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Abstract
Although the original short-time Fourier-transform-based synchrosqueezing transform (FSST)
and its second-order transform (FSST2) can effectively improve the readability of
quasi-stationary signal and time-varying signal, respectively, the weak components of
time–frequency representation are often submerged easily by noises and large-amplitude
instantaneous frequencies (IFs). Moreover, aerospace engines always work in fierce vibration
and non-steady states, and this easily causes the weak fault feature of rolling bearings obscured
in the time–frequency domain. To solve this problem, we propose a time–frequency analysis
algorithm called energy time-convexity second-order synchrosqueezing transform (ET-FSST2).
This can sharpen the time-varying IFs like FSST2, and more importantly, it can extract the
time-varying IFs with small amplitudes such as weak impulse-like components from
multi-component vibration signals. The ET-FSST2 firstly calculates the energy convexity
function in the time direction to extract the non-stationary IFs after employing FSST2. It then
structures an optimization function by combining a hyperbolic tangent function with a
chi-square distribution function as well as optimizing the targeted parameters, aiming to extract
the weak components of the non-stationary IFs. Moreover, the effectiveness and robustness of
the proposed method are validated by numerical simulation and rolling bearing fault tests.
Finally, two case studies of weak fault diagnosis of Ni–Cu–Ag-based PVD-coated rolling
bearings operating in cryogenic surroundings are given to illustrate the effectiveness of the
proposed method for aerospace engine bearing fault diagnosis.

Keywords: aerospace engine, fault diagnosis, synchrosqueezing transform, time–frequency
analysis, cryogenic environment

(Some figures may appear in colour only in the online journal)
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ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1. Introduction

As advanced aerospace engines commonly have sophisticated
systems and structures, the phenomena of aerospace engine
misdiagnosis and missed diagnosis are especially serious, so it
necessitates the development of reliable vibration monitoring
and fault diagnosis technologies [1, 2]. To date, several
studies have shown that many conventional properties and
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mechanisms at cryogenic temperature are no longer applic-
able compared to those in normal temperature, such as per-
formance of materials, behaviors of tribology [3, 4], lubrica-
tion [5] and wear [6], which easily cause the fatigue and dam-
age of aerospace engine components such as rolling bearings
serviced in a cryogenic environment. In addition, the working
processes of aerospace engines often cause complex and fierce
vibration [7, 8], and the vibration signals always contain time-
varying multi-components with different amplitudes resulting
from the multi-source vibration such as unsteady combustion,
fluid excitation, vibration of the turbopump, etc [9, 10], mak-
ing the vibration analysis a challenging task. Moreover, the
weak faults of rolling bearings often result in small-amplitude
impulse-like components which are easily submerged in the
vibration signals [11, 12], especially when the vibration sig-
nals are collected from the out-shell of the turbopump [1, 13],
and this further increases the difficulty of its fault diagnosis.
Hence, it is significant to explore advanced and suitable meth-
ods for the health monitoring and fault diagnosis of the rolling
bearings in aerospace engines based on vibration signals [2,
14]. Similar requirements are also common in large rotating
machines such as aeroengines [15], gas turbine engines [16]
etc.

The time–frequency analysis (TFA) method is a common
and effective vibration signal analysis method for mechan-
ical fault diagnosis, because the instantaneous frequency (IF)
can be clearly characterized on the time–frequency plane [17,
18]. Accordingly, lots of TFA methods such as the Wigner–
Ville distribution (WVD) [19], short-time Fourier transform
(STFT), wavelet transform (WT) [20] and S-transform have
been applied in mechanical condition monitoring and fault
diagnosis [21]. However, the aforementioned original time–
frequency representations (TFR) have their own limitation [22,
23]. For instance, the WVD is restricted by the presence of
cross-terms which is a serious limitation for non-stationary
signals [24], while the STFT and WT are restricted owing
to the Heisenberg uncertainty principle [25]. The frequency-
dependent window function adopted by ST would easily lead
to an insufficient time resolution at the low-frequency stage
and a non-ideal frequency resolution in the high-frequency
band [26, 27]. In addition, none of the abovementioned meth-
ods have enough energy concentration. Hence in order to
sharpen the ridgeline to improve the readability of TFR for
vibration signals, plenty of algorithms have been explored.
Daubechies proposed the synchrosqueezing transform (SST)
which can determine the time–frequency components of a
time-dependent signal containing multiple oscillatory modes
[28, 29]. It can not only reconstruct the signal to the time
domain, but also improve the readability of TFR of signals
with slowly varying IFs [30].

