

SCIENCEDOMAIN *international* <www.sciencedomain.org>

Amenability of a Class of Banach Algebras

Taher Yazdanpanah¹ and Maryam Momeni^{∗[2](#page-0-0)}

¹*Department of Mathematics, Persian Gulf University, Boushehr 75169,Iran* ²*Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran 1477893855, Iran*

Original Research Article

> *Received: 12 September 2013 Accepted: 26 November 2013 Published: 16 January 2014*

Abstract

In this paper we define a new multiplication on Banach algebra A using commute idempotent endomorphisms of A . Then we consider types of amenability and contractibility of A with this new multiplication. We will show that this new Banach algebra has better amenable properties than Banach algebra A.

Keywords: Bounded endomorphisms; Derivation; Inner derivation; Amenability; Contractibility; Banach algebra; Banach module

2010 Mathematics Subject Classification: 46H25; 47B47

1 Introduction

The notion of amenability in Banach algebras was introduced by Johnson in [1]. This notion also appeared in the work of A. Ya. Helemskii [2], which was published in the same year. Since then, amenability has become a major issue in Banach algebras theory. A Banach algebra is called amenable if its first cohomological groups $H^1(A, X^*)$ vanish for all dual Banach A-bimodules X^* . We recall that if A is a Banach algebra and X is a Banach A-bimodule, then X^* , the dual of X, has a natural A-bimodule structure defined by

 $\langle x, a \cdot x^* \rangle = \langle x \cdot a, x^* \rangle,$ $\langle x, x^* \cdot a \rangle = \langle a \cdot x, x^* \rangle,$ $(a \in A, x \in X, x^* \in X^*).$

Such a Banach A -bimodule X^* is called a dual A -bimodule.

Let A be a Banach algebra and X be a Banach A-bimodule. A derivation $D: A \longrightarrow X$ is a linear map, always taken to be continuous, satisfying

 $D(ab) = D(a) \cdot b + a \cdot D(b)$ (a, b \in A).

**Corresponding author: E-mail: srb.maryam@gmail.com*

Given $x \in X$, the map $\delta_x(a) = a \cdot x - x \cdot a$ is a derivation on A which is called an inner derivation. For more details see [3] and [4].

A derivation $D: A \longrightarrow X$ is called approximately inner, if there exists a net $\{x_{\alpha}\}\subset X$ such that

$$
D(a) = \lim_{\alpha} (a \cdot x_{\alpha} - x_{\alpha} \cdot a) \qquad (a \in A).
$$

The limit being in norm. Note $\{x_{\alpha}\}\$ in the above is not necessarily bounded. In [5], Ghahramani and Loy introduced generalized notions of amenability with the hope that it will yield Banach algebra without bounded approximate identity which nonetheless had a form of amenability. So far, however, all known approximate amenable Banach algebras have bounded approximate identities. They gave examples to show that for most of these new notions, the correspon-ding class of Banach algebras is larger than that of the classical amenable Banach algebra introduced by Johnson in [1]. According to their definition a Banach algebra A is approximately amenable if for any A -bimodule X , any derivation $D: A \longrightarrow X^*$ is approximately inner. A Banach algebra A is approximately contractible if every derivation from A into every Banach A -bimodule X is approximately inner.

Let A be a Banach algebra and X be a Banach A-bimodule. Let σ , the bounded endomorphisms of A, i.e. bounded homomorphisms from A into A. A linear mapping $D : A \longrightarrow X$ is a (σ, τ) derivation, if

$$
D(ab) = D(a) \cdot \sigma(b) + \tau(a) \cdot D(b),
$$

for all $a, b \in A$. A linear map $D : A \longrightarrow X$ is a (σ, τ) -inner derivation, if there exists $x \in X$ such that $D(a) = x \cdot \sigma(a) - \tau(a) \cdot x$, for all $a \in A$. These derivations on Banach algebras are studied by Mirzavaziri and Moslehian in [6]. If every bounded (σ, τ)-derivation from A into X is (σ, τ) -inner, then A is said to be (σ, τ) -contractible Banach algebra. In particular, σ -contractibility is (σ, σ) -contractibility and the ordinary contractibility is indeed (id, id) -contractibility, where id denotes the identity map. Banach algebra A is called (σ, τ) -amenable, if for each Banach A-bimodule X, every (σ, τ) -derivation $D: A \longrightarrow X^*$ is (σ, τ) -inner. Banach algebra A is called (σ, τ) -approximately contractible, if for each Banach A-bimodule X, and for each bounded (σ , τ)-derivation $D: A \longrightarrow X$, there exists a net $(x_\alpha) \subseteq X$ such that $D(a) = \lim_{\alpha} x_\alpha \cdot \sigma(a) - \tau(a) \cdot x_\alpha$, for all $a \in A$.

