason as it reduces thermal problems that are inherent to domains 
like autonomous driving and aims to reduce energy costs. As shown in Table 1, 
both power consumption and weight features of the JAX are suitable for 
embedded applications development.

The kit also embeds a modular scalable architecture, shown in Figure 1, 
known as the Deep Learning Accelerator (DLA) and designed to ease the 
integration and deployment of DL applications while optimizing energy effi-
ciency. This architecture includes a support for most layers used in CNNs, like 
convolution and deconvolution layers, pooling layers, fully-connected layers, 
normalization layers and activation layers. This support makes the JAX a great 
choice for developing CNN based image analysis tools.

Table 1. Nvidia Jetson AGX Xavier specifications.
Jetson AGX Xavier Module

CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3
GPU 512-core Volta GPU with Tensor Cores
Memory 16GB 256-Bit LPDDR4x | 137GB/s
Weight 630 grams
Dimension 100 mm x 87 mm x 16 mm
Storage 32GB eMMC 5.1

Figure 1. The Nvidia deep learning accelerator architecture. Nvdla.org.
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One other reason comes from the fact that the kit is ready to receive an 
NVMe SSD drive to increase its memory and allow to store and process data 
locally while many real-time DL applications involve the use of remote servers 
for this same task. Gathering and processing data locally offers the advantage 
of not relying on a server response that can imply high latency, connection 
disruptions and possible security flaws when requesting or writing data.

The JAX also embeds the JetPack SDK that includes TensorRT, a high 
performance deep learning inference runtime that aims to reduce the memory 
footprint for convolutional neural networks and speeds up inference for image 
segmentation tasks like the one we address in this paper.

All the mentioned reasons for using the JAX as a training and inference 
platform for CNNs then motivate the transformation of existing neural net-
work architectures to build smaller and faster models executable with limited 
power by compressing their building blocks and find new regularization 
schemes to make sure that these models do not suffer from the reduction of 
parameters.

Normalization

Normalization methods are known for their capacity to fasten training (LeCun 
et al. 1998) and have been widely used in deep learning. The most well-known 
normalization method used to train Deep Neural Networks (DNNs) is called 
Batch Normalization (Ioffe and Szegedy 2015) (BN). BN has proven to be 
a very efficient normalization solution to ease neural networks optimization 
and convergence by performing a global feature normalization along the batch 
dimension. The stochastic uncertainty of the batch statistics also allows to use 
BN as a powerful regularizer and helps DNNs to avoid overfitting.

However, despite all of the aforementioned advantages of this method, 
normalizing along the batch dimension requires BN to work with large 
batch sizes because small mini-batches lead to inaccurate batch statistics 
estimation and thus increase the model’s error. Since training on an embedded 
system requires to be able to use a small amount of memory, it is important to 
use very small input mini-batches and normalize features along another 
dimension without penalty on the training performances.

Several methods like the Synchronized Batch Normalization (Peng et al. 
2018) and Batch Renormalization (Ioffe 2017) have been proposed to get 
better performances while solving the batch statistics estimation problem 
when using BN with small mini-batches. However, these methods stay batch 
dependent and only move the size problem elsewhere or simply solve it by 
adding computational power according to the mini-batch size.

Group Normalization (GN) (Wu and He 2018) appears to be one normal-
ization solution when working with resource-constrained systems. The gen-
eral purpose of a GN layer is to divide input channels into groups and apply 
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normalization on the features present in each of these groups. It avoids the 
batch statistic computation and stays completely independent to the batch 
dimension. Considering a regular feature normalization, the standard devia-
tion σ and the mean μ are formulated as in Eq. (1) where Si is the set of pixels 
on which the normalization is performed and m is the size of the set being 
processed. x represents the features being computed and ε is a small constant. 

