

SCIENCEDOMAIN international

Amenability of a Class of Banach Algebras

Taher Yazdanpanah¹ and Maryam Momeni^{*2}

¹ Department of Mathematics, Persian Gulf University, Boushehr 75169,Iran ² Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran 1477893855, Iran

Original Research Article

> Received: 12 September 2013 Accepted: 26 November 2013 Published: 16 January 2014

Abstract

In this paper we define a new multiplication on Banach algebra A using commute idempotent endomorphisms of A. Then we consider types of amenability and contractibility of A with this new multiplication. We will show that this new Banach algebra has better amenable properties than Banach algebra A.

Keywords: Bounded endomorphisms; Derivation; Inner derivation; Amenability; Contractibility; Banach algebra; Banach module

2010 Mathematics Subject Classification: 46H25; 47B47

1 Introduction

The notion of amenability in Banach algebras was introduced by Johnson in [1]. This notion also appeared in the work of A. Ya. Helemskii [2], which was published in the same year. Since then, amenability has become a major issue in Banach algebras theory. A Banach algebra is called amenable if its first cohomological groups $H^1(A, X^*)$ vanish for all dual Banach *A*-bimodules X^* . We recall that if *A* is a Banach algebra and *X* is a Banach *A*-bimodule, then X^* , the dual of *X*, has a natural *A*-bimodule structure defined by

 $\langle x, a \cdot x^* \rangle = \langle x \cdot a, x^* \rangle, \qquad \langle x, x^* \cdot a \rangle = \langle a \cdot x, x^* \rangle, \qquad (a \in A, x \in X, x^* \in X^*).$

Such a Banach *A*-bimodule X^* is called a dual *A*-bimodule.

Let A be a Banach algebra and X be a Banach A-bimodule. A derivation $D : A \longrightarrow X$ is a linear map, always taken to be continuous, satisfying

 $D(ab) = D(a) \cdot b + a \cdot D(b) \qquad (a, b \in A).$

*Corresponding author: E-mail: srb.maryam@gmail.com

Given $x \in X$, the map $\delta_x(a) = a \cdot x - x \cdot a$ is a derivation on A which is called an inner derivation. For more details see [3] and [4].

A derivation $D: A \longrightarrow X$ is called approximately inner, if there exists a net $\{x_{\alpha}\} \subset X$ such that

$$D(a) = \lim_{\alpha} (a \cdot x_{\alpha} - x_{\alpha} \cdot a) \qquad (a \in A).$$

The limit being in norm. Note $\{x_{\alpha}\}$ in the above is not necessarily bounded. In [5], Ghahramani and Loy introduced generalized notions of amenability with the hope that it will yield Banach algebra without bounded approximate identity which nonetheless had a form of amenability. So far, however, all known approximate amenable Banach algebras have bounded approximate identities. They gave examples to show that for most of these new notions, the correspon-ding class of Banach algebras is larger than that of the classical amenable Banach algebra introduced by Johnson in [1]. According to their definition a Banach algebra *A* is approximately amenable if for any *A*-bimodule *X*, any derivation $D : A \longrightarrow X^*$ is approximately inner. A Banach algebra *A* is approximately contractible if every derivation from *A* into every Banach *A*-bimodule *X* is approximately inner.

Let *A* be a Banach algebra and *X* be a Banach *A*-bimodule. Let σ, τ be bounded endomorphisms of *A*, i.e. bounded homomorphisms from *A* into *A*. A linear mapping $D : A \longrightarrow X$ is a (σ, τ) -derivation, if

$$D(ab) = D(a) \cdot \sigma(b) + \tau(a) \cdot D(b),$$

for all $a, b \in A$. A linear map $D : A \longrightarrow X$ is a (σ, τ) -inner derivation, if there exists $x \in X$ such that $D(a) = x \cdot \sigma(a) - \tau(a) \cdot x$, for all $a \in A$. These derivations on Banach algebras are studied by Mirzavaziri and Moslehian in [6]. If every bounded (σ, τ) -derivation from A into X is (σ, τ) -inner, then A is said to be (σ, τ) -contractible Banach algebra. In particular, σ -contractibility is (σ, σ) -contractibility and the ordinary contractibility is indeed (id, id)-contractibility, where id denotes the identity map. Banach algebra A is called (σ, τ) -amenable, if for each Banach A-bimodule X, every (σ, τ) -derivation $D : A \longrightarrow X^*$ is (σ, τ) -inner. Banach algebra A is called (σ, τ) -approximately contractible, if for each Banach A-bimodule X, and for each bounded (σ, τ) -derivation $D : A \longrightarrow X^*$, there exists a net $(x_{\alpha}) \subseteq X$ such that $D(a) = \lim_{\alpha} x_{\alpha} \cdot \sigma(a) - \tau(a) \cdot x_{\alpha}$, for all $a \in A$.