Let A be a Banach algebra over $\mathbb C$ and $\varphi : A \to \mathbb C$ be a character on A, that is, an algebra homomorphism from A into $\mathbb C$ and let $\Phi(A)$ denote the character space of A (the set of all characters on A). In [7], Monfared introduced the notion of character amenable Banach algebra, which requires continuous derivations from A into dual Banach A-bimodules to be inner, but only those modules are concerned where either of the left or right module action is defined by characters on A , that is,

$$
a \cdot x = \varphi(a)x, \qquad x \cdot a = \varphi(a)x, \qquad (a \in A, \ x \in X).
$$

As such character amenability is weaker than the classical amenability introduced by Johnson in [1], all amenable Banach algebras are character amenable.

Now, let A be a Banach algebra and $A\widehat{\otimes}A$ be the projective tensor product of A and A. The product map on A extends to a map $\pi_A : A \widehat{\otimes} A \longrightarrow A$ determined by $\pi_A (a \otimes b) = ab$, for all $a, b \in A$. The projective tensor product $A\widehat{\otimes}A$ becomes a Banach A-bimodule with the following usual module actions:

$$
a \cdot (b \otimes c) = ab \otimes c, \qquad (b \otimes c) \cdot a = b \otimes ca, \qquad (a, b, c \in A).
$$

Obviously, by above actions, π_A becomes an A-bimodule homomorphism. The dual map π_A^* is also A -bimodule homomorphism. A Banach algebra A is called biprojective, if there exists a bounded A-bimodule homomorphism $\rho : A \longrightarrow A \widehat{\otimes} A$ such that $\pi \circ \rho = I_A$. Also A is said to be biflat if π_A^* has a left inverse as a bounded A-bimodule homomorphism.

An element $m \in A\widehat{\otimes}A$ is called a diagonal for A, if

$$
a \cdot m = m \cdot a, \qquad a \cdot \pi_A(m) = a, \qquad (a \in A).
$$

A virtual diagonal for A is an element $M \in (A \widehat{\otimes} A)^{**}$ such that for each $a \in A$ we have,

 $a \cdot M = M \cdot a, \qquad \pi_A^{**}(M) \cdot a = a.$

It is known that every contractible Banach algebra is unital, biprojective and has a diagonal, ([8], Theorem 2.8.48). Also every amenable Banach algebra is biflat and has a bounded approximate identity, ([9], Proposition 2.2.1), and it has a virtual diagonal, ([9], Theorem 2.2.4).

To complete this section we recall that a Banach algebra A is said to be semisimple if $rad(A)$ o, where $rad(A)$ is the Jacobson radical of A. Also an involution on Banach algebra A is a map ∗ : $A \to A$ such that for each $a, b \in A$ and $\lambda, \mu \in \mathbb{C}$,

(i) $a^{**} = a$ (ii) $(\lambda a + \mu b)^* = \overline{\lambda}a^* + \overline{\mu}b^*$ (iii) $(ab)^* = b^*a^*$

A Banach algebra A with an involution is called a ∗-Banach algebra.

This paper has been organized as follows. In the next section, using the commute idempotent endomorphisms σ and τ on a Banach algebra A, we define a new multiplication under which the Banach algebra structure of A is preserved. This new Banach algebra is denoted by ${}_{\sigma}A_{\tau}$ and existence of identity is discussed in this section. In Section 3, contractibility, amenability, etc., are discussed for this new Banach algebra σA_{τ} in relation with the corresponding properties in the original Banach algebra A. In Section 4, some other aspects, viz., σA_τ as a semisimple Banach algebra, as a ∗-algebra, contractibility of $\frac{A}{I}$, where I is a closed ideal of A , are also discussed with many new ideas.

2 Banach Algebra _σ $A_τ$ and Existence of Identity Element

Let A be a Banach algebra and σ , τ be commute idempotent endomorphisms of A, i.e., $\sigma \circ \tau = \tau \circ \sigma$, such that $\|\sigma\|\leq 1$, $\|\tau\|\leq 1$. We define a new multiplication on A as follows,

$$
a \cdot b = \sigma(a) \tau(b), \qquad (a, b \in A).
$$

A number of examples of commute idempotent endomorphisms are listed below:

(i) If $\sigma = id_A$ and τ is an idempotent endomorphism of A, then σ, τ are commute idempotent endomorphisms of A.

(ii) If σ is an idempotent endomorphism of A and $\tau = \sigma^n, n \ge 1$ then σ, τ are commute idempotent endomorphisms of A.

(iii) Let b be an idempotent element in A. Then $\sigma = L_b$ and $\tau = R_b$ are commute idempotent endomorphisms of A, where $L_b(a) = ba$ and $R_b(a) = ab$, for each $a \in A$.

(iv) Let X be a compact Hausdorff space and suppose $\varphi, \psi : X \longrightarrow X$ are commute idempotent local homeomorphisms. Define $\sigma, \tau : C(X) \longrightarrow C(X)$ by $\sigma(f) = f \circ \varphi$ and $\tau(f) = f \circ \psi$ for all $f \in C(X)$. Then σ and τ are commute idempotent endomorphisms of $C(X)$.

