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Abstract
The target of this paper is to examine the average–per–observation information matrix for the
truncated cosinor model. We state and prove an orthogonal decomposition of this matrix so that
the total information can be obtained as a result of three particular parts. The total information is
presented piece–wise in three components. Each component is easily represented. Therefore the
total information can be checked through three different points on the collection of the information.
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1 Introduction
In most of the real life cases we face the situation where neither the models are perfect indeed, nor
the data. In such cases uncertainty is the permanent escort of knowledge and we try to reduce it.
This knowledge is relevant with the obtained information from the collected data set. Therefore, if we
“break” the information into “parts”, we can particular investigate the provided total information. So
we try to obtain a piece–wise information while the sum of the total information we are referred to is
the Fisher’s information. Moreover, this is crucial as a representation of the uncertainty formalizes
incomplete information and vice versa. As the reduction of uncertainty requires the identification of
the sources, as well as the elaboration of the appropriate methods to qualify, it is worth it to break the
total estimated information into parts. We are using three different parts of information to sum up to
the total. The nonlinear model we discuss in this paper reflects data either from biological rhythms,
[1] or from engineering situations, [2]. The adopted information measure is the Fisher’s (parametric)
information measure.

Consider the regression model linking the response y with the deterministic portion f(u;ϑ) and
the stochastic portion e known as error, of the form

y(t) = f(u;ϑ) + e,
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with ϑ being the vector of parameters ϑ ∈ Θ ⊆ Rp and u the input variable. We let η = E(y|u) =
f(u;ϑ) and assume that the error e comes from a distribution with zero mean and variance σ2. When
inference is required this distribution is asked to be the normal. Then Fisher’s information matrix is
defined to be

I(u;ϑ) = σ−2(∇η)(∇η)T,

where ∇η is the usual gradient of f . Then, for the n–point design measure, the average-per-
observation (a–p–o) information matrix M defined, for the discrete case, to be, [3].

M(ϑ, ξ) = 1
n

n∑
i=1

I(ui;ϑ).

The defined matrix M(ϑ, ξ) for this particular “cosinor model” is the one which we try to obtain piece–
wise as a summation of different a–p–o information matrices. In principle, the linear regression case
is distinguished from the non-linear by the fact that the a–p–o information matrix does not depend on
the parameter ϑ, as in the non-linear case we investigate.

2 Background
Some diural and engineering rhythms can be described, with the known as the cosinor model,

y(t) = f(t;ϑ) + e with η = E(y|u) = f(u;ϑ) = ϑ0 + ϑ1 cos(ωt+ ϑ2), (2.1)

where y(t) is the response at time t, i.e. the variable of the rhythm we study, ϑ0 is the mesor,
i.e. the “mean” value about which oscillation occurs, ϑ1 is the amplitude, i.e. the half difference
between the highest and lowest value during the oscillation in a complete cycle (360◦ or 24 hours),
ϑ2 is the acrophase, i.e. timing of high point in degrees, ω is angular frequency, i.e. degrees/unit
time (2π = 360◦ corresponds to a complete cycle, and e is the error term under the usual normal
assumption. For an application in biorhythms fitting the model (2.1), see [4] and [5].

From an applications point of view (clinical or engineering) the ratio g = g(ϑ0, ϑ1) = ϑ1/ϑ0 is the
parameter of interest. This represents the ratio of the amplitude of the cyclic variation to the overall
mean.

Expanding the cosine term in (2.1) we have

η(x;ϑ) = ϑ0x0 + β1x1 + β2x2, (2.2)

where β1 = ϑ1 cosϑ2, β2 = −ϑ1 sinϑ2 with x0 = 1, x1 = cos 2πt and x2 = sin 2πt. Therefore, model
(2.1) can be written as

y(t) = WT(t)β + e, β = (ϑ0, β1, β2), WT(t) = (x0, x1, x2). (2.3)

When the model (2.3) is fitted, estimates for ϑ1 and ϑ2 can be obtained, due to the new parameterization,
through the relations

ϑ̂1 =

√
β̂2
1 + β̂2

2 and ϑ̂2 = ω̂ + κ (2.4)

where ω̂ = arctan |β̂2/β̂1|, κ is an appropriate constant. and the estimates of β are

2.1 D–optimal design
The target for the model (2.2), is to estimate the non-linear ratio g

g = g(ϑ0, ϑ1) = ϑ1/ϑ0, (2.5)
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as good as possible. Therefore, we consider optimum experimental designs for the estimation. We
shall focus on the case 0 < g < 1. The case g < 0 have no interest in applications, see ? for
details, while the case g > 1 provide the dual problem as far as the optimal design points and the
corresponding optimal design measure are concerned. For the model (2.5) the design space, say X,
is a circle, defined by

x0 = 1, x21 + x22 = 1.