μi ¼
1
m

X

k2Si

xk; σi ¼

ffiffiffiffi
1
m

r
X

k2Si

ðxk � μiÞ
2
þ ε (1) 

Therefore, GN is defined as the computation of σ and μ in a set formulated as 
follows: 

Si ¼ kjkN ¼ iN; b
kC

C=G
c ¼ b

iC

C=G
c (2) 

where N is the batch axis, G the number of groups and C=G the number of 
channels per group. Note that in Eq. (2), if G ¼ 1, a Layer Normalization (Ba, 
Kiros, and Hinton 2016) is applied and if G ¼ C, where C is the number of 
input channels, an Instance Normalization (Ulyanov, Vedaldi, and Lempitsky 
2016) is applied. This method has shown its potential obtaining lower training 
error values by replacing BN layers in existing models like the ResNet-50 (He 
et al. 2016). Hence, using GN as a normalization and regularization layer 
allows DNNs to be trained on smaller batches, fastens training and avoid 
memory constraints. In this work, we combined GN with Dropout (Srivastava 
et al. 2014) to create Independent-Component (IC) layers (Chen et al. 2019), 
as illustrated in Figure 2, that build a regularization scheme by reducing the 
correlation between pairs of neurons during training.

IC Layer
GN + Dropout

1x1
Convolution

Leaky ReLU Leaky ReLU

Add

1x1
Convolution

1x1
Convolution

IC Layer
GN + Dropout

IC Layer
GN + Dropout

Figure 2. Modified separable convolution block replacing each of the U-net regular and trans-
posed convolutions.
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Model Compression

Convolutional neural networks have proven their efficiency in solving visual 
tasks like object detection or image segmentation but still suffer from high 
computation costs when deployed on devices with limited resources. With the 
appearance of deeper models, CNNs need to be redefined to be trained on 
these devices and used for inference in real-time applications.

We based our work on the use of the existing U-net architecture and aimed 
to make it usable for both training and inference on the JAX platform. For this 
purpose we used model compression to reduce the number of trainable 
parameters and gain training speed. As a first compression method we rede-
fined the convolutional operations with the use of depthwise separable con-
volutions (Sifre and Mallat 2014). This type of convolution can factorize 
standard convolutions by decomposing them into a depthwise convolution 
followed by a regular convolution with a kernel of 1 × 1 called pointwise 
convolution as shown in Figure 3. In contrast to regular convolutions, depth-
wise separable convolutions apply a single filter for each channel in the input 
independently. Hence, if K is the size of the convolutional kernel, M the 
number of input channels, G the size of the output image and N the number 
of output channels, the number of trainable parameters of regular convolu-
tions is set as in Eq. (3) while the decomposition offered by depthwise separ-
able convolutions sets the number of trainable parameters to Eq. (4). 

K2 �M � G2 � N (3) 

G2 �M � ðK2 þ NÞ (4) 

Figure 3. Composition of a separable convolution block.
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Taking advantage of this compression ability MobileNet (Howard et al. 2017) 
and ShuffleNet (Zhang et al. 2018) are the most popular models implemented 
using separable convolutions in order to achieve competitive results in com-
mon visual tasks such as ImageNet (Deng et al. 2009). We thus replaced each 
convolutions in both encoder and decoder part of the U-net architecture by 
separable convolution blocks similar to the ones used by the MobileNetV2 
(Sandler et al. 2018, June) architecture as shown in Figure 4. These blocks are 
composed of three smaller convolution blocks. The first convolution sub- 
block is a regular 1 × 1 convolution block, it is followed by a depthwise 
convolution block and a pointwise convolution block. Only the regular and 
depthwise convolution sub-blocks are activated by a LeakyReLU function. 
Each of the sub-blocks uses the IC layer described previously for normal-
ization and regularization. To compress the network even more, we set the 
number of output maps in the bottleneck of the architecture to 512 and each 
transposed convolution in the decoder part of the architecture is replaced by 
an upsampling layer using bilinear interpolation (Pandey, Vasan, and 
Ramakrishnan 2018; Parker, Kenyon, and Troxel 1983). The entire proposed 
architecture of the network built with the operations, introduced previously, is 
illustrated in Figure 4.