Let *A* be a Banach algebra over \mathbb{C} and $\varphi : A \to \mathbb{C}$ be a character on *A*, that is, an algebra homomorphism from *A* into \mathbb{C} and let $\Phi(A)$ denote the character space of *A* (the set of all characters on *A*). In [7], Monfared introduced the notion of character amenable Banach algebra, which requires continuous derivations from *A* into dual Banach *A*-bimodules to be inner, but only those modules are concerned where either of the left or right module action is defined by characters on *A*, that is,

$$a \cdot x = \varphi(a)x, \qquad x \cdot a = \varphi(a)x, \qquad (a \in A, x \in X).$$

As such character amenability is weaker than the classical amenability introduced by Johnson in [1], all amenable Banach algebras are character amenable.

Now, let A be a Banach algebra and $A\widehat{\otimes}A$ be the projective tensor product of A and A. The product map on A extends to a map $\pi_A : A\widehat{\otimes}A \longrightarrow A$ determined by $\pi_A(a \otimes b) = ab$, for all $a, b \in A$. The projective tensor product $A\widehat{\otimes}A$ becomes a Banach A-bimodule with the following usual module actions:

$$a \cdot (b \otimes c) = ab \otimes c,$$
 $(b \otimes c) \cdot a = b \otimes ca,$ $(a, b, c \in A).$

Obviously, by above actions, π_A becomes an A-bimodule homomorphism. The dual map π_A^* is also A-bimodule homomorphism. A Banach algebra A is called biprojective, if there exists a bounded A-bimodule homomorphism $\rho : A \longrightarrow A \widehat{\otimes} A$ such that $\pi \circ \rho = I_A$. Also A is said to be biflat if π_A^* has a left inverse as a bounded A-bimodule homomorphism.

An element $m \in A \widehat{\otimes} A$ is called a diagonal for A, if

$$a \cdot m = m \cdot a, \qquad a \cdot \pi_A(m) = a, \qquad (a \in A).$$

A virtual diagonal for A is an element $M \in (A \widehat{\otimes} A)^{**}$ such that for each $a \in A$ we have,

 $a \cdot M = M \cdot a, \qquad \pi_A^{**}(M) \cdot a = a.$

It is known that every contractible Banach algebra is unital, biprojective and has a diagonal, ([8], Theorem 2.8.48). Also every amenable Banach algebra is biflat and has a bounded approximate identity, ([9], Proposition 2.2.1), and it has a virtual diagonal, ([9], Theorem 2.2.4).

To complete this section we recall that a Banach algebra A is said to be semisimple if rad(A) = o, where rad(A) is the Jacobson radical of A. Also an involution on Banach algebra A is a map $* : A \to A$ such that for each $a, b \in A$ and $\lambda, \mu \in \mathbb{C}$,

(i) $a^{**} = a$ (ii) $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$ (iii) $(ab)^* = b^* a^*$

A Banach algebra A with an involution is called a *-Banach algebra.

This paper has been organized as follows. In the next section, using the commute idempotent endomorphisms σ and τ on a Banach algebra A, we define a new multiplication under which the Banach algebra structure of A is preserved. This new Banach algebra is denoted by ${}_{\sigma}A_{\tau}$ and existence of identity is discussed in this section. In Section 3, contractibility, amenability, etc., are discussed for this new Banach algebra ${}_{\sigma}A_{\tau}$ in relation with the corresponding properties in the original Banach algebra A. In Section 4, some other aspects, viz., ${}_{\sigma}A_{\tau}$ as a semisimple Banach algebra, as a *-algebra, contractibility of $\frac{A}{I}$, where I is a closed ideal of A, are also discussed with many new ideas.

2 Banach Algebra $_{\sigma}A_{\tau}$ and Existence of Identity Element

Let *A* be a Banach algebra and σ, τ be commute idempotent endomorphisms of *A*, i.e., $\sigma \circ \tau = \tau \circ \sigma$, such that $\| \sigma \| \le 1$, $\| \tau \| \le 1$. We define a new multiplication on *A* as follows,

$$a \cdot b = \sigma(a) \tau(b), \qquad (a, b \in A).$$

A number of examples of commute idempotent endomorphisms are listed below:

(i) If $\sigma = id_A$ and τ is an idempotent endomorphism of A, then σ, τ are commute idempotent endomorphisms of A.

(*ii*) If σ is an idempotent endomorphism of A and $\tau = \sigma^n, n \ge 1$ then σ, τ are commute idempotent endomorphisms of A.

(*iii*) Let b be an idempotent element in A. Then $\sigma = L_b$ and $\tau = R_b$ are commute idempotent endomorphisms of A, where $L_b(a) = ba$ and $R_b(a) = ab$, for each $a \in A$.

(*iv*) Let X be a compact Hausdorff space and suppose $\varphi, \psi : X \longrightarrow X$ are commute idempotent local homeomorphisms. Define $\sigma, \tau : C(X) \longrightarrow C(X)$ by $\sigma(f) = f \circ \varphi$ and $\tau(f) = f \circ \psi$ for all $f \in C(X)$. Then σ and τ are commute idempotent endomorphisms of C(X).