It is easy to see that (A, \cdot) becomes a Banach algebra. We denote this new Banach algebra by σA_{τ} . We shall omit the letter $\sigma(\tau)$, when $\sigma = id_A(\tau = id_A)$, where $id_A: A \to A$ is the identity operator.

Remark 2.1. Throughout this paper we shall assume that σ and τ are commute idempotent endomorphisms, (i.e., $\sigma \circ \sigma = \sigma$ and $\tau \circ \tau = \tau$), such that $\parallel \sigma \parallel \leq 1$ and $\parallel \tau \parallel \leq 1$. Additional assumptions will be said in its place.

In the following we will study the existence of identity in $_{\sigma}A_{\tau}$. Note that all propositions will express for σ . It is obvious that all these propositions will be true for τ by using a similar proof.

Lemma 2.1. *Let* A *be a unital Banach algebra (with unit* e*) and* σ *be an idempotent endomorphism of* A with dense range. Then $\sigma(e) = e$.

Proof. Let $(a_{\alpha})_{\alpha \in I} \subseteq A$ be a net such that $\lim_{\alpha} \sigma(a_{\alpha}) = e$. Since σ is continuous idempotent homomorphism, we have

$$
\lim_{\alpha} \sigma (a_{\alpha}) = \sigma (e)
$$

and therefore $\sigma(e) = e$.

Proposition 2.1. *Let* A *be a Banach algebra with right identity* e *and* σ, τ *be two idempotent endomorphisms of A with dense range. If* σ *is* 1 − 1 *and* σA_T *has a left identity e*, *then e* = *e.*

Proof. Since $\overline{\sigma(A)} = A$ and $\overline{\tau(A)} = A$ by previous lemma we have $\sigma(e) = e$ and $\tau(e) = e$. Now for each $a \in A$, by hypothesis $e \cdot a = a$. So for $e \in A$, $e \cdot e = e$, too. By multiplication on ${}_{\sigma}A_{\tau}$ we have,

$$
\sigma(e)\tau(e) = e
$$

\n
$$
\Rightarrow \sigma(e) = e
$$

\n
$$
\Rightarrow \sigma(e) = e
$$

\n
$$
\Rightarrow \sigma(e) = \sigma(e)
$$

\n
$$
\Rightarrow e - e \in \ker \sigma = \{0\}.
$$

So, $e' = e$ and the proof is complete.

Corollary 2.2. *Let* A *be a unital Banach algebra with identity* e *and* σ, τ *be two idempotent endomorphisms of A with dense range. If* σ *and* τ *are* $1 - 1$ *and* ${}_{\sigma}A_{\tau}$ *has an identity* ϵ' *, then* $\epsilon' = e$ *.*

Proposition 2.2. *Let* A *be a Banach algebra with left identity* e*. If* σ *is an idempotent endomorphism of* A with dense range, then e is a left identity for σA .

Proof. By lemma 2, we have $\sigma(e) = e$. Now for each $a \in A$,

$$
e \cdot a = \sigma(e) \cdot a = ea = a.
$$

 \Box

Proposition 2.3. *Let* A *be a Banach algebra with left identity e. Then e is a left identity for* σ (σ A) *.*

Proof. For each $a \in A$ we have,

$$
e \cdot \sigma(a) = \sigma(e) \sigma(a) = \sigma(ea) = \sigma(a).
$$

 \Box

820

 \Box

 \Box

Proposition 2.4. *Let* A *be a Banach algebra and e be a right identity for* $\sigma(A)$. *If* $\overline{\tau(A)} = A$, *then* e *is a right identity for* σ ($_{\sigma}A_{\tau}$).

Proof. By lemma 2 we have $\tau(e) = e$. So for each $a \in A$ we have

$$
\sigma (a) \cdot e = \sigma (\sigma (a)) \tau (e) = \sigma (a) e = \sigma (a).
$$

 \Box

Next, assume that A is a complex Banach space which has dimension at least 2 and let $0 \neq \varphi \in$ $Ball(A^*)$. Define a multiplication on A by

$$
a * b = \varphi(a)b \qquad (a, b \in A).
$$

This multiplication evidently makes A into a Banach algebra denoted by A_{φ} , which is called the ideally factored algebra associated to φ , [10]. It is easy to see that A_{φ} has left identity e which is that element in A such that $\varphi(e) = 1$, while it has not right approximate identity. Suppose that $\sigma: A_{\varphi} \to A_{\varphi}$ be defined by $\sigma(a) = \varphi(a) e$. Then σ is the only idempotent endomorphism of A_{φ} .

In the following we show that with the only homomorphism σ of A_{φ} we can define only one new Banach algebra from $A_\varphi.$ First we consider the product in Banach algebra $\left(A_\varphi\right)_\sigma.$ For each $a, b \in (A_{\varphi})_{\sigma}$ we have,

 $a \cdot b = a * \sigma (b) = \varphi (a) \sigma (b) = \varphi (a) \varphi (b) e.$

Also the product in Banach algebra $_{\sigma}$ (A_{φ}) is as follows.

$$
a \cdot b = \sigma(a) * b = \varphi(\sigma(a)) b = \varphi(\varphi(a) e) b = \varphi(a) \varphi(e) e = \varphi(a) e = a * b,
$$

 $a, b \in \sigma(A_{\varphi})$. Therefore, the Banach algebra $\sigma(A_{\varphi})$ is exactly the Banach algebra A_{φ} .