However, the applicability of SST is somewhat limited by
the requirements of fast-varying frequency for the modes con-
stituting the signal, and the IFs are blurred in both time and
scale/frequency directions [31, 32]. Lately, many ameliorated
methods based on SST have been proposed to sharpen the
TFR of a non-stationary signal. Jiang and Suter introduced an
instantaneous frequency-embedded synchrosqueezing wave-
let transform (IFE-SST) for a rough estimation of the IF of

a targeted component to produce accurate IF estimation [33].
Yu and Lin explored an time-reassigned multisynchrosqueez-
ing transform (TMSST) to extract fast frequency-varying sig-
nal such as impulse components from the signal, and this
method is also effective for signal reconstructions [34]. Wang
and Chen studied a matching demodulation transform (MDT),
which does not necessitate a special parametric TF diction-
ary, and it could reduce the obscurity of the curved IFs [35].
Yu and Ma embedded the second-order two-dimensional IF
estimation into the multisynchrosqueezing transform, and this
algorithm improved the high time–frequency resolution [36].
Qu and Chen explored a synchrosqueezed adaptive wave-
let transform (SSAWT) to analyze the arbitrary time series,
and the center frequencies and scaling factors were optim-
ized [37]. Behera andMeignen proposed the second-order syn-
chrosqueezing transform (SST2): one of the generalized theor-
etical methods of TFA based on SST, with the aim of coping
with a strong FM signal by computing a second-order local
approximation of the IF [38]. Moreover, it was proved to be
effective for a linear chirps signal [36].

Especially, in the field of rotating machinary monitoring
and fault diagnosis, Wang and Chen proposed a matching
synchrosqueezing transform (MSST), which incorporated the
IF estimation and the group delay estimation to change the
chirp rate estimation into a comprehensive and accurate IF
estimation, and applied it in aeroengine monitoring [39]. Yu
and Lin combined the polynomial chirplet transform and syn-
chroextracting algorithm to analyze nonstationary and multi-
component features from the vibration signals, which was fur-
ther adopted in the IF extraction for the signal of rotating
machinery [25]. Chen and Zuo proposed an ameliorated syn-
chroextracting transform (ASET)which employed the second-
order Talor expansion to analyze fast time-varying and strong
frequency-modulated signal for vibration analysis of a rotating
machine [40]. Cao proposed a time-reassigned synchrosqueez-
ing transform to sharpen the IF in the time direction which was
applied to analyze the impulse-like signal caused by a com-
pressor defect [31]. Yu explored a concentrated TFA method
that could characterize the transient components from the
vibration signal, as well as improve the sharpness of the IFs. It
was then applied in rolling bearing fault detection [24]. Even
so, the scalogram in the time–frequency domain consists of
lines that represent their own amplitudes. As for the small-
amplitude fast-varying IFs such as weak impulse-like signals,
the amplitudes of which are much smaller than other IFs on the
t–f plane, the ridge lines will be easily blurred, and this further
restricts the state monitoring and weak fault identification of
the rotating machinery.

In this case, a method to extract small-amplitude time-
varying IFs and improve their readability of the TFR from
the raw signals to overcome the unintelligibility has been a
challenge. Here we propose an energy time-convexity second-
order synchrosqueezing transform (ET-FSST2), which retains
the advantage of FSST2 for sharpening fast-varying IFs.
The essence of the ET-FSST2 contains three points as fol-
lows. Firstly, the convexity function in the time direction
is calculated to extract the fast-varying IFs from the non-
stationary signal after employing the FSST2. Secondly, an
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optimization function is structured by combining a hyperbolic
tangent function with a chi-square distribution function in
addition to optimizing its parameters. Finally, by multiplying
the above two functions, the small-amplitude time-varying IFs
are extracted from the signal in the time–frequency domain.