It is easy to see that (A, \cdot) becomes a Banach algebra. We denote this new Banach algebra by σA_{τ} . We shall omit the letter σ (τ) , when $\sigma = id_A$ $(\tau = id_A)$, where $id_A : A \to A$ is the identity operator.

Remark 2.1. Throughout this paper we shall assume that σ and τ are commute idempotent endomorphisms, (i.e., $\sigma \circ \sigma = \sigma$ and $\tau \circ \tau = \tau$), such that $\parallel \sigma \parallel \leq 1$ and $\parallel \tau \parallel \leq 1$. Additional assumptions will be said in its place.

In the following we will study the existence of identity in $_{\sigma}A_{\tau}$. Note that all propositions will express for σ . It is obvious that all these propositions will be true for τ by using a similar proof.

Lemma 2.1. Let *A* be a unital Banach algebra (with unit *e*) and σ be an idempotent endomorphism of *A* with dense range. Then $\sigma(e) = e$.

Proof. Let $(a_{\alpha})_{\alpha \in I} \subseteq A$ be a net such that $\lim_{\alpha} \sigma(a_{\alpha}) = e$. Since σ is continuous idempotent homomorphism, we have

$$\lim_{\alpha}\sigma\left(a_{\alpha}\right)=\sigma\left(e\right)$$

and therefore $\sigma(e) = e$.

Proposition 2.1. Let *A* be a Banach algebra with right identity *e* and σ, τ be two idempotent endomorphisms of *A* with dense range. If σ is 1 - 1 and σA_{τ} has a left identity *e'*, then e' = e.

Proof. Since $\overline{\sigma(A)} = A$ and $\overline{\tau(A)} = A$ by previous lemma we have $\sigma(e) = e$ and $\tau(e) = e$. Now for each $a \in A$, by hypothesis $e' \cdot a = a$. So for $e \in A$, $e' \cdot e = e$, too. By multiplication on σA_{τ} we have,

$$\sigma(e) \tau(e) = e$$

$$\Rightarrow \sigma(e) e = e$$

$$\Rightarrow \sigma(e) = e$$

$$\Rightarrow \sigma(e) = \sigma(e)$$

$$\Rightarrow e' - e \in \ker \sigma = \{0\}$$

So, e' = e and the proof is complete.

Corollary 2.2. Let *A* be a unital Banach algebra with identity *e* and σ, τ be two idempotent endomorphisms of *A* with dense range. If σ and τ are 1 - 1 and σA_{τ} has an identity *e*, then e = e.

Proposition 2.2. Let *A* be a Banach algebra with left identity *e*. If σ is an idempotent endomorphism of *A* with dense range, then *e* is a left identity for $_{\sigma}A$.

Proof. By lemma 2, we have $\sigma(e) = e$. Now for each $a \in A$,

$$e \cdot a = \sigma(e) a = ea = a.$$

Proposition 2.3. Let A be a Banach algebra with left identity e. Then e is a left identity for $\sigma(\sigma A)$.

Proof. For each $a \in A$ we have,

$$e \cdot \sigma (a) = \sigma (e) \sigma (a) = \sigma (ea) = \sigma (a)$$

820

Proposition 2.4. Let A be a Banach algebra and e be a right identity for $\sigma(A)$. If $\tau(A) = A$, then e is a right identity for $\sigma(\sigma A_{\tau})$.

Proof. By lemma 2 we have $\tau(e) = e$. So for each $a \in A$ we have

$$\sigma(a) \cdot e = \sigma(\sigma(a)) \tau(e) = \sigma(a) e = \sigma(a).$$

Next, assume that A is a complex Banach space which has dimension at least 2 and let $0 \neq \varphi \in Ball(A^*)$. Define a multiplication on A by

$$a * b = \varphi(a)b$$
 $(a, b \in A)$.

This multiplication evidently makes A into a Banach algebra denoted by A_{φ} , which is called the ideally factored algebra associated to φ , [10]. It is easy to see that A_{φ} has left identity e which is that element in A such that $\varphi(e) = 1$, while it has not right approximate identity. Suppose that $\sigma : A_{\varphi} \to A_{\varphi}$ be defined by $\sigma(a) = \varphi(a) e$. Then σ is the only idempotent endomorphism of A_{φ} .

In the following we show that with the only homomorphism σ of A_{φ} we can define only one new Banach algebra from A_{φ} . First we consider the product in Banach algebra $(A_{\varphi})_{\sigma}$. For each $a, b \in (A_{\varphi})_{\sigma}$ we have,

 $a \cdot b = a * \sigma(b) = \varphi(a) \sigma(b) = \varphi(a) \varphi(b) e.$

Also the product in Banach algebra $_{\sigma}(A_{\varphi})$ is as follows,

$$a \cdot b = \sigma(a) * b = \varphi(\sigma(a)) b = \varphi(\varphi(a) e) b = \varphi(a) \varphi(e) e = \varphi(a) e = a * b,$$

 $a, b \in {}_{\sigma}(A_{\varphi})$. Therefore, the Banach algebra ${}_{\sigma}(A_{\varphi})$ is exactly the Banach algebra A_{φ} .