The product in Banach algebra ${}_\sigma \left(A_\varphi\right)_\sigma$ is as follows,

$$
a \cdot b = \sigma(a) * \sigma(b) = \varphi(\sigma(a)) \sigma(b) = \varphi(a) \varphi(e) \varphi(b) e = \varphi(a) \varphi(b) e,
$$

 $a,b\in\sigma\left(A_\varphi\right)_\sigma$, which shows that The Banach algebra ${}_\sigma\left(A_\varphi\right)_\sigma$ is exactly the Banach algebra $\left(A_\varphi\right)_\sigma$.

Now we show that the condition in proposition 6 is not necessary. First note that it is easy to see that the Banach algebra $(A_\varphi)_\sigma$ has not left and right identity. We prove that e is an identity for $\sigma\left(\left(A_{\varphi}\right)_{\sigma}\right)$, where e is the left identity in A_{φ} . Let $a\in\left(A_{\varphi}\right)_{\sigma}$. So we have,

$$
e \cdot \sigma(a) = \varphi(e) \varphi(\sigma(a)) e = \varphi(\varphi(a) e) e = \varphi(a) e = \sigma(a).
$$

Also,

$$
\sigma (a) \cdot e = \varphi (\sigma (a)) \varphi (e) e = \varphi (\varphi (a) e) e = \varphi (a) e = \sigma (a) ,
$$

which shows that e is an identity for $\sigma\left(\left(A_{\varphi}\right)_{\sigma}\right)$. Although A_{φ} has not right identity.

3 Contractibility and Amenability of $_{\sigma}A_{\tau}$

In this section we consider the relations between contractibility and amenability of Banach algebra A and $_{\sigma}A_{\tau}$. We start this section with the following lemma.

Lemma 3.1. *Let* A *be a Banach algebra. suppose* σ *is an idempotent endomorphism with dense range and* τ *is an idempotent epimorphism of A, (i.e., a surjective endomorphism of A). Then* φ : A \rightarrow ^σA^τ *defined by* ϕ (a) = σ (τ (a)) *is a continuous idempotent homomorphism on* A *which has dense range*.

Proof. It is easy to see that φ is an idempotent homomorphism. Let $a \in \sigma A_\tau$, since $\overline{\sigma(A)} = A$ there exists a net $(b_{\alpha})_{\alpha\in I}\subseteq A$ such that $\lim_{\alpha}\sigma(b_{\alpha})=a$. Also since τ is a surjective map, for each $\alpha\in I$, there exists $a_{\alpha} \in A$ such that $\tau(a_{\alpha}) = b_{\alpha}$. So we have,

$$
a = \lim_{\alpha} \sigma(b_{\alpha}) = \lim_{\alpha} \sigma(\tau(a_{\alpha})) = \lim_{\alpha} \varphi(a_{\alpha}) \qquad (a \in A),
$$

which shows that $\overline{\varphi(A)} = {}_{\sigma}A_{\tau}$.

 \Box

Corollary 3.2. *Let* A *be a Banach algebra and* σ, τ *be two idempotent epimorphisms of* A*. Then* $\varphi: A \to {}_{\sigma}A_{\tau}$ *defined by* $\varphi(a) = \sigma(\tau(a))$ *is a surjective idempotent homomorphism on A.*

Proposition 3.1. *Let* A *be a Banach algebra,* σ *be an idempotent endomorphism with dense range and* τ *be an idempotent epimorphism of* A*. If any of the following conditions hold, then* ^σA^τ *is contractible.*

 $i)$ *A* is τ -contractible. ii*)* A *is* σ*-contractible.* iii) A is (τ, σ) -contractible. $iv)$ A is (σ, τ) -contractible.

Proof. Throughout this proof we assume that φ is the idempotent homomorphism which is defined in Lemma 8, *i.e.* $\varphi : A \to {}_{\sigma}A_{\tau}$ defined by $\varphi(a) = \sigma(\tau(a))$.

i) Let X be a Banach ${}_{\sigma}A_{\tau}$ -bimodule and $D : {}_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then $(X, *)$ is an A -bimodule with the following module actions:

 $a * x = \sigma(a) \cdot x$, $x * a = x \cdot \sigma(a)$ $(a \in A, x \in X)$.