The center of the circle lies on the x0 axis is at point (1, 0). It follows then, [6] (p. 75), that the points
of the D-optimal design must lie on the given circle.

Interest is focused on the estimation of the ratio (2.5) written, due to (2.4), as

g = 1
ϑ0

√
β2
1 + β2

2 . (2.6)

Thus the approximate variance of g is

Var(ĝ) =∼= 1
n

(∇g)TM−1(∇g), (2.7)

where ∇g, after some calculations, equals to

(∇g)T =

(
− 1
ϑ2
0

√
β2
1 + β2

2 ,
β1
ϑ0

√
β2
1 + β2

2 ,
β2
ϑ0

√
β2
1 + β2

2

)
= 1

ϑ0

(
−ϑ1
ϑ0
, β1
ϑ1
, β2
ϑ1

)
. (2.8)

For the model (2.2), the a–p–o information matrix for this four design points: t, t + 1
4
, t + 1

2
, t + 3

4
is

reduced to
nM = ndiag

(
1, 1

2
, 1
2

)
.

Substituting (2.8) in (2.7) we obtain that the approximate variance, say V4D, of an equally–spaced,
equally–weighted, 4–point D–optimal design is

V4D =
σ2

nϑ2
0

(
ϑ2
1

ϑ2
0

+ 2

)
. (2.9)

Note that, from (2.7), the problem can be considered, approximately, equivalent to a locally c–optimal
design where the ray “c” is given by (∇g)T. For the construction of a coptimal design see [1] and [3].
We briefly discussed it in the next Section.

2.2 c–optimal design
For given ϑ0, ϑ1, ϑ2 and therefore β1, β2, the locally c–optimal design problem is the one satisfying

min
{
cTM−1(ξ)c

}
, (2.10)

with the choice of c = (c0, c1, c2)T = ∇g as in (2.7) and

nM(ξ) =

 n
∑

cos 2πti
∑

sin 2πti∑
cos 2πti

∑
cos2 2πti

∑
cos 2πti sin 2πti∑

sin 2πti
∑

cos 2πti sin 2πti
∑

sin2 2πti

 , (2.11)

when the 4–point design was considered to be t,t+ 1
4
, t+ 1

2
, t+ 3

4
, equivalently in angles 2πt, 2πt+ π

2
,

2πt+ π, πt+ 3π
2

. In principle we require an optimal measure ξ on [0, 1) to solve (2.10). [7] developed
a geometrical approach to finding c–optimal designs. With this in mind, and considering the reflection
−X, of the design space X, a cylinder is formed, connecting X and −X with the x0–axis as axis and
directrix of the circle X. The geometry of the problem suggests the use of Elfving′s theorem, see [7]
, to tackle the two cases described above, see for details [1].
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Eventually, for ϑ1/ϑ0 < 1, we allocate the optimum design measure, say ξc,

ξc = 0.5
(

1− ϑ1
ϑ0

)
at the optimal design point − 1

2π
ϑ2, (2.12)

1− ξc = 0.5
(

1 + ϑ1
ϑ0

)
at the optimal design point π − 1

2π
ϑ2. (2.13)

Notice the essential difference for the D–optimal design measure is ξD = 1
4

For the two point design the corresponding 3×3 matrix M = M(ϑ, ξ) is singular with rankM = 2.
Considering M(ϑ, ξ) as in (2.11), for this particular case it is easy to verify that the matrix M(ϑ, ξ),
when substituting ξc as in (2.12), is

M(ϑ, ξc) =

 1 −(ϑ1/ϑ0) cosϑ2 (ϑ1/ϑ0) sinϑ2

−(ϑ1/ϑ0) cosϑ2 cos2 ϑ2 − cosϑ2 sinϑ2

(ϑ1/ϑ0) sinϑ2 − cosϑ2 sinϑ2 sin2 ϑ2

 . (2.14)

To solve (2.10), the generalized inverse M−(ϑ, ξc) is needed. Using a matrix result, ?, with ϑ2 6= π
2

,

Mc(ϑ, ξc) =

 cos2 ϑ2
ϑ1
ϑ0

cosϑ2 0
ϑ1
ϑ0

cosϑ2 1 0

0 0 0

[cosϑ2

(
1− ϑ2

1

ϑ2
0

)]−2

. (2.15)