The product in Banach algebra $_{\sigma} (A_{\varphi})_{\sigma}$ is as follows,

$$a \cdot b = \sigma(a) * \sigma(b) = \varphi(\sigma(a)) \sigma(b) = \varphi(a) \varphi(e) \varphi(b) e = \varphi(a) \varphi(b) e,$$

 $a, b \in \sigma (A_{\varphi})_{\sigma}$, which shows that The Banach algebra $\sigma (A_{\varphi})_{\sigma}$ is exactly the Banach algebra $(A_{\varphi})_{\sigma}$.

Now we show that the condition in proposition 6 is not necessary. First note that it is easy to see that the Banach algebra $(A_{\varphi})_{\sigma}$ has not left and right identity. We prove that e is an identity for $\sigma((A_{\varphi})_{\sigma})$, where e is the left identity in A_{φ} . Let $a \in (A_{\varphi})_{\sigma}$. So we have,

$$e \cdot \sigma(a) = \varphi(e) \varphi(\sigma(a)) e = \varphi(\varphi(a) e) e = \varphi(a) e = \sigma(a).$$

Also,

$$\sigma\left(a\right) \cdot e = \varphi\left(\sigma\left(a\right)\right)\varphi\left(e\right)e = \varphi\left(\varphi\left(a\right)e\right)e = \varphi\left(a\right)e = \sigma\left(a\right),$$

which shows that e is an identity for $\sigma((A_{\varphi})_{\sigma})$. Although A_{φ} has not right identity.

3 Contractibility and Amenability of $_{\sigma}A_{\tau}$

In this section we consider the relations between contractibility and amenability of Banach algebra A and $_{\sigma}A_{\tau}$. We start this section with the following lemma.

Lemma 3.1. Let *A* be a Banach algebra. suppose σ is an idempotent endomorphism with dense range and τ is an idempotent epimorphism of *A*, (i.e., a surjective endomorphism of *A*). Then $\varphi : A \rightarrow \sigma A_{\tau}$ defined by $\varphi(a) = \sigma(\tau(a))$ is a continuous idempotent homomorphism on *A* which has dense range.

Proof. It is easy to see that φ is an idempotent homomorphism. Let $a \in {}_{\sigma}A_{\tau}$, since $\overline{\sigma(A)} = A$ there exists a net $(b_{\alpha})_{\alpha \in I} \subseteq A$ such that $\lim_{\alpha} \sigma(b_{\alpha}) = a$. Also since τ is a surjective map , for each $\alpha \in I$, there exists $a_{\alpha} \in A$ such that $\tau(a_{\alpha}) = b_{\alpha}$. So we have,

$$a = \lim_{\alpha} \sigma \left(b_{\alpha} \right) = \lim_{\alpha} \sigma \left(\tau \left(a_{\alpha} \right) \right) = \lim_{\alpha} \varphi \left(a_{\alpha} \right) \qquad (a \in A) \,,$$

which shows that $\overline{\varphi(A)} = {}_{\sigma}A_{\tau}$.

Corollary 3.2. Let *A* be a Banach algebra and σ, τ be two idempotent epimorphisms of *A*. Then $\varphi : A \rightarrow {}_{\sigma}A_{\tau}$ defined by $\varphi(a) = \sigma(\tau(a))$ is a surjective idempotent homomorphism on *A*.

Proposition 3.1. Let *A* be a Banach algebra, σ be an idempotent endomorphism with dense range and τ be an idempotent epimorphism of *A*. If any of the following conditions hold, then ${}_{\sigma}A_{\tau}$ is contractible.

i) A is τ -contractible. ii) A is σ -contractible. iii) A is (τ, σ) -contractible. iv) A is (σ, τ) -contractible.

Proof. Throughout this proof we assume that φ is the idempotent homomorphism which is defined in Lemma 8, *i.e.* $\varphi : A \to {}_{\sigma}A_{\tau}$ defined by $\varphi(a) = \sigma(\tau(a))$.

i) Let X be a Banach ${}_{\sigma}A_{\tau}$ -bimodule and $D : {}_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then (X, *) is an A-bimodule with the following module actions:

 $a * x = \sigma(a) \cdot x$, $x * a = x \cdot \sigma(a)$ $(a \in A, x \in X)$.