Since D is a derivation on ${}_{\sigma}A_{\tau}$, therefore $D \circ \varphi : A \to (X, *)$ is a τ derivation because,

$$
D \circ \varphi (ab) = D (\varphi (a) \cdot \varphi (b))
$$

= $D (\varphi (a)) \cdot \varphi (b) + \varphi (a) \cdot D (\varphi (b))$
= $D \circ \varphi (a) \cdot \sigma (\tau (b)) + \sigma (\tau (b)) \cdot D \circ \varphi (b)$
= $D \circ \varphi (a) * \tau (b) + \tau (b) * D \circ \varphi (b)$ $(a, b \in A)$.

Since A is τ -contractible, there exists $x \in X$ such that

$$
D \circ \varphi (a) = \tau (a) * x - x * \tau (a) \qquad (a \in A).
$$

Thus

$$
D(\varphi(a)) = (D \circ \varphi)(a)
$$

= $\tau(a) * x - x * \tau(a)$
= $\sigma(\tau(a)) \cdot x - x \cdot \sigma(\tau(a))$
= $\varphi(a) \cdot x - x \cdot \varphi(a)$ $(a \in A).$

Now for each $b \in A$, by previous lemma, there exists a net $(a_{\alpha}) \subseteq A$ such that $b = \lim_{\alpha} \varphi(a_{\alpha})$. So we have,

$$
D (b) = D \left(\lim_{\alpha} \varphi (a_{\alpha}) \right)
$$

=
$$
\lim_{\alpha} D (\varphi (a_{\alpha}))
$$

=
$$
\lim_{\alpha} \varphi (a_{\alpha}) \cdot x - x \cdot \varphi (a_{\alpha})
$$

=
$$
b \cdot x - x \cdot b
$$
 $(b \in A),$

which shows that $_{\sigma}A_{\tau}$ is contractible.

ii) For a Banach ${}_{\sigma}A_{\tau}$ -bimodule X, it is easy to see that $(X, *)$ is an A-bimodule with the following module actions:

$$
a * x = \tau (a) \cdot x \quad , \quad x * a = x \cdot \tau (a) \qquad (a \in A, x \in X).
$$

The remaining argument is similar to (i) .

iii) Let X be a Banach $_{\sigma}A_{\tau}$ -bimodule and $D :_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then $(X, *)$ is an A-bimodule with the following module actions:

$$
a * x = \sigma(a) \cdot x \quad , \quad x * a = x \cdot \tau(a) \quad (a \in A, x \in X).
$$

Since D is a derivation on $_{\sigma}A_{\tau}$, so for each $a, b \in A$ we have,

$$
D \circ \varphi (ab) = D (\varphi (a) \cdot \varphi (b))
$$

= $D (\varphi (a)) \cdot \varphi (b) + \varphi (a) \cdot D (\varphi (b))$
= $D (\varphi (a)) \cdot \sigma (\tau (b)) + \sigma (\tau (a)) \cdot D (\varphi (b))$
= $D (\varphi (a)) \cdot \tau (\sigma (b)) + \sigma (\tau (a)) \cdot D (\varphi (b))$
= $D \circ \varphi (a) * \sigma (b) + \tau (a) * D \circ \varphi (b).$

Thus $D \circ \varphi : A \to (X, *)$ is a (τ, σ) - derivation. Since A is (τ, σ) -contractible, there exists $x \in X$ such that

$$
D \circ \varphi (a) = \tau (a) * x - x * \sigma (a) \qquad (a \in A).
$$

So for each $a \in A$,

$$
D(\varphi(a)) = (D \circ \varphi)(a)
$$

= $\tau(a) * x - x * \sigma(a)$
= $\sigma(\tau(a)) \cdot x - x \cdot \tau(\sigma(a))$
= $\varphi(a) \cdot x - x \cdot \varphi(a)$.

Now by lemma 8, for each $b \in A$ there exists a net $(a_\alpha) \subseteq A$ such that $b = \lim_\alpha \varphi(a_\alpha)$. So we have,

$$
D(b) = D\left(\lim_{\alpha} \varphi(a_{\alpha})\right)
$$

=
$$
\lim_{\alpha} D(\varphi(a_{\alpha}))
$$

=
$$
\lim_{\alpha} \varphi(a_{\alpha}) \cdot x - x \cdot \varphi(a_{\alpha})
$$

=
$$
b \cdot x - x \cdot b
$$
 $(b \in A),$

823

which shows that $_{\sigma}A_{\tau}$ is contractible. $iv)$ It is similar to (iii) .

 \Box

Example 3.3. Let G be a locally compact group, $A = L^1(G)$, the group algebra of G, and σ be a bounded dense range endomorphism of $L^1(G)$. It is known that $L^1(G)$ is σ -contractible if and only *if* G is finite [11]. Therefore, by above Proposition, for each idempotent epimorphism τ of $L^1(G)$, *the new Banach algebra* ${}_{\sigma}(L^1(G))_{\tau}$ is contractible. In particular, ${}_{\sigma}(L^1(G))$ is a contractible Banach *algebra.*