In practice, the vibration signals of the aerospace engine
contain multi-components with different amplitudes, and the
vibrations resulting from rolling bearing faults are relatively
weak. Even though the conventional TFA methods such as
FSST and FSST2 are employed, the IFs of fault characteristics
are still blurred, thus we explore the application of ET-FSST2
in aerospace engine fault diagnosis. The main advantage of
the ET-FSST2 is that it can effectively retain the property
of FSST2 in TFR sharpness of non-stationary vibration sig-
nals, and more importantly, the adjustive weak characteristic
extraction property enables diagnosis of weak faults such as
rolling bearing faults and other mechanical component defects
in aerospace engines.

The paper is organized as follows: section 2 introduces
the theoretical basis of FSST and FSST2, section 3 describes
the proposed method (ET-FSST2), section 4 shows the sim-
ulation to validate its effectiveness and robustness, and sub-
sequently section 5 gives three case studies in the cryogenic
exfoliation diagnosis of the rolling bearings in an aerospace
engine. Finally, section 6 presents the conclusion.

2. Theoretical basis

2.1. STFT-based synchrosqueezing transform (FSST)

Suppose x(t) is a purely harmonic signal such that x(t) =
A(t)e2iπϕ(t), the relative IF is f 0 and the amplitude is constant
A0. For a given window function g(u), the STFT of signal x(t)
is defined as

Sgx (u, ξ) =
ˆ +∞

0
x(t)g(u− t)e−i2π(t−u)dt. (1)

The STFT is given as follows according to Plancherel’s the-
orem:

Sgx (u, ξ) =
1
2π

ˆ +∞

−∞
X(ω)ĝ(ω− ξ)e−iωudω = Aĝ(2πf0 − ξ)ei.

(2)
In addition, the time-shift derivative of the signal’s TF repres-
entation Sgx (u, ξ) is given by

∂uS
g
x (u, ξ) = i2πf0 · Sgx (u, ξ) (3)

Then, a candidate instantaneous frequencyωs (a,b) for the sig-
nal s(t) at any (a, b) satisfying Sgx (u, ξ) ̸= 0 can be calculated
as

f0 (u, ξ){

∣∣∣ ∂uS
g
x(u,ξ)

2π·Sgx(u,ξ)

∣∣∣ ,Sgx (u, ξ)> λ

∞, Sgx (u, ξ)≤ λ
(4)

where λ is the hard threshold on Sgx (u, ξ), which is applied to
overcome the shortcoming that |Sgx (u, ξ)|≈ 0 is rather unstable
when signals have been contaminated by noise. The reassign-
ment calculation can be performed according to the map (u, ξ)

to (u, f0 (u, ξ)) after the IF(f0 (u, ξ))is obtained, and the SST is
energy reassignment by summing different contributions as

Tg,γs (u, ξ) =
1

g∗ (0)

ˆ
{ξ,Sgx(u,ξ)≤λ}

Sgx (u, ξ)δ (ω−ωx (u, ξ))dξ

(5)
where δ denotes the Dirac distribution.

In addition, the dispersed form of FSST is written as

Tg,γs (u, ξ) =
1

g∗ (0)

∑
ξk:|f0(u,ξk)|≤∆f/2

Sgx (u, ξ)∆ξ (6)

where ξk is the discrete value of the scale ξ for applic-
ations and ξk− ξk−1 = (∆ξ)k, and the synchrosqueezing is
determined only at the frequency centers ξl of the interval
[ξl− (1/2)∆ξ,ξl+(1/2)∆ξ], and ∆ξ = ξl− ξl−1.

FSST, belonging to a member of the TFR family, is an
extension of the STFT for energy concentration. However, it is
proved that Tg,rs (u, ξ) is concentrated in a narrow band around
the lines of IF on the t–f plane. To solve its limitation, FSST2
was proposed as follows.