Hence, for the design measure ξ = ξc for the c–optimal case, and

cT = (∇g)T = 1
ϑ0

(
−ϑ1
ϑ0
, β1
ϑ1
, β2
ϑ1

)
= 1

ϑ0

(
−ϑ1
ϑ0
, cosϑ2, − sinϑ2

)
,

we obtain
cTM−(ϑ, ξ)c = ϑ−2

0 . (2.16)

Therefore the approximate variance V2c for the 2–point c–optimal design is

V2c = Var
(
cTϑ̂

)
= ϑ−2

0
σ2

n
, ϑ1/ϑ0 < 1. (2.17)

Comparing (2.17) and (2.9) we can easily verify that V4D/V2c < 3.
The case g > 1 is the dual problem as far the design measures are concerned; see ?, and as it

has no practical application we are not referring to it.

3 Truncated Design Space
An important practical difficulty with the optimal designs in Section 2 is that they require measurements
to be made when the response function is maximum and minimum. The latter typically occurs, at least
in some biorhythms, in the early hours of the morning, and this might create problems when we are
collecting the data set for the experiment. The situation is typical when the “blood pressure” is to be
measured.

It might be desirable for the design to be restricted to more social hours, i.e. avoid taking
measurements during the night. We restrict the design to a portion, say 1 − T , of the day where
T is the length of the night–time period, e.g. 11pm till 7am. Moreover we assume that the minimum
of the response function occurs at the middle of T and the maximum, in 1 − T , occurs at the middle
of this interval. Any design depends on ϑ1/ϑ0 and ϑ2. Also, the restriction on time means that the
new design space, say XN , is no longer a circle and hence the idea of a full cylinder is no any longer
available. The cylinder will be “truncated”. That is, the equation of the line through the points O(0, 0)
and R1(−ϑ1/ϑ0, 1) is

y = (−ϑ1/ϑ0)x, (3.1)
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Figure 1: The truncated space XN and its corresponded truncated cylinder.

see also Figure 1 below and Figure 2.
As T is the portion of the day excluded from the design space X, we have that 2ψ = 2πT , see

Figure 1. The equation of the line through the points L′(1, 1) and W (−1, cosψ) with ψ, being the
angle corresponding to the portion of 2π which is equivalent to T/2, is

y − 1

cosψ − 1
=

x− 1

−1− 1
.

Therefore, substituting cosψ = cosπT , we get

y = 0.5(1 + cosπT ) + 0.5(1− cosπT )x, (3.2)

or, from the simultaneous equations (3.1) and (3.2) we get

x =
0.5(1 + cosπT )

0.5 cosπT − 0.5− (ϑ0/ϑ1)
. (3.3)

Then, relation (3.3) provides x and the corresponding y measurement from (3.2). It is easy to see
that x = −ϑ1/ϑ0 for T = 0, and therefore y = 1.

Figure 2: A typical situation when the rhythm is truncated.

Now, using Elfving’s theorem (recall Figure 3) we have that

1− ξ′

ξ′
=

1 + x

1− x , ξ′ = 0.5(1− x).
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Figure 3: Side elevation of Figure 1.

There,the appropriate optimal design measure for the truncated case ξt is 1− ξ′ with

ξ′ =
− 1

2
(ϑ0
ϑ1

+ 1)

1
2

cosπT − 1
2
− ϑ0

ϑ1

. (3.4)

Therefore, design weight 1 − ξt is applied at the point A and 0.5ξt at each of B and C under the
symmetry assumption which we have imposed, see Figure 2. Due to the imposed discussion above,
the a–p–o information matrix can be written in the form

M = (1− ξt)MA + 1
2
ξtMB + 1

2
ξtMC , (3.5)

recall Figure 2 and the regression equation (2.2). Relation (3.5) “breaks” the total information M into
three “parts” which is exactly what we mean by “breaking into pieces” the total information or collecting
piece–wise information. We need to know the information at points A, B and C or, equivalently,
to check if the collected information at the points A, B and C is appropriately set. Therefore a
decomposition of M into MA, MB and MC is installed. The accuracy of MA, MB and MC influences
the total information M.

There are many ways to split the a–p–o information matrix into three parts. Here, the most
appropriate was chosen, using as a criterion the times tA, tB and tC below and relations (3.6), (3.7)
and (3.8) respectively. It is easy to see that, for any T ,

2πtA + ϑ2 = 0, i.e. tA = −ϑ2/2π, tD = tA − 1
2
, and

tB = tD + 1
2
T = 1

2

(
−ϑ2

π
− 1 + T

)
,

tC = tD − 1
2
T + 1 = 1

2

(
−ϑ2

π
+ 1− T

)
.