Example 3.4. *Let* G *be a locally compact group,* $A = M(G)$ *, the measure algebra of* G*, and* σ *be a bounded dense range endomorphism of* M(G)*. It is known that* M(G) *is* σ*-contractible if and only if* G *is finite [11]. Therefore, by above Proposition, for each idempotent epimorphism* τ of $M(G)$ *, the new Banach algebra* $_{\sigma}(M(G))_{\tau}$ *is contractible. In particular,* $_{\sigma}(M(G))$ *is a contractible Banach algebra.*

Corollary 3.5. *Let* A *be a Banach algebra,* σ *be an idempotent endomorphism with dense range and* τ *be an idempotent epimorphism of* A*. If any of the conditions stated in the previous proposition occurs, then all the following hold:*

 $i)$ _{σ} A_{τ} *has an identity.* $ii)$ _σ A_{τ} has a diagonal. $iii)$ $_{\sigma}A_{\tau}$ *is biprojective.*

Corollary 3.6. *Let* A *be a Banach algebra,* σ *be an idempotent endomorphism with dense range and* τ*be an idempotent epimorphism of* A*. If* A *be able to have one of these properties:* τ *-amenability,* σ*-amenability,* (τ, σ)*-amenability,* (σ, τ)*-amenability, then all the following hold:*

 $i)$ _{σ} A_{τ} *is amenable.* $ii)$ _{σ} A_{τ} *has a bounded approximate identity.* iii) _σ $A_τ$ has a Virtual diagonal. $iv)$ _σ A_{τ} *is biflat.*

Now let A_{φ} be the ideally factored algebra associated to φ , where $0\neq \varphi\in Ball(A^*),$ as notation in previous section. Also let $\sigma : A_{\varphi} \to A_{\varphi}$ with definition $\sigma(a) = \varphi(a) e$, be the only homomorphism

of A_{φ} . In [12] we showed that A_{φ} is σ -contractible Banach algebra. On the other hand in the previous section we see that $(A_\varphi)_\sigma$ has not an identity. So clearly $(A_\varphi)_\sigma$ is not contractible. Note that this does not contradict with the proposition 10, because it is clear that $\overline{\sigma(A)} \neq A$.

Proposition 3.2. *Let* A *be a Banach algebra and* σ, τ *be two idempotent epimorphisms of* A*. If any of the following conditions hold, then* $_{\sigma}A_{\tau}$ *is approximately contractible.*

 $i)$ *A* is τ -approximately contractible.

ii*)* A *is* σ*-approximately contractible.*

 $iii)$ A is (τ, σ) -approximately contractible.

 $iv)$ A is (σ, τ) -approximately contractible.

Proof. Throughout this proof we assume that φ is the idempotent homomorphism which is defined in lemma 8, *i.e.* φ : $A \to {}_{\sigma}A_{\tau}$ defined by φ (a) = σ (τ (a)).

i) Let X be a Banach ${}_{\sigma}A_{\tau}$ -bimodule and $D: {}_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then $(X, *)$ is an A-bimodule with the following module actions:

 $a * x = \sigma(a) \cdot x$, $x * a = x \cdot \sigma(a)$ $(a \in A, x \in X)$.

It is easy to see that $D \circ \varphi : A \to (X, *)$ is a continuous τ -derivation. Since A is τ -approximately contractible, there exists a net $(x_\alpha) \in X$ such that

$$
D \circ \varphi (a) = \lim_{\alpha} \tau (a) * x_{\alpha} - x_{\alpha} * \tau (a) \qquad (a \in A).
$$

Now by Corollary 9, for each $b \in A$ there exists $a \in A$ such that $b = \varphi(a)$. So we have,

$$
D (b) = D (\varphi (a))
$$

= $\lim_{\alpha} \tau (a) * x_{\alpha} - x_{\alpha} * \tau (a)$
= $\lim_{\alpha} \varphi (a) \cdot x_{\alpha} - x_{\alpha} \cdot \varphi (a)$
= $\lim_{\alpha} b \cdot x_{\alpha} - x_{\alpha} \cdot b$ $(b \in A),$

which shows that $_{\sigma}A_{\tau}$ is approximately contractible.

The same argument as in proposition 10 shows that if any of conditions ii, iii and iv holds, then $_{\sigma}A_{\tau}$ is approximately contractible. \Box

Corollary 3.7. *Let* A *be a Banach algebra and* σ, τ *be two idempotent epimorphism of* A*. If any of the conditions stated in the previous proposition occur, then* σA_τ *has a left and right approximate identity.*

Proof. It is clear by ([12], Proposition 2.1).

Corollary 3.8. *Let* A *be a Banach algebra and* σ, τ *be two idempotent epimorphism of* A*. If* A *be able to have one of these properties:* τ *-approximate amenability,* σ*-approximate amenability,* (τ, σ) *approximate amenability,* (σ, τ) -approximate amenability, then all the following hold.

 $i)$ _{σ} A_{τ} *is approximately amenable.* $ii)$ _{σ} A_{τ} *has a left and right approximate identity.* $iii) \sigma A_{\tau}^2 = \sigma A_{\tau}$.

Proof. It is clear by proposition 13 and ([5], lemma 2.2).