Since D is a derivation on ${}_{\sigma}A_{\tau}$, therefore $D \circ \varphi : A \to (X, *)$ is a τ derivation because,

$$\begin{split} D \circ \varphi \left(ab \right) &= D \left(\varphi \left(a \right) \cdot \varphi \left(b \right) \right) \\ &= D \left(\varphi \left(a \right) \right) \cdot \varphi \left(b \right) + \varphi \left(a \right) \cdot D \left(\varphi \left(b \right) \right) \\ &= D \circ \varphi \left(a \right) \cdot \sigma \left(\tau \left(b \right) \right) + \sigma \left(\tau \left(b \right) \right) \cdot D \circ \varphi \left(b \right) \\ &= D \circ \varphi \left(a \right) * \tau \left(b \right) + \tau \left(b \right) * D \circ \varphi \left(b \right) \qquad (a, b \in A) \,. \end{split}$$

Since A is τ -contractible, there exists $x \in X$ such that

$$D \circ \varphi(a) = \tau(a) * x - x * \tau(a)$$
 $(a \in A)$.

Thus

$$D(\varphi(a)) = (D \circ \varphi)(a)$$

= $\tau(a) * x - x * \tau(a)$
= $\sigma(\tau(a)) \cdot x - x \cdot \sigma(\tau(a))$
= $\varphi(a) \cdot x - x \cdot \varphi(a)$ $(a \in A)$

Now for each $b \in A$, by previous lemma, there exists a net $(a_{\alpha}) \subseteq A$ such that $b = \lim_{\alpha} \varphi(a_{\alpha})$. So we have,

$$D(b) = D\left(\lim_{\alpha} \varphi(a_{\alpha})\right)$$
$$= \lim_{\alpha} D(\varphi(a_{\alpha}))$$
$$= \lim_{\alpha} \varphi(a_{\alpha}) \cdot x - x \cdot \varphi(a_{\alpha})$$
$$= b \cdot x - x \cdot b \qquad (b \in A),$$

which shows that ${}_{\sigma}A_{\tau}$ is contractible.

ii) For a Banach $_{\sigma}A_{\tau}$ -bimodule X, it is easy to see that (X, *) is an A-bimodule with the following module actions:

$$a * x = \tau (a) \cdot x$$
, $x * a = x \cdot \tau (a)$ $(a \in A, x \in X)$.

The remaining argument is similar to (i).

iii) Let X be a Banach ${}_{\sigma}A_{\tau}$ -bimodule and $D : {}_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then (X, *) is an A-bimodule with the following module actions:

$$a * x = \sigma(a) \cdot x$$
, $x * a = x \cdot \tau(a)$ $(a \in A, x \in X)$

Since D is a derivation on ${}_{\sigma}A_{\tau}$, so for each $a, b \in A$ we have,

$$D \circ \varphi (ab) = D (\varphi (a) \cdot \varphi (b))$$

= $D (\varphi (a)) \cdot \varphi (b) + \varphi (a) \cdot D (\varphi (b))$
= $D (\varphi (a)) \cdot \sigma (\tau (b)) + \sigma (\tau (a)) \cdot D (\varphi (b))$
= $D (\varphi (a)) \cdot \tau (\sigma (b)) + \sigma (\tau (a)) \cdot D (\varphi (b))$
= $D \circ \varphi (a) * \sigma (b) + \tau (a) * D \circ \varphi (b).$

Thus $D \circ \varphi : A \to (X, *)$ is a (τ, σ) - derivation. Since A is (τ, σ) -contractible, there exists $x \in X$ such that

$$D \circ \varphi(a) = \tau(a) * x - x * \sigma(a) \qquad (a \in A).$$

So for each $a \in A$,

$$D(\varphi(a)) = (D \circ \varphi)(a)$$

= $\tau(a) * x - x * \sigma(a)$
= $\sigma(\tau(a)) \cdot x - x \cdot \tau(\sigma(a))$
= $\varphi(a) \cdot x - x \cdot \varphi(a)$.

Now by lemma 8, for each $b \in A$ there exists a net $(a_{\alpha}) \subseteq A$ such that $b = \lim_{\alpha} \varphi(a_{\alpha})$. So we have,

$$D(b) = D\left(\lim_{\alpha} \varphi(a_{\alpha})\right)$$
$$= \lim_{\alpha} D(\varphi(a_{\alpha}))$$
$$= \lim_{\alpha} \varphi(a_{\alpha}) \cdot x - x \cdot \varphi(a_{\alpha})$$
$$= b \cdot x - x \cdot b \qquad (b \in A),$$

which shows that ${}_{\sigma}A_{\tau}$ is contractible. *iv*) It is similar to (*iii*).

Example 3.3. Let *G* be a locally compact group, $A = L^1(G)$, the group algebra of *G*, and σ be a bounded dense range endomorphism of $L^1(G)$. It is known that $L^1(G)$ is σ -contractible if and only if *G* is finite [11]. Therefore, by above Proposition, for each idempotent epimorphism τ of $L^1(G)$, the new Banach algebra $_{\sigma}(L^1(G))_{\tau}$ is contractible. In particular, $_{\sigma}(L^1(G))$ is a contractible Banach algebra.

Example 3.4. Let *G* be a locally compact group, A = M(G), the measure algebra of *G*, and σ be a bounded dense range endomorphism of M(G). It is known that M(G) is σ -contractible if and only if *G* is finite [11]. Therefore, by above Proposition, for each idempotent epimorphism τ of M(G), the new Banach algebra $_{\sigma}(M(G))_{\tau}$ is contractible. In particular, $_{\sigma}(M(G))$ is a contractible Banach algebra.