If we set T = 1/3 in the above relations –which seems appropriate in practice– the vectors corresponding
to Wi(t), i = A,B,C, recall (2.3), are:

W (tA) = (1, cosϑ2, − sinϑ2)T, (3.6)

W (tB) =
(
1, cos(ϑ2 + 2π

3
), − sin(ϑ2 + 2π

3
)
)T
, (3.7)

W (tC) =
(
1, cos(ϑ2 − 2π

3
), − sin(ϑ2 − 2π

3
)
)T
. (3.8)

We can therefore obtain Mi, i = A,B,C as

Mi = W (ti)W
T(ti), i = A,B,C. (3.9)

In turn, we prove the following Theorem.
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Theorem 3.1. The a–p–o information matrix as in (3.5) with T = 1/3 can be written as

M(ξ) = (1− ξt)A1A
T
1 + ξtA2A

T
2 + ξtA3A

T
3 , (3.10)

with vectors Ai, i = 1, 2, 3 defined as

A1 = (1, cosϑ2, − sinϑ2)T , A2 =
(
1, − 1

2
cosϑ2,

1
2

sinϑ2

)T
, and

A3 =
√
3

2
(0, sinϑ2, cosϑ2)T .

Proof. From (3.5) and (3.9) with T = 1
3

and δ = π(1− T ) = 2π
3

, we obtain (3.10) where

A1 = (1, cosϑ2, − sinϑ2)T , A2 =
(
1, − 1

2
cosϑ2,

1
2

sinϑ2

)T
, and

A3 =
√
3

2
(0, sinϑ2, cosϑ2)T ,

with A1⊥A2 and A2⊥A3, see Appendix for details.

Our target is to evaluate cTM−c. Therefore, the following Lemma provides the evaluation of the
desired quantity.

Lemma 3.2. Let a = 1
2
(cos δ + 1). The a–p–o information matrix M(ξt) can be written as

M(ξt) = M0(ξt) + a12(B1B
T
2 +B2B

T
1 ), (3.11)

where Bi = ||Ai||−1Ai, i = 1, 2, 3 with M0 = a1B1B
T
1 + a2B2B

T
2 + a3B3B

T
3 and

a1 = 2(1− ξt) + 2ξta
2, a2 = 2ξt(1− a)2,

a3 = ξt sin2 δ, a12 = 2a(1− a)ξt.
(3.12)

Proof. Recall (3.10). Consider the orthonormal vectors Bi = ||Ai||−1Ai, i = 1, 2, 3, i.e.

B1 = 1√
2

(1, cosϑ2, − sinϑ2)T , B2 = 1√
2

(1, − cosϑ2, sinϑ2)T , and

B3 = (0, sinϑ2, cosϑ2)T .

We can write the following decomposition of the vector 1
cos δ cosϑ2

− cos δ sinϑ2

 = a

 1
cosϑ2

− sinϑ2

+ (1− a)

 1
− cosϑ2

sinϑ2

 = a
√

2B1 + (1− a)
√

2B2,

where a = 1
2
(cos δ + 1). Applying the above to (3.10) we get

M(ϑ, ξt) = M0 + a12B1B
T
2 + a12B2B

T
1 = M1 + a12B2B

T
1 , (3.13)

with a1, a2, a3 and a12 as in (3.12). See Appendix for details.

We can express vectors Bi, i = 1, 2, 3 as linear combinations of the vectors c, d and e as follows,

B1 = λ1c+ λ2e, B2 = λ3c+ λ4e, B3 =
√
3

2
d,

where the defined vectors are

cT = 1
ϑ0

(
−ϑ1
ϑ0
, cosϑ2, − sinϑ2

)
, dT = (0, sinϑ2, cosϑ2) and

eT =
(
ϑ0
ϑ1
, cosϑ2, − sinϑ2

) (3.14)

Due to the above Lemma 3.2 the a–p–o information matrix can be obtained as a summation of
three components while the corresponding cTM(ξ)−1c value can be evaluated through this decomposition.
Indeed, we state and prove the following.
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Theorem 3.3. The a–p–o information matrix M(ξt) can be written as

M(ξt) = λccc
T + λddd

T + λeee
T and (3.15)

ρ = cTM−(ξt)c =
λ−1
c

1− λ2
ceλ
−1
c λ−1

e

. (3.16)

Proof. Recall Lemma 3.2. It is clear that (3.15) holds considering (3.16) with λc = (1 − ξ)λ1 + ξλ3,
λd = 3

4
ξt, λe = (1− ξ)λ2 + ξλ4 and λce = (1− ξ)λ1λ2 + ξλ3λ4, where

λ1 =
1− g
g2 + 1

ϑ0, λ2 =
(g + 1)g

g2 + 1
, λ3 = − 2g + 1

2(g2 + 1)
ϑ0, λ4 =

2g − g2

2(g2 + 1)
, g =

ϑ1

ϑ0
.