Proposition 3.3. *Let* A *be a Banach algebra,* σ *be an idempotent endomorphism with dense range* and τ *be an idempotent epimorphism of A. If A is character contractible, then* σA_{τ} *is character contractible.*

Proof. Throughout this proof we assume that φ is that idempotent homomorphism which is defined in lemma 8, *i.e.* $\varphi : A \to {}_{\sigma}A_{\tau}$ with definition $\varphi (a) = \sigma (\tau (a))$ ($a \in A$).

Suppose that $\psi \in \Phi(\sigma A_{\tau})$, the character space of $_{\sigma}A_{\tau}$, and X is a Banach $({_{\sigma}A_{\tau}}, \psi)$ -bimodule, that means the module actions are as follow,

 $a \cdot x = \psi(a)x$, $x \cdot a = x\psi(a)$ $(a \in A, x \in X)$.

Let $D : {}_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then $(X, *)$ is an $(A, \psi \circ \varphi)$ -bimodule with the following module actions:

 $a * x = \psi (\varphi (a)) x$, $x * a = x \psi (\varphi (a))$ $(a \in A, x \in X)$.

825

 \Box

 \Box

So $D \circ \varphi : A \to X$ is a continuous derivation because for each $a, b \in A$ we have,

$$
D \circ \varphi (ab) = D (\varphi (a) \varphi (b))
$$

= $D (\varphi (a)) \cdot \varphi (b) + \varphi (a) \cdot D (\varphi (b))$
= $D (\varphi (a)) \psi (\varphi (b)) + \psi (\varphi (a)) D (\varphi (b))$
= $D \circ \varphi (a) * b + a * D \circ \varphi (b).$

Since A is character contractible, so there exists $x \in X$ such that,

$$
D \circ \varphi(a) = a * x - x * a.
$$

Thus for each $a \in A$ we have,

$$
D(\varphi(a)) = D\omega\varphi(a) = a * x - x * a = \psi(\varphi(a)) x - x\psi(\varphi(a)).
$$

Now by lemma 8, since $\overline{\varphi(A)} = {}_{\sigma}A_{\tau}$, for each $b \in A$ there exists a net $(a_{\alpha}) \subseteq A$ such that $b =$ $\lim_{\alpha} \varphi(a_{\alpha})$. So we have,

$$
D (b) = D \left(\lim_{\alpha} \varphi (a_{\alpha}) \right)
$$

=
$$
\lim_{\alpha} D (\varphi (a_{\alpha}))
$$

=
$$
\lim_{\alpha} \psi (\varphi (a_{\alpha})) x - x \psi (\varphi (a_{\alpha}))
$$

=
$$
\psi (b) x - x \psi (b)
$$

=
$$
b \cdot x - x \cdot b \qquad (b \in A),
$$

which shows that ${}_{\sigma}A_{\tau}$ is character contractible.

4 Some other Properties

Proposition 4.1. *Let* A *be a Banach algebra and* σ, τ *be two idempotent endomorphisms of* A *with dense range. Then* $\Phi(\sigma A_{\tau}) \subseteq \Phi(A)$.

Proof. Let $\varphi \in \Phi(\sigma A_{\tau})$. So for each $a, b \in A$ we have,

$$
\varphi(a \cdot b) = \varphi(a)\varphi(b) \implies \varphi(\sigma(a)\tau(b)) = \varphi(a)\varphi(b).
$$

Now let $a, b \in A$, since $\overline{\sigma(A)} = A$ and $\overline{\tau(A)} = A$, there exist nets (a_{α}) and (b_{β}) in A such that

$$
\lim_{\alpha} \sigma(a_{\alpha}) = a \quad , \quad \lim_{\beta} \tau(b_{\beta}) = b.
$$

On the other hand since σ and τ are idempotents, so we have

$$
\lim_{\alpha} \sigma (a_{\alpha}) = \sigma (a) \quad , \quad \lim_{\beta} \tau (b_{\beta}) = \tau (b).
$$

Thus

$$
\varphi(ab) = \varphi\left(\lim_{\alpha} \sigma(a_{\alpha}) \lim_{\beta} \tau(b_{\beta})\right)
$$

= $\varphi(\sigma(a) \tau(b))$
= $\varphi(a \cdot b)$
= $\varphi(a) \varphi(b)$ $(a, b \in A),$

which shows that $\varphi \in \Phi(A)$ and the proof is complete.

 \Box

826

 \Box

Corollary 4.1. *Let* A *be a Banach algebra and* σ, τ *be two idempotent endomorphisms of* A *with dense range. If* $_{\sigma}A_{\tau}$ *is semisimple, then A is semisimple.*

Proof. Let $x \in rad(A)$. So for each $\varphi \in \Phi(A)$ we have $\varphi(x) = 0$. By the above proposition $\Phi\left(\sigma A_{\tau}\right) \subseteq \Phi\left(A\right)$ so,

$$
\varphi(x) = 0 \qquad (\varphi \in \Phi\left({_{\sigma}A_{\tau}}\right)).
$$

Thus $x \in rad(\sigma A_{\tau}) = \{0\}$ and so $x = 0$, which means that A is semisimple.