2.2. Second-order STFT-based synchrosqueezing transform
(FSST2)

An algorithm based on FSST was proposed on a more accur-
ate form of IF extraction, which is defined as the second-
order synchrosqueezing transform (FSST2). FSST2 has sev-
eral propositions. Here we give one of the common definitions
to explain the essence as follows:

Proposition: Let a signal x ∈ L2 (R); the complex reassign-
ment calculation ϖ (u, ξ) and τ̃ (u, ξ) are defined as follows if
Sgx (u, ξ) ̸= 0 and

ϖ (u, ξ) =
∂uS

g
x (u, ξ)

2iπSgx (u, ξ)

τ̃ (u, ξ) = u -
∂ξS

g
x (u, ξ)

2iπSgx (u, ξ)
.

(7)

The next step is to calculate the second-order local complex
modulation operator for which ∂uτ̃ (u, ξ) ̸= 0:

q̃ x (u, ξ) =
∂uϖ (u, ξ)
∂uτ̃ (u, ξ)

. (8)

After the reassignment vector q̃ x (u, ξ) is obtained, the fol-
lowing discussion shows how the precise frequency modula-
tion is estimated.

Definition: Supposing a signal x ∈ L2 (R), the second local
IF is estimated as

ω̃ (u, ξ) =

{
ϖ (u, ξ)+ q̃ x (u, ξ)(u− τ̃ (u, ξ)) , τ̃ (u, ξ) ̸= 0

ϖ (u, ξ) , otherwise.
(9)

Then, the real part of ω̃ (u, ξ) is the estimate of IF as

ω̃r (u, ξ) = Re [ω̃ (u, ξ)] . (10)
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After the calculation above, FSST2 is obtained after replacing
ϖ (u, ξ)by ω̃r (u, ξ) in the following form:

Tg,γ2,s (u, ξ) =
1

g∗ (0)

ˆ
{ξ,Sgx(u,ξ)≤λ}

Sgx (u, ξ)δ (ω− ω̃r (u, ξ))dξ.

(11)
The above analysis shows the essence of FSST2, and the

theoretical explanation is detailed in [38].
As mentioned above, the small-amplitude fast-varying IFs

to be analyzed on the t–f plane will be easily submerged
by large-amplitude IFs even though FSST2 is applied, which
limits the weak feature extraction. Hence, a TFA method for
small-amplitude fast-varying IF extraction based on FSST2 is
proposed, and it will be discussed in the following section.

3. Energy time-convexity of second-order
STFT-based synchrosqueezing transform

In this section, we provide the rationale of the proposed
method named ET-FSST2: a novel TFR method by improving
the second-order STFT-based synchrosqueezing transform,
by which the small-amplitude fast-varing IFs can be extrac-
ted from the multi-component signal in the time–frequency
domain, and then present the process of its parameter optim-
ization and the method of its performance measurement.

3.1. Rationale of the proposed method

Based on FSST2, the square of FSST2 is calculated as follows:

Ew(u, ξ) =
[
Tg,r2,f (u, ξk)

]2
(12)

In practice, the energy spectrum prevails over the fre-
quency spectrum in extracting the targeted features of vibra-
tion signals [41, 42]. However, when the signals have low
signal–noise ratio (SNR) as well as large-amplitude multi-
components, the energy spectrum cannot yet take effect suf-
ficiently. To optimize the energy spectrum algorithm, the
second-order differential of Ew(u, ξ) is obtained by

∇2Ew(u, ξ) = ε
∂2Ew(u, ξ)

∂u2
+(1− ε)

∂2Ew(u, ξ)
∂ξ2

. (13)

In the equation (13), ∇2Ew(u, ξ) represents the second-
order differential of Ew(t, f). We define that parameter ε as
having two values: 0 and 1, which respectively represent the
frequency convexity and time convexity of the targeted signal
in the time–frequency domain. In the following research, ε is
set to 1 in order to characterize the time-varying feature from
the vibration signal.