Our target now is to evaluate M−1 = M−1(ϑ, ξt). Firstly,

M−1
0 = a−1

1 B1B
T
1 + a−1

2 B2B
T
2 + a−1

3 B3B
T
3 , (3.17)

and secondly, see [8] among others,

M−1
1 =

(
M0 + a12B1B

T
2

)−1

= M−1
0 − a12

M−1
0 B1B

T
2 M

−1
0

1 + a12BT
2 M

−1
0 B1

= M−1
0 − a12M

−1
0 B1B

T
2 M

−1
0 ,

because BT
2 M

−1
0 B1 = 0 due to (3.17) and the orthogonal vectors B1, B2, B3. Thus,

M−1 =
(
M1 + a12B2B

T
1

)−1

= M−1
1 − a12

M−1
1 B2B

T
1 M

−1
1

1 + a12BT
1 M

−1
1 B2

. (3.18)

It holds that BT
1 M

−1
0 B2 = 0 and BT

i M
−1
0 Bi = a−1

i , i = 1, 2 due to (3.17), and thus

BT
1 M

−1
1 B2 = BT

1 (M−1
0 − a12M

−1
0 B1B

T
2 M

−1
0 )B2

= BT
1 M

−1
0 B2 − a12BT

1 M
−1
0 B1B

T
2 M

−1
0 B2 = −a12a−1

1 a−1
2 , (3.19)

while

M−1
1 B2B

T
1 M

−1
1 = M−1

0 B2B
T
1 M

−1
0 − a12

a2
M−1

0 B1B
T
1 M

−1
0 −

a12
a1

M−1
0 B2B

T
2 M

−1
0 +

a212
a1a2

M−1
0 B1B

T
2 M

−1
0 , (3.20)

see Appendix for details. Substituting (3.19) and (3.20) into (3.18) we get

M−1 = M−1
0 − a12M

−1
0 B1B

T
2 M

−1
0 −

a12

1− a212
a1a2

D, with

D = M−1
0 B2B

T
1 M

−1
0 − a12

a2
M−1

0 B1B
T
1 M

−1
0 − a12

a1
M−1

0 B2B
T
2 M

−1
0 +

a212
a1a2

M−1
0 B1B

T
2 M

−1
0 .

The analysis of (3.15) can be evaluated through an analysis similar to that of Lemma 3.2 or can
be considered as special case of a1, a2, a3 and a12 in (3.12). For (3.16), M−1 is evaluated as

M−1 = M−1
0 − λceM

−1
0 ceTM−1

0 −

λce
M−1

0 − λce(M
−1
0 c)(eTM−1

0 )ecT(M−1
0 − λceM

−1
0 ceTM−1

0 )

1− λ2
ce(cTM

−1
0 c)(eTM−1

0 e)
, and

cTM−1c = cTM−1
0 c+ λ2

ce
(cTM−1

0 c)2(eTM−1
0 e)

1− λ2
ce(cTM

−1
0 c)(eTM−1

0 e)

=
cTM−1

0 c

1− λ2
ce(cTM

−1
0 c)(eTM−1

0 e)
,

i.e. (3.16) holds with M0 = λccc
T + λddd

T + λeee
T as cTM−1

0 c = λ−1
c and eTM−1

0 e = λ−1
e .
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After some algebra we find that ρ is given by

ρ = ( 1
3
ϑ0)2

(4g + 1)2(1− ξt) + (2− g)2ξt
ξt(1− ξt)

, g = ϑ1/ϑ0. (3.21)

Therefore the approximate variance for the three point optimally–weighted truncated design is

V3 = Var(cTϑ̂) = ρ(σ2/n). (3.22)

Compare the reduction of (2.17) to (3.22). The corresponding design weight ξt can be evaluated from
(3.4) with T = 1/3 as

ξ∗t =
1
2
(g + 1)
1
4

+ g
. (3.23)

Compare the reduction of (2.12) to (3.23). Thus the design measure still depends on the fraction
ϑ1/ϑ0 which we are trying to estimate. If we wanted to construct an equally–weighted 3 point design in
this truncated case, the design measure would be defined by ρ = 2/3 with corresponding approximate
variance

V∗3 = ( 2
3
ϑ2
0)
[
2(g + 1)2 + (2− g)2

]
(σ2/n).