 \Box

It is easy to see that if A is \star -Banach algebra and σ is \star -idempotent endomorphism of A, i.e, an idempotent endomorphism such that $\sigma(a^*) = (\sigma(a))^*$, then ${}_{\sigma}A_{\sigma}$ is \star -Banach algebra. Also, it has proved that if A is a commutative semisimple Banach algebra, then every involution on A is continuous, see ([13], corollary 2.1.12). So we have the following result.

Corollary 4.2. *Let* A *be a commutative Banach algebra and* σ *be an idempotent endomorphism with dense range. If* $_{σ}A_{σ}$ *is semisimple, then every involution on A is continuous.*

Proposition 4.2. *Let* A *be a Banach algebra and I be a right (left) ideal in A. If* σ (I) \subseteq I (τ (I) \subseteq I), *then I is a right (left) ideal in* $_{\sigma}A_{\tau}$.

Proof. For each $a \in A$ and $i \in I$ we have,

$$
i \cdot a = \sigma(i) \tau(a) \in IA \subseteq I,
$$

which shows that I is a right ideal in $_{\sigma}A_{\tau}$.

 \Box

Corollary 4.3. *Let* A *be a Banach algebra and I be a twosided ideal in* A. If σ (I) \subseteq I and τ (I) \subseteq I, *then I is a twosided ideal in* $_{\sigma}A_{\tau}$.

It has proved that if A is a contractible Banach algebra and I is a closed twosided ideal in A , then $\frac{A}{I}$ is contractible, [9]. So by proposition 10 we have the following result.

Corollary 4.4. *Suppose that* A *is a Banach algebra,* σ *is an idempotent endomorphism with dense range and* τ *is an idempotent epimorphism of* A*. Let* I *be a closed twosided ideal in* A *such that* $\sigma(I) \subseteq I$ and $\tau(I) \subseteq I$. If any of the following conditions hold, then $\frac{\sigma A_{\tau}}{I}$ is contractible.

i) A is τ -contractible. $ii)$ A is σ -contractible.

iii) A is (τ, σ) -contractible.

iv) A is (σ, τ) -contractible.

5 Conclusion

By defining a new multiplication on Banach algebra A , we showed that the new Banach algebra σA_{τ} , has better and stronger properties than Banach algebra A. For example, in Proposition 3.1, we showed that, if Banach algebra A is only σ -contractible, then the Banach algebra ${}_{\sigma}A_{\tau}$ is contractible, which is a stronger and better property than the σ -contractibility. Also, in Corollary 3.6, we showed that, if Banach algebra A be able to have σ -amenability property, then the Banach algebra σA_{τ} is amenable. Such results has been proven for more cases such as, approximate contractibility, approximate amenability, character contractibility and character amenability.

Competing Interests

The authors declare that no competing interests exist.

References

- [1] Johnson BE. Cohomology in Banach algebras. Mem. Amer. Math. Soc. 1972;127 .
- [2] Helemeski A YA. A certain class of flat Banach modules and its applications. Vest. Mosk. Univ. Ser. Mat. Mekh. 1972;27:2936.
- [3] Xin XL, Li TY, Lu JH. On derivations of lattices. Information Sciences. 2008;178:307- 316.
- [4] Xin XL. The fixed set of a derivation in lattices. Fixed Point Theory and Applications. 2012;1:1-12.
- [5] Ghahramani F, loy RJ. Generalized notions of amenability. J. funct. Anal. zol 2004;229- 260.
- [6] Mirzavaziri M, Moslehian MS. σ -derivations in Banach algebras. Bull. Iran. Math. Soc. 2006;32(1):65-78.
- [7] Monfared MS. Character amenability of Banach algebras. Math. Proc. Camb. Phil. Soc. 2008;144:697-706.
- [8] Dales HG. Banach Algebras and Automatic Continuity. Oxford Uinversity Press, 2000.
- [9] Runde V. Lectures on amenability. Lecture Notes in Mathematies, springer-Verlag, Berlin, 2002.
- [10] Amyari M, Mirzavaziri M. Ideally factored algebras. Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 2008;24(2):227-233.
- [11] Yazdanpanah T, Najafi H. σ -Contractible and σ -biprojective Banach algebras. Quaestiones Mathematicae. 2010;33:485495.
- [12] Momeni M, Yazdanpanah T, Mardanbeigi MR. σ-Approximately Contractible Banach Algebras. Abstract and Applied Analysis,Volume 2012 (2012), Article ID 653140, 20pages,doi:10.1155/2012/653140.
- [13] Kaniuth E. A Course in Commutative Banach Algebras. Springer, New York; 2009.

——— c *2014 Yazdanpanah & Momeni; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [http://creativecommons.org/licenses/by/3.0,](http://creativecommons.org/licenses/by/3.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=370&id=6&aid=3369