After the transformation by equation (13), as for the vibra-
tion signals, the values will be large at the non-stationary
points on the t–f plane, and small or close to 0 at the
noise points or quasi-steady points. In addition, the values of
∇2Ew(t, f) will be positive at the concave points and negat-
ive at the convex points. In particular, there are three aspects
to be concerned with. First, the second-order differential is

often sensitive to noise, which means that many points of zero-
crossing are false frequency points and fault frequency spectra
[43]. Second, it is hoped that the most noises are suppressed
efficiently in order for the targeted IFs to be extracted easily.
Third, it is necessary to maintain the useful large-amplitude
IFs whichmainly represent the useful information of themeas-
ured system based on vibration monitoring. Hence it is neces-
sary to reduce such IFs to a certain percentage of the original
values as appropriate rather than to be filtered to 0. Because
of the above requisition, a novel function by combining the
hyperbolic tangent function with the chi-square distribution
function in the time–frequency domain is structured as fol-
lows:

Hcx (u, ξ) = α tanh

(∣∣∣∣ ∇2Ew (u, ξ)
∇2Ewfd (u, ξ)

∣∣∣∣)×
∣∣∇2Ew (u, ξ)

∣∣
+ cχ2

(
β

∣∣∣∣ ∇2Ew (u, ξ)
∇2Ewfd (u, ξ)

∣∣∣∣ ;n)×
∣∣∇2Ew (u, ξ)

∣∣ (14)

where tanh(
∣∣∣ ∇2Ew
∇2Ewfd

∣∣∣) represents the hyperbolic tangent func-

tion, and χ2
(
β
∣∣∣ ∇2Ew
∇2Ewfd

∣∣∣ ;n)is the chi-square distribution func-
tion (χ2 function) with n degrees of freedom. α,β and c
are positive constants. The abovementioned two functions are
expressed as follows:

tanh

(∣∣∣∣ ∇2Ew

∇2Ewfd

∣∣∣∣) =
2

1+ e
−2

∣∣∣∣ ∇2Ew
∇2Ewfd

∣∣∣∣ − 1 (15)

χ2

(
β

∣∣∣∣ ∇2Ew

∇2Ewfd

∣∣∣∣ ;n)=
1

2n/2Γ(n/2)

(
β

∣∣∣∣ ∇2Ew

∇2Ewfd

∣∣∣∣)
n
2−1

× e
−β

∣∣∣∣∣ ∇2Ew
∇2Ewfd

∣∣∣∣∣
2 . (16)

Define:

p(k) = αtanh(|k|) + c
1

2n/2Γ(n/2)
(β |k|)

n
2−1e

−β|k|
2 (17)

k =
∇2Ew

∇2Ewfd
(18)

where p(k) is defined as the factor of ET-FSST2. ∇2Ewfd

denotes the convexity function of target IF (marked as f d)
to be analyzed in the time–frequency domain. The parameter
k stands for a specific amplitude value between ∇2Ew and
∇2Ewfd. The absolute value |k| is employed to transfer the neg-
ative value to positive. Γ(n/2) denotes the Γ function with the
n degrees of freedom. In summary, there are four parameters
to be calculated: α,β,c,n. The following discussion is focused
on how to determine the above four parameters.

4



Meas. Sci. Technol. 31 (2020) 125105 Z Chen et al

3.2. Parameter optimization of the proposed method

Here we present the method of determining the above four
parameters which should satisfy three conditions as follows.
First, the function p(k) must make ∇2Ew reach its maximum
at the f d and to keep its value unchanged in the transform by
equation (14). Second, when

∣∣∇2Ew

∣∣<∣∣∇2Ewfd

∣∣, equation (14)
can reduce the values of

∣∣∇2Ew

∣∣in order to diminish their inter-
ference in the feature of f d, so p(k) < 1 when 0≤|k| < 1. Third,
when

∣∣∇2Ew

∣∣>∣∣∇2Ewfd

∣∣, p(k) can reduce the large-value IFs
to the certain values for the following two purposes: one is to
keep some useful IFs to maintain their features for system state
monitoring, and the other is that further untargeted IFs will not
submerge the feature of f d. According to the above analysis,
the following conditions need to be satisfied:

∂p(ki)
∂ki

= 0

p(ki) = 1

ki = 1

∂p(k)
∂k

> 0,k ∈ (0,1)

∂p(k)
∂k

< 0,k ∈ (1,+∞).