Now, consider a vector h which can be written as

h = vB1 + (1− v)B2, v ∈ R. (3.24)

Then, from (2.14), we have M(ϑ, ξt) = 2ξtB1B
T
1 + 2(1− ξt)B2B

T
2 , i.e.

M−(ϑ, ξt) = 1
2
ξ−1
t B1B

T
1 + 1

2
(1− ξt)−1B2B

T
2 . (3.25)

For any h as in (3.24), considering M− = M−(ξt) as in (3.25), we find that

2hTM−(ξt)h =
v2

ξt
+

(1− v)2

1− ξt
. (3.26)

Relation (3.26) gives the value of the criterion function for any ξt and it can easily be shown to be
minimized when ∣∣∣∣ v

1− v

∣∣∣∣ =

∣∣∣∣ ξt
1− ξt

∣∣∣∣ , i.e.
v

1− v =
ξt

1− ξt
. (3.27)

Thus, for the particular h in which we are interested, namely

−ϑ1
ϑ0
h =

(
1, −ϑ0

ϑ1
cosϑ2,

ϑ0
ϑ1

sinϑ2

)
,

we can obtain the design measure
v = 1

2
(1− ϑ0

ϑ1
). (3.28)

From (3.27) we have that either ξt = v or ξt = −v/(1− 2v). From (3.28) we obtain

ξt = 1
2
(1− ϑ1/ϑ0) if ϑ1/ϑ0 < 1. (3.29)

Consider now the general problem of truncated daily time interval T and the observations as
follows (recall Figure 2) allocating observations at the end points and the middle of 1− T :

1− ξt at tA = −ϑ2, (3.30)
1
2
ξt at tB = −ϑ2 + 2π · 1

2
(1− T ) = −ϑ2 + δ, (3.31)

1
2
ξt at tC = −ϑ2 − 2π · 1

2
(1− T ) = −ϑ2 − δ, (3.32)

with δ = π(1 − T ). The corresponding vectors W (t), recall (2.3), is then as in (3.10). Therefore the
matrix M = M(ϑ, ξt) can be evaluated explicitly as

M = (1− ξt)W (tA)W (tA)T + 1
2
ξt
[
W (tB)W (tB)T +W (tC)W (tC)T

]
. (3.33)
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The inverse of M(ξt) is needed as the general problem can be formulated as

min
ξt

{
hTM(ξt)

−1h
}
, h = −ϑ1

ϑ2
0

(
1, −ϑ0

ϑ1
cosϑ2,

ϑ0
ϑ1

sinϑ2

)T
. (3.34)

To obtain a c–optimal design (c = h), the following Theorem is proved.

Theorem 3.4. The quantity hTM−1h is evaluated to be

hTM−1h =
ϑ2
1

2ϑ4
0

(1− a)−2

[
(1− v)2

ξt
+

(v − a)2

1− ξt

]
, (3.35)

where a = 1
2
(cos δ + 1), while the minimum of hTM−1h is obtained for

ξt =

1
2

(
1 + ϑ0

ϑ1

)
1
2
− 1

2
cosπT + ϑ0

ϑ1

. (3.36)

Proof. We want to minimize the quantity hTM−1h, with

h = −ϑ1

ϑ2
0
(1, −ϑ0

ϑ1
cosϑ2,

ϑ0
ϑ1

sinϑ2).

The vector h can be written as

h = −ϑ
2
1

ϑ2
0
[vB1 + (1− v)B2], v = 1

2
(1− ϑ0/ϑ1).

Thus,

hTM−1h =
ϑ2
1

ϑ4
0
[vB1 + (1− v)B2]TM−1[vB1 + (1− v)B2]

=
ϑ2
1

ϑ4
0

[
v2BT

1 M
−1B1 + v(1− v)

(
BT

1 M
−1B2 +BT

2 M
−1B1

)
+

(1− v)2BT
2 M

−1B2

]
. (3.37)

Recall (3.19) and let α = a12/
[
1− a212/(a1a2)

]
. We have

BT
1 M

−1B1 = a−1
1 − α

(
−a12
a2
· 1

a1a1

)
=

1

a1
+

a212a
−2
1 a−1

2

1− a212a
−1
1 a−1

2

, (3.38)

while, similarly to (3.38), we get

BT
2 M

−1
1 B2 =

1

a2
+

a212a
−1
1 a−2

2

1− a212a
−1
1 a−1

2

. (3.39)