Corollary 3.5. Let *A* be a Banach algebra, σ be an idempotent endomorphism with dense range and τ be an idempotent epimorphism of *A*. If any of the conditions stated in the previous proposition occurs, then all the following hold:

i) $_{\sigma}A_{\tau}$ has an identity. *ii*) $_{\sigma}A_{\tau}$ has a diagonal. *iii*) $_{\sigma}A_{\tau}$ is biprojective.

Corollary 3.6. Let *A* be a Banach algebra, σ be an idempotent endomorphism with dense range and τ be an idempotent epimorphism of *A*. If *A* be able to have one of these properties: τ -amenability, σ -amenability, (τ, σ) -amenability, (σ, τ) -amenability, then all the following hold:

i) $_{\sigma}A_{\tau}$ is amenable. *ii*) $_{\sigma}A_{\tau}$ has a bounded approximate identity. *iii*) $_{\sigma}A_{\tau}$ has a Virtual diagonal. *iv*) $_{\sigma}A_{\tau}$ is biflat.

Now let A_{φ} be the ideally factored algebra associated to φ , where $0 \neq \varphi \in Ball(A^*)$, as notation in previous section. Also let $\sigma : A_{\varphi} \to A_{\varphi}$ with definition $\sigma(a) = \varphi(a) e$, be the only homomorphism

of A_{φ} . In [12] we showed that A_{φ} is σ -contractible Banach algebra. On the other hand in the previous section we see that $(A_{\varphi})_{\sigma}$ has not an identity. So clearly $(A_{\varphi})_{\sigma}$ is not contractible. Note that this does not contradict with the proposition 10, because it is clear that $\overline{\sigma(A)} \neq A$.

Proposition 3.2. Let *A* be a Banach algebra and σ, τ be two idempotent epimorphisms of *A*. If any of the following conditions hold, then ${}_{\sigma}A_{\tau}$ is approximately contractible.

i) A is τ -approximately contractible.

ii) A is σ -approximately contractible.

iii) A is (τ, σ) -approximately contractible.

iv) A is (σ, τ) -approximately contractible.

Proof. Throughout this proof we assume that φ is the idempotent homomorphism which is defined in lemma 8, *i.e.* $\varphi : A \to {}_{\sigma}A_{\tau}$ defined by $\varphi(a) = \sigma(\tau(a))$.

i) Let *X* be a Banach ${}_{\sigma}A_{\tau}$ -bimodule and $D : {}_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then (X, *) is an *A*-bimodule with the following module actions:

 $a * x = \sigma(a) \cdot x$, $x * a = x \cdot \sigma(a)$ $(a \in A, x \in X)$.

It is easy to see that $D \circ \varphi : A \to (X, *)$ is a continuous τ -derivation. Since A is τ -approximately contractible, there exists a net $(x_{\alpha}) \in X$ such that

$$D \circ \varphi \left(a \right) = \lim_{\alpha} \tau \left(a \right) * x_{\alpha} - x_{\alpha} * \tau \left(a \right) \qquad (a \in A) \,.$$

Now by Corollary 9, for each $b \in A$ there exists $a \in A$ such that $b = \varphi(a)$. So we have,

$$D(b) = D(\varphi(a))$$

= $\lim_{\alpha} \tau(a) * x_{\alpha} - x_{\alpha} * \tau(a)$
= $\lim_{\alpha} \varphi(a) \cdot x_{\alpha} - x_{\alpha} \cdot \varphi(a)$
= $\lim_{\alpha} b \cdot x_{\alpha} - x_{\alpha} \cdot b$ $(b \in A),$

which shows that ${}_{\sigma}A_{\tau}$ is approximately contractible.

The same argument as in proposition 10 shows that if any of conditions ii, iii and iv holds, then σA_{τ} is approximately contractible.

Corollary 3.7. Let *A* be a Banach algebra and σ, τ be two idempotent epimorphism of *A*. If any of the conditions stated in the previous proposition occur, then ${}_{\sigma}A_{\tau}$ has a left and right approximate identity.

Proof. It is clear by ([12], Proposition 2.1).

Corollary 3.8. Let *A* be a Banach algebra and σ, τ be two idempotent epimorphism of *A*. If *A* be able to have one of these properties: τ -approximate amenability, σ -approximate amenability, (τ, σ) -approximate amenability, (σ, τ) -approximate amenability, then all the following hold.

i) $_{\sigma}A_{\tau}$ is approximately amenable. *ii*) $_{\sigma}A_{\tau}$ has a left and right approximate identity. *iii*) $_{\sigma}A_{\tau}^{2} = _{\sigma}A_{\tau}$.

Proof. It is clear by proposition 13 and ([5], lemma 2.2).