(19)

By solving equation (19), the parameters n and c can be
expressed as follows:

n = 2 + β− 8α

(1+α)(e + e−1)
2 − 2α(1 + e2)

(20)

c=
2

n
2 ×

[
(1+α)

(
1 + e−2

)
− 2α

]
Γ(n/2)

β
n
2−1e−

β
2 (1 + e−2)

. (21)

In addition, when k≥ k0 ≥ 1 (a given constant), p(k) tends
to be constant α, which represents the percentage of frequency
amplitude after transforming by equation (14). Due to the
abovementioned requirement, α should be an adjustive value
to determine the percentage (0 –100%) of the large-value IFs
to bemaintained. Furthermore, the relative error εbetween p(k)
and p(k0) should be small enough. Thus equations (22)~(23)
should be satisfied:

lim
k→+∞

p(k) = α (22)

lim
k→+∞

(
p(k)
p(k0)

)
= 1− ε. (23)

In our study, it is assumed ε = 0.0001 and k0 = 5 as an
example. There are 12 sets of calculated values for contrasting
the influence of the values of α and β as examples listed in
table 1. Figure 1 shows the different curves when α and β are
given to different values as examples. Figure 1(a) shows the
different curves of p(k) when α = 0.2, and β is given a series
of values in the interval of [0,25]. Figure 1(b) illustrates the

Table 1. Values of the parameters used in ET-FSST2.

Array α β n c Array α β n c

Array 1 0.2 1 2.80 3.27 Array 7 0 20 22.00 15.99
Array 2 0.2 5 6.80 6.83 Array 8 0.2 20 21.80 13.49
Array 3 0.2 10 11.80 9.58 Array 9 0.4 20 21.52 11.01
Array 4 0.2 15 16.80 11.70 Array 10 0.6 20 21.07 8.57
Array 5 0.2 20 21.80 13.49 Array 11 0.8 20 20.28 6.21
Array 6 0.2 25 26.80 15.07 Array 12 1.0 20 18.48 4.09

different curves of p(k) when β = 20 and α is given to differ-
ent values in interval of [0,1]. It indicates the main conclusions
as follows:

(1) Although α and β are given series of different values, all of
the curves of p(k) reach their maximum when k =1, as we
expected. It indicates that concerned IFsmaintain their real
values exactly in the transform by equations (14)–(18).

(2) The values of the series p(k) descend to 0 when k
approaches 0 from either −1 or 1, and this represents that
all of the IFs with values satisfying

∣∣∇2Ew

∣∣< ∣∣∇2Ewfd

∣∣
(denoted by |k|≤1) are diminished effectively. By contrast,
p(k) descends to a specific constant α and remains steady
when

∣∣∇2Ew

∣∣> ∣∣∇2Ewfd

∣∣ (denoted by |k| ≥ 1) as well as
satisfying k≥ k0 ≥ 1; this means most fast-varying IFs are
reduced to a certain percentage (denoted by α) of their ori-
ginal values. Hence, the transform can enhance the feature
of weak targeted IFs without adversely affecting the other
useful IFs.

(3) The values of α signify the proportion of ∇2Ew that is
maintained by the proposed method when k >k0. For
example, when α=1, p(k) means all of the IFs satisfying∣∣∇2Ew

∣∣>∣∣∇2Ewfd

∣∣ retain their real values. By contrast,
(4) when α=0, all of the IFs satisfying

∣∣∇2Ew

∣∣>∣∣∇2Ewfd

∣∣ are
filtered to 0 and the relatively suitable values of α depend
on the actual requisition in application.

(5) The curves of p(k) vary more quickly in the interval [-k0,
k0] when β becomes larger. As such, β represents the
changing speed of the function p(k).