Moreover,

BT
1 M

−1B2 = − a12
a1a2

− α
(
− a12
a21a

2
2

)
= − a12

a1a2
− a312a

−2
1 a−2

2

1− a212a
−1
1 a−1

2

, (3.40)

while

BT
2 M

−1B1 = − a12a
−1
1 a−1

2

1− a212a
−1
1 a−1

2

. (3.41)

See Appendix for details on (3.38), (3.40) and (3.41). Substituting (3.38), (3.39), (3.40) and (3.41)
into (3.37), we have

hTM−1h =
ϑ2
1

ϑ4
0
· v

2a−1
1 + (1− v)2a−1

2 − 2v(1− v)a12a
−1
1 a−1

2

1− a212a
−1
1 a−1

2

=
ϑ2
1

ϑ4
0
· v

2a2 + (1− v)2a1 − 2v(1− v)a12
a1a2 − a212

=
ϑ2
1

ϑ4
0
· 2(1− v)2(1− ξt) + 2ξt[(1− a)v − a(1− v)]2

4ξt(1− ξt)(1− a)2

=
ϑ2
1

2ϑ4
0
· (1− a)−2

[
(1− v)2

ξt
+

(v − a)2

1− ξt

]
,
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and thus (3.35) has been proved.
Therefore, the minimum of (3.35), with respect to ξt, is obtained for ξt as in (3.33). The particular

case of (3.33) discussed earlier, corresponds to (3.35) for T = 1/3.

4 Conclusions

The target of this paper was to provide compact expressions for the a–p–o information matrix for
the truncated cosinor model. This trigonometric model has been also discussed by [9]. The proved
Theorems 3.1, 3.3 and 3.4 provide such expressions useful to trace the “flow” of information by “parts”.
Theorem 3.1 provide evidence that we can “break” the a–p–o information matrix into three pieces.
Theorem 3.3 and 3.4 can be referred to practical cases (time, internal rhythm etc) where the collection
of information can occur on “social hours”. The information is related to the (inverse of) variance and
the entropy (equals to log det of the variance matrix). Thus, in real life problems and especially in
Engineering and Bioinformatics, the provided uncertainty is easy to be adjusted in small “parts” of
information rather than in total. Needles to say that although the proofs might be computationally
tedious, the compact form of the result it is not. Moreover, when the data are collected, see [2], it is
easy to see whether the “flow” of information is indeed collected correctly at the three stations A, B
and C. For another real case biological data fitting the model, see the early work of [4] and [5] who
are not using the design approach but a trigonometric regression one. Therefore, we derived a new
method to “break” the total information (and uncertainty) into “parts” for the truncated cosinor model.
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APPENDIX

Proof of (3.10). We have

M(ϑ, ξt) = (1− ξt)

 1 cosϑ2 − sinϑ2

cosϑ2 cos2 ϑ2 − cosϑ2 sinϑ2

− sinϑ2 − cosϑ2 sinϑ2 sin2 ϑ2

+

1
2
ξt

 1 cos(ϑ2 + δ) − sin(ϑ2 + δ)
cos(ϑ2 + δ) cos2(ϑ2 + δ) − sin(ϑ2 + δ) cos(ϑ2 + δ)
− sin(ϑ2 + δ) − sin(ϑ2 + δ) cos(ϑ2 + δ) sin2(ϑ2 + δ)

+

1
2
ξt

 1 cos(ϑ2 − δ) − sin(ϑ2 − δ)
cos(ϑ2 − δ) cos2(ϑ2 − δ) − sin(ϑ2 − δ) cos(ϑ2 − δ)
− sin(ϑ2 − δ) − sin(ϑ2 − δ) cos(ϑ2 − δ) sin2(ϑ2 − δ)

 ,

or

M(ϑ, ξt) = (1− ξt)

 1
cosϑ2

− sinϑ2

 (1, cosϑ2, − sinϑ2) +

ξt

 1
cos δ cosϑ2

− cos δ sinϑ2

 (1, cos δ cosϑ2, − cos δ sinϑ2) +

ξt

 0
sin δ sinϑ2

sin δ cosϑ2

 (0, sin δ sinϑ2, sin δ cosϑ2) .