Proposition 3.3. Let *A* be a Banach algebra, σ be an idempotent endomorphism with dense range and τ be an idempotent epimorphism of *A*. If *A* is character contractible, then ${}_{\sigma}A_{\tau}$ is character contractible.

Proof. Throughout this proof we assume that φ is that idempotent homomorphism which is defined in lemma 8, *i.e.* $\varphi : A \to {}_{\sigma}A_{\tau}$ with definition $\varphi(a) = \sigma(\tau(a))$ ($a \in A$).

Suppose that $\psi \in \Phi(\sigma A_{\tau})$, the character space of σA_{τ} , and X is a Banach $(\sigma A_{\tau}, \psi)$ -bimodule, that means the module actions are as follow,

 $a \cdot x = \psi(a) x, \qquad x \cdot a = x\psi(a) \qquad (a \in A, x \in X).$

Let $D : {}_{\sigma}A_{\tau} \to X$ be a continuous derivation. Then (X, *) is an $(A, \psi \circ \varphi)$ -bimodule with the following module actions:

 $a * x = \psi(\varphi(a)) x, \qquad x * a = x\psi(\varphi(a)) \quad (a \in A, x \in X).$

825

So $D \circ \varphi : A \to X$ is a continuous derivation because for each $a, b \in A$ we have,

$$\begin{split} D \circ \varphi \left(ab \right) &= D \left(\varphi \left(a \right) \varphi \left(b \right) \right) \\ &= D \left(\varphi \left(a \right) \right) \cdot \varphi \left(b \right) + \varphi \left(a \right) \cdot D \left(\varphi \left(b \right) \right) \\ &= D \left(\varphi \left(a \right) \right) \psi \left(\varphi \left(b \right) \right) + \psi \left(\varphi \left(a \right) \right) D \left(\varphi \left(b \right) \right) \\ &= D \circ \varphi \left(a \right) * b + a * D \circ \varphi \left(b \right) . \end{split}$$

Since A is character contractible, so there exists $x \in X$ such that,

$$D \circ \varphi(a) = a * x - x * a.$$

Thus for each $a \in A$ we have,

$$D\left(\varphi\left(a\right)\right) = Do\varphi\left(a\right) = a \ast x - x \ast a = \psi\left(\varphi\left(a\right)\right)x - x\psi\left(\varphi\left(a\right)\right).$$

Now by lemma 8, since $\overline{\varphi(A)} = {}_{\sigma}A_{\tau}$, for each $b \in A$ there exists a net $(a_{\alpha}) \subseteq A$ such that $b = \lim_{\alpha} \varphi(a_{\alpha})$. So we have,

$$D(b) = D\left(\lim_{\alpha} \varphi(a_{\alpha})\right)$$

= $\lim_{\alpha} D(\varphi(a_{\alpha}))$
= $\lim_{\alpha} \psi(\varphi(a_{\alpha})) x - x\psi(\varphi(a_{\alpha}))$
= $\psi(b) x - x\psi(b)$
= $b \cdot x - x \cdot b$ ($b \in A$),

which shows that ${}_{\sigma}A_{\tau}$ is character contractible.

4 Some other Properties

Proposition 4.1. Let *A* be a Banach algebra and σ, τ be two idempotent endomorphisms of *A* with dense range. Then $\Phi(\sigma A_{\tau}) \subseteq \Phi(A)$.

Proof. Let $\varphi \in \Phi(\sigma A_{\tau})$. So for each $a, b \in A$ we have,

$$\varphi(a \cdot b) = \varphi(a) \varphi(b) \implies \varphi(\sigma(a) \tau(b)) = \varphi(a) \varphi(b).$$

Now let $a, b \in A$, since $\overline{\sigma(A)} = A$ and $\overline{\tau(A)} = A$, there exist nets (a_{α}) and (b_{β}) in A such that

$$\lim_{\alpha} \sigma\left(a_{\alpha}\right) = a \quad , \quad \lim_{\beta} \tau\left(b_{\beta}\right) = b$$

On the other hand since σ and τ are idempotents, so we have

$$\lim_{\alpha} \sigma\left(a_{\alpha}\right) = \sigma\left(a\right) \quad , \quad \lim_{\beta} \tau\left(b_{\beta}\right) = \tau\left(b\right).$$

Thus

$$\varphi (ab) = \varphi \left(\lim_{\alpha} \sigma (a_{\alpha}) \quad \lim_{\beta} \tau (b_{\beta}) \right)$$
$$= \varphi (\sigma (a) \tau (b))$$
$$= \varphi (a \cdot b)$$
$$= \varphi (a) \varphi (b) \qquad (a, b \in A),$$

which shows that $\varphi \in \Phi(A)$ and the proof is complete.

826

Corollary 4.1. Let *A* be a Banach algebra and σ , τ be two idempotent endomorphisms of *A* with dense range. If σA_{τ} is semisimple, then *A* is semisimple.