(6) Because the sharpness and readability of the fast-varying
IFs are different because of their varying amplitudes com-
pared to the large IFs of the vibration signal on the t–f
plane, k should be adjustive values in the ET-FSST2 to sat-
isfy the feature extracting of different weak components.
Here we give a kind of algorithm to roughly evaluate the
values of ∇2Ewfd:

k0t =
{
log2

[
max

(∣∣∇2Ew (u, ξ)
∣∣)]}+ 1 (24)

kt = [1, k0t] , mt ∈ Z (25)

∇2Ewfd =
∇2Ew

2kt
(26)

5



Meas. Sci. Technol. 31 (2020) 125105 Z Chen et al

Figure 1. Two examples of p(k): (a) Different values of β when α = 0.2, (b) Different values of α when β = 20.

Figure 2. The original signal s(t): (a) in the time domain when σ = 0, (b) in the frequency domain when σ = 0, (c) zoomed-in view when σ
= 0, (d) in the time domain when σ = 20, (e) in the frequency domain when σ = 20, (c) zoomed-in view when σ = 20.

where k0 t represents the orders of∇2Ew by binary algorithm.
kt, which stands for an integer calculated by equation (25), is
determined by the actual signal.

3.3. Time–frequency concentration and robustness

In order to measure the time-frequency concentration and
readability of the TFRs obtained by the proposed TFAmethod,
the Renyi entropy, which is a tool for testing the information
complexity [44], is employed. The probability density func-
tion of continuous bivariate P(x,y) with a-order is defined as

Ra,p =
1

1− a
log2

¨ (
Pa (x,y)˜
P(x,y)dxdy

)
dxdy. (27)

For a TFR p(t, f ), the Renyi entropy is defined as a
pre-normalized function equivalent to normalizing the signal
energy to probability density function, and then the Renyi
entropy with a-order is defined as

Ra,p =
1

1− a
log2

¨ (
pa (u, ξ)˜
p(u, ξ)dudξ

)a

dudξ. (28)
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Figure 3. Results of kurtogram for the simulated vibration signal: (a) kurtogram, (b) squared envelope spectrum.

Figure 4. A1(t) (resonant frequency is 500 Hz as an example): (a) time waveform, (b) FSST2, (c) convexity function in the time direction
after FSST2, (d) convexity function in the frequency direction after FSST2.
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Figure 5. A2(t) + a3(t) + e(t): (a) time waveform, (b) FSST2, (c) convexity function in the time direction of FSST2, (d) convexity function
in the frequency direction of FSST2.

For testing the robustness of the proposed method, we employ
SNR (measured in dB) defined (as usual) by

SNR [dB] = 10log10

{
Var [Hc0 (u, ξ)]

σ2

}
(29)

where Hc0 (u, ξ) is the noiseless signal of Hc(u, ξ), and σ is
the variance of the background noise.

The above analysis expatiates the proposed method
named ET-FSST2. By applying the ET-FSST2 algorithm, the

8
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Figure 6. Different TFR for s1(t) with SNR = 20: (a) STFT, (b) FSST, (c) FSST2, (d) MSST, (e) MDT, (f) ET-FSST2.

Figure 7. Renyi entropies with different SNR: (a) α= 0, β = 20 for different methods, (b) ET-FSST2 for different values of α when β = 20.

Table 2. Renyi entropies without the noise.

Algorithm STFT FSST FSST2 MDT MSST ET-FSST2

Renyi entropies 22.0332 16.405 15.577 15.601 15.324 13.826

vibration signal will be transformed into the time–frequency
domain and be applied for weak fault diagnosis of rolling
bearings serviced in aerospace engines, as discussed in sec-
tion 4. In consideration of the general applicability of the pro-
posed method and diversity of vibration signals, the paramet-
ers α, β, kt should have the ability to satisfy the universalistic
application. Hence, we only propose the principle for the para-
meter selection, and illustrate some values for them in the fol-
lowing study which is employed to show the effectiveness in
our study and further preparation for the future research.