In addition to the compression of the convolution layers, neural network 
quantization (Migacz 2017; Park, Ahn, and Yoo 2017) was used for inference. 
Since the operations of DNNs can be clipped down to 8-bit fixed-point with-
out major penalty in the inference performance, we compressed our model 
even further by using a post-training 8-bit quantization to accelerate the 
prediction phase of our method and reduce the time needed for segmentation. 
The advantage of using quantization as a neural network compression method 
is then twofold, it speeds up inference and offers a solution to the power 

Figure 4. Our compressed U-net architecture. It consists of MobileNetV2-like separable convolu-
tion blocks coupled with max-pooling for downsampling in the encoding part of the network and 
bilinear upsampling in the decoding part.
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efficiency problem involved in most DL applications by reducing memory 
access costs and memory bandwidth (Louizos et al. 2018).

Experiments and Results

Dataset

Our experiments were run using the BraTS 2015 (Menze et al. 2015) dataset. 
The training set includes 220 cases of high-grade glioma (HGG) and 54 cases 
of low-grade glioma (LGG). For each case, four sequences are available: Flair, 
T2, T1, and T1 c. Each brain in the set also comes with a ground truth image 
containing 5 labels corresponding to the tumor structures, namely non-tumor 
(label 0), necrosis (label 1), edema (label 2), non-enhancing tumor (label 3) 
and enhancing tumor (label 4). These structures are grouped in 3 regions, the 
complete tumor region (containing all four labels), the core tumor region 
(containing all labels except edema) and the enhancing tumor region (only 
containing the enhancing tumor structure). Figure 5. shows the four sequences 
in the given order and their associated ground truth from an LGG case on the 
upper row and two HGG cases on the two bottom rows.

Before being processed by the neural network, we first applied some pre- 
processing operations to the data by applying the N4ITK bias field correction 
(Tustison et al. 2010) to the T1 and T1 c sequences using the SimpleITK library 
(Lowekamp et al. 2013). We also randomly applied different data augmenta-
tions like elastic transformation, flipping, gaussian noise or shifting to 40% of 
the slices in order to prevent the model from overfitting.

Since data have to be processed locally on the embedded system, we need to 
define a fast and light pipeline to feed the neural network. We decided to extract 
slices from each case by ignoring each empty slice, we cropped each of them to 

Figure 5. Four sequences and ground truth of an LGG case and two HGG cases taken from the 
BRaTS 2015 dataset.
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128 × 128 in order to avoid extra computation over the MRIs background 
regions. Our pipeline thus creates a training and a validation dataset separately 
with a split ratio of 0.8/0.2 containing both HGG and LGG cases. Finally, to 
reduce the dataset size in memory and gain reading speed for later processing, 
the extracted slices are saved and encoded using a Protocol Buffer format.

Training and Implementation Details

The model was trained using an Adam Optimizer (Kingma and Ba 2014) with 
a learning rate set to 0.0001. All biases were initialized to zeros and the kernels 
were initialized using the glorot normal initialization (Glorot and Bengio 
2010). To get better performances in terms of pixel-wise accuracy, we used 
Eq. (7) as a combined loss function based on the Binary Cross-Entropy (BCE) 
computed as in Eq. (5) and the Dice loss functions shown in Eq. (6). 

BCEðy; ŷÞ ¼ �
1
N

XN

i¼1
½yilogðŷiÞ þ ð1 � yiÞlogð1 � ŷiÞ� (5) 

DiceLossðy; ŷÞ ¼ 1 �
2
P

y � ŷ
P

yþ ŷ
(6) 

CombinedLossðy; ŷÞ ¼ BCEðy; ŷÞ þ DiceLossðy; ŷÞ (7) 

where N is the number of samples in the dataset, y represents the ground truth 
labels and ̂y the model predictions. Since we dealt with the limitations of Batch 
Normalization, we allow the model to be trained on small mini-batches of size 
2. Early stopping is used to prevent the model from overfitting by monitoring 
the values of the validation loss during training.