Proof of (3.13). We have

M(ϑ, ξt) = 2(1− ξt)B1B
T
1 + ξt(sin

2 δ)B3B
T
3 +

ξt
[√

2aB1 +
√

2(1− a)B2

] [√
2aB1 +

√
2(1− a)B2

]
= 2(1− ξt)B1B

T
1 + ξt(sin

2 δ)B3B
T
3 +

2ξt
[
a2B1B

T
1 + a(1− a)B1B

T
2 + (1− a)B2B

T
1 + (1− a)2B2B

T
2

]
= a1B1B

T
1 + a2B2B

T
2 + a3B3B

T
3︸ ︷︷ ︸

M0

+a12(B1B
T
2 +B2B

T
1 )

= M0 + a12B1B
T
2︸ ︷︷ ︸

M1

+a12B2B
T
1

= M1 + a12B2B
T
1 .
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Proof of (3.20). We have

M−1
1 B2B

T
1 M

−1
1 = (M−1

0 − a12M
−1
0 B1B

T
2 M

−1
0 )B2B

T
1 ×

(M−1
0 − a12M

−1
0 B1B

T
2 M

−1
0 )

= M−1
0 B2B

T
1 M

−1
0 − a12M

−1
0 B1B

T
2 M

−1
0 B2B

T
1 M

−1
0 −

M−1
0 B2B

T
1 a12M

−1
0 B1B

T
2 M

−1
0 +

a212M
−1
0 B1B

T
2 M

−1
0 B2B

T
1 M

−1
0 B1B

T
2 M

−1
0

= M−1
0 B2B

T
1 M

−1
0 − a12

a2
M−1

0 B1B
T
1 M

−1
0 −

a12
a1

M−1
0 B2B

T
2 M

−1
0 +

a212
a1a2

M−1
0 B1B

T
2 M

−1
0 .

Proofs of (3.38), (3.40) and (3.41). We have respectively

BT
1 M

−1B1 = BT
1 M

−1
0 B1︸ ︷︷ ︸

a−1
1

−a12BT
1 M

−1
0 B1B

T
2 M

−1
0 B1︸ ︷︷ ︸
0

−αBT
1 DB1

= a−1
1 − αB

T
1 M

−1
0 B2︸ ︷︷ ︸
0

BT
1 M

−1
0 B1 + αa12

a2
BT

1 M
−1
0 B1︸ ︷︷ ︸

a−1
1

BT
1 M

−1
0 B1︸ ︷︷ ︸

a−1
1

+

αa12
a1

BT
1 M

−1
0 B2︸ ︷︷ ︸
0

BT
2 M

−1
0 B1 − α a212

a2a1
BT

1 M
−1
0 B1B

T
2 M

−1
0 B1︸ ︷︷ ︸
0

.

= a−1
1 − α

(
−a12
a2
· 1

a1a1

)
=

1

a1
+

a212a
−2
1 a−1

2

1− a212a
−1
1 a−1

2

,

BT
1 M

−1B2 = BT
1 M

−1
0 B2︸ ︷︷ ︸
0

−a12BT
1 M

−1
0 B1︸ ︷︷ ︸

a−1
1

BT
2 M

−1
0 B2︸ ︷︷ ︸

a−1
2

−αBT
1 DB2

= − a12
a1a2

− αBT
1 M

−1
0 B2︸ ︷︷ ︸
0

BT
1 M

−1
0 B2 + αa12

a2
BT

1 M
−1
0 B1B

T
1 M

−1
0 B2︸ ︷︷ ︸
0

+

αa12
a1

BT
1 M

−1
0 B2︸ ︷︷ ︸
0

BT
2 M

−1
0 B2 − α a212

a2a1
BT

1 M
−1
0 B1︸ ︷︷ ︸

a−1
1

BT
2 M

−1
0 B2︸ ︷︷ ︸

a−1
2

= − a12
a1a2

− α
(
− a12
a21a

2
2

)
= − a12

a1a2
− a312a

−2
1 a−2

2

1− a212a
−1
1 a−1

2

,

and

BT
1 M

−1B1 = BT
1 M

−1
0 B1︸ ︷︷ ︸

a−1
1

−a12BT
1 M

−1
0 B1B

T
2 M

−1
0 B1︸ ︷︷ ︸
0

−αBT
1 DB1

= a−1
1 − αB

T
1 M

−1
0 B2︸ ︷︷ ︸
0

BT
1 M

−1
0 B1 + αa12

a2
BT

1 M
−1
0 B1︸ ︷︷ ︸

a−1
1

BT
1 M

−1
0 B1︸ ︷︷ ︸

a−1
1

+
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αa12
a1

BT
1 M

−1
0 B2︸ ︷︷ ︸
0

BT
2 M

−1
0 B1 − α a212

a2a1
BT

1 M
−1
0 B1B

T
2 M

−1
0 B1︸ ︷︷ ︸
0

.

=a−1
1 − α

(
−a12

a2
· 1
a1a1

)
= 1

a1
+

a212a
−2
1 a−1

2

1−a212a
−1
1 a−1

2

,
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