Proof. Let $x \in rad(A)$. So for each $\varphi \in \Phi(A)$ we have $\varphi(x) = 0$. By the above proposition $\Phi(\sigma A_{\tau}) \subseteq \Phi(A)$ so,

$$\varphi(x) = 0$$
 $(\varphi \in \Phi(\sigma A_{\tau})).$

Thus $x \in rad(_{\sigma}A_{\tau}) = \{0\}$ and so x = 0, which means that A is semisimple.

It is easy to see that if A is \star -Banach algebra and σ is \star -idempotent endomorphism of A, i.e, an idempotent endomorphism such that $\sigma(a^*) = (\sigma(a))^*$, then ${}_{\sigma}A_{\sigma}$ is \star -Banach algebra. Also, it has proved that if A is a commutative semisimple Banach algebra, then every involution on A is continuous, see ([13], corollary 2.1.12). So we have the following result.

Corollary 4.2. Let *A* be a commutative Banach algebra and σ be an idempotent endomorphism with dense range. If $_{\sigma}A_{\sigma}$ is semisimple, then every involution on *A* is continuous.

Proposition 4.2. Let *A* be a Banach algebra and *I* be a right (left) ideal in *A*. If $\sigma(I) \subseteq I$ ($\tau(I) \subseteq I$), then *I* is a right (left) ideal in σA_{τ} .

Proof. For each $a \in A$ and $i \in I$ we have,

$$i \cdot a = \sigma(i) \tau(a) \in IA \subseteq I,$$

which shows that I is a right ideal in $_{\sigma}A_{\tau}$.

Corollary 4.3. Let *A* be a Banach algebra and *I* be a twosided ideal in *A*. If $\sigma(I) \subseteq I$ and $\tau(I) \subseteq I$, then *I* is a twosided ideal in σA_{τ} .

It has proved that if A is a contractible Banach algebra and I is a closed twosided ideal in A, then $\frac{A}{I}$ is contractible, [9]. So by proposition 10 we have the following result.

Corollary 4.4. Suppose that *A* is a Banach algebra, σ is an idempotent endomorphism with dense range and τ is an idempotent epimorphism of *A*. Let *I* be a closed twosided ideal in *A* such that $\sigma(I) \subseteq I$ and $\tau(I) \subseteq I$. If any of the following conditions hold, then $\frac{\sigma A_{\tau}}{I}$ is contractible.

i) A is τ -contractible.

ii) A is σ -contractible . *iii*) A is (τ, σ) -contractible.

iv) A is (σ, τ) -contractible.

5 Conclusion

By defining a new multiplication on Banach algebra A, we showed that the new Banach algebra ${}_{\sigma}A_{\tau}$, has better and stronger properties than Banach algebra A. For example, in Proposition 3.1, we showed that, if Banach algebra A is only σ -contractible, then the Banach algebra ${}_{\sigma}A_{\tau}$ is contractible, which is a stronger and better property than the σ -contractibility. Also, in Corollary 3.6, we showed that, if Banach algebra A be able to have σ -amenability property, then the Banach algebra ${}_{\sigma}A_{\tau}$ is amenable. Such results has been proven for more cases such as, approximate contractibility, approximate amenability, character contractibility and character amenability.

Competing Interests

The authors declare that no competing interests exist.

References

- [1] Johnson BE. Cohomology in Banach algebras. Mem. Amer. Math. Soc. 1972;127 .
- [2] Helemeski A YA. A certain class of flat Banach modules and its applications. Vest. Mosk. Univ. Ser. Mat. Mekh. 1972;27:2936.
- [3] Xin XL, Li TY, Lu JH. On derivations of lattices. Information Sciences. 2008;178:307-316.
- [4] Xin XL. The fixed set of a derivation in lattices. Fixed Point Theory and Applications. 2012;1:1-12.
- [5] Ghahramani F, loy RJ. Generalized notions of amenability. J. funct. Anal. zol 2004;229-260.
- [6] Mirzavaziri M, Moslehian MS. σ-derivations in Banach algebras. Bull. Iran. Math. Soc. 2006;32(1):65-78.
- [7] Monfared MS. Character amenability of Banach algebras. Math. Proc. Camb. Phil. Soc. 2008;144:697-706.
- [8] Dales HG. Banach Algebras and Automatic Continuity. Oxford University Press, 2000.
- [9] Runde V. Lectures on amenability. Lecture Notes in Mathematies, springer-Verlag, Berlin, 2002.
- [10] Amyari M, Mirzavaziri M. Ideally factored algebras. Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 2008;24(2):227-233.
- [11] Yazdanpanah T, Najafi H. σ -Contractible and σ -biprojective Banach algebras. Quaestiones Mathematicae. 2010;33:485495.

- [12] Momeni M, Yazdanpanah T, Mardanbeigi MR. σ-Approximately Contractible Banach Algebras. Abstract and Applied Analysis, Volume 2012 (2012), Article ID 653140, 20pages, doi:10.1155/2012/653140.
- [13] Kaniuth E. A Course in Commutative Banach Algebras. Springer, New York; 2009.

©2014 Yazdanpanah & Momeni; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=370&id=6&aid=3369