The last layer of the model outputs a pixel-wise probabilistic mask wherein 
each pixel takes a value in the range [0,1] set by a sigmoid activation function. 
This mask is then thresholded to recover a prediction mask comprising all 5 
sparse labels. Finally, since the JAX comes with built-in DL accelerators and visual 
accelerators that can be configured with 4 different power envelopes, we chose to 
use the full potential of the embedded platform during training by setting the 
configuration to the MAXN mode, allowing the use of every CPU Core and an 
increased GPU Frequency as stated in Table 2. This configuration led to train the 
model taking about 20 mins per epoch. Note that each of the modes were tested 
and were all successful in running both training and inference of our model.

Results

Using the JAX maximum capacity, our segmentation method was successfully 
able to be trained and to segment high and low grade gliomas. Moreover, while 
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the uncompressed U-Net model involves more than 31 millions of parameters, 
our compression scheme reduces this number down to about 2.1 millions 
without major penalty in its training and inference performances in regards to 
the parameter reduction factor. This reduction of the model memory footprint 
allows this method to be deployable on embedded systems or be used as 
a portable application for medical image analysis.

The Dice coefficient was computed over the validation dataset for each of 
the tumor region described previously as a proof of similarity between the 
ground truth and the predicted mask as follows: 

DiceCoef ¼
2jy \ ŷj
jyj þ jŷj

(8) 

Although other segmentation methods like the ones shown in Table 3 
achieve higher dice scores, our method can fairly compare in terms of number 
of parameters involved to achieve the segmentation task. Figure 6 shows three 
examples of segmentation achieved by our compressed model where the 
column A represents the input image as a cropped slice containing all 4 
sequences, followed by its ground truth in the B column and the thresholded 
predicted mask found by the neural network in column C.

Other compression methods could have been used to go further in the 
reduction of the model footprint, like Knowledge Distillation (Hinton, 
Vinyals, and Dean 2015) or Parameter Pruning (Suzuki, Horiba, and Sugie 
2001). However, we think that such solutions would not be compatible with 
the development of fast real-time applications for devices with limited 
resources since they need heavier pre-trained networks to be used, which 
may not be suitable for the problem stated in this paper since our main interest 
is to develop and train a DL based segmentation tool without using any 
prerequisite model.

Table 2. Nvidia Jetson AGX Xavier power modes.
MAXN 10 W 15 W 30W_ALL

CPU Cores 8 2 4 8
CPU Max Freq. (MHz) 1377 520 6700 900
GPU Max Freq. (MHz) 2265.6 1200 1200 1200
Memory Max Freq. (MHz) 2133.6 1066 1333 1600

Table 3. Results of our proposed approach compared to other similar deep learning 
based brain tumor segmentation methods.

Dice Score

Method Complete Core Enhancing

Proposed 0.81 0.77 0.53
Zhao (Zhao et al. 2018) 0.82 0.72 0.62
Pereira (Pereira et al. 2016) 0.84 0.72 0.62
Dong (Dong et al. 2017) 0.86 0.86 0.65
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Conclusion

In this paper, we reviewed some methods used for neural networks optimiza-
tion and compression and proved that they can successfully be applied to 
move medical image analysis to limited resources embedded systems. We 
provided a lightweight neural network training development scheme by inte-
grating model compression in an existing CNN architecture. Using depthwise 
separable convolutions coupled with Independent-Component layers gives the 
benefit of reducing the number of trainable parameters without compromising 
training and inference performances. We compared these performances with 
other state of the art similar approaches involving the training of Deep Neural 
Networks and proved that our method can reach comparable results in regards 
to the reduction of parameters that we applied. We tested the capacity of an 
affordable embedded platform in the execution of a brain tumor segmentation 

Figure 6. Example of tumor segmentation results. With a 128x128x4 input slice in A, its associated 
ground truth in B and the compressed model output in C.
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method and proved that it can be sucessfully used to develop end-to-end Deep 
Learning based applications for medical image analysis and reduce their cost 
in production due to the reduction of training and inference time, and the 
reduction of the general amount of energy used by the system to proceed the 
segmentation task.
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