4. Numerical experiments for the proposed method

4.1. Simulation study for ET-FSST2

In order to validate the proposed method for extracting the
fast-varying IFs with small amplitudes such as impulse-like

components from the signal, a simulation signal consisting of
four parts is structured as follows:

s(t) = a1 (t)+ a2 (t)+ a3 (t)+ e(t) (30)

where a1(t) simulates the periodic impulse-like component of
a bearing defect with characteristic frequency being 10 Hz
(symbolized as f 0). a2(t) is the characteristic frequency of
a rotor with rotating frequency of 235 Hz (symbolized as
f r), and it also contains multiple components (2f r, 3f r, 4f r,
4f r and 7f r). a3(t) is the amplitude-modulated and frequency-
modulated signal with 3-order, which can increase the com-
plexity for fault feature extraction. Multiples of 90 Hz are the
amplitude modulation, and multiples of 175 Hz are the fre-
quency modulation (FM) as well as the carried wave being
multiples of 90 Hz. e(t) is the additive zero-mean white noise
with standard deviation of variance σ, and σ is given the differ-
ent values to test the robustness of the compared methods. The
sampling frequency is 25.6 KHz. The above four components
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of the signals are presented as

a1 (t) =
∑
k1

1500×

sin(2π× 1000)e−2π×100t sin

(
2π× 1800t− k1

10

)
(31)

a2 (t) = 10sin(2π× 235t+ 0.01)

+20sin(4π× 235t+ 0.03)+ 11sin(6π× 235t+ 0.02)

+ 14sin(8π× 235t+ 0.03)+ 18sin(14π× 235t+ 0.04)
(32)

a3 (t) = 10(1.5+ 0.5cos(2π× 90t)

× cos(2π× 210t+ 0.5cos(2π× 175t))

+ + 20(1+ 0.5× cos(2π× 180t))

× cos(2π× 420t+ 0.5× cos(2π× 350t))

+ 30(2+ 0.5× cos(2π× 270t))

× cos(2π× 630t+ 0.5× cos(2π× 525t)) (33)

e(t) = σ× random(m). (34)

The simulated signal in the time domain and frequency
domain is illustrated in figure 2. In order to test the per-
formance of the ET-FSST2 algorithm in intensive background
noise, σ is given two values: 0 and 20. It indicates that the
noise almost submerges the impulse-like component when
σ= 20, and other IFs such as the rotating frequency and har-
monic components are larger than the impulse-like compon-
ent. Hence, the fault frequency component cannot be identified
easily by FFT.

A fast kurtogram (FK), a common tool for mechanical sig-
nal processing, is employed to test the effectiveness of the
weak fault feature extraction from the simulated signal. Figure
3 presents the fast kurtogram (FK) and the squared envelope
spectrum of the simulated signal when σ= 20. It indicates that
the optimal filtering center spectrum and optimum bandwidth
are 1333.33 Hz and 666.67 Hz respectively, and the feature of
f 0 is not very clear. Hence the characteristic of f 0 cannot be
shown obviously by the FK algorithm.

4.2. Time–frequency characteristic by the ET-FSST2

In the investigation of simulation for the proposed algorithm
in this section and its application in section 5, the Kaiser win-
dow is selected as the window function. As far as studies have
reported, the Kaiser window is a kind of optimal window the
main lobe of which concentrates most of the internal energy
of the frequency band, and it can exert the greatest inhibi-
tion on the side lobe [45, 46]. Meanwhile, the coefficients of
the Kaiser window and the length of the window function are
selected as the same values respectively in the comparison of
the algorithm simulation, as well as the three application cases,

so it can further ensure that the employed TFA methods are
compared under the same conditions.

In order to test the effectiveness of the convexity function
for the impulse IF and quasi-steady state IF from the signal,
the second-order derivatives in the time and frequency direc-
tions of a1(t) and the signal a2(t) + a3(t) + e(t) are calculated
respectively. Both a1(t) and a2(t) + a3(t) + e(t) are trans-
formed into the time–frequency domain by FSST1, FSST2
and second-order derivatives. Figures 4(c)–(d) show the con-
vexity function of a1(t) when the resonant frequency is set to
500 Hz as an example in the time and frequency directions,
and the time-varying characteristics in these directions are still
clear after the two-order derivatives transform on the t–f plane.
By contrast, figures 5(c)–(d) illustrate the IF representation
of a2(t) + a3(t) + e(t) which represents an example of the
quasi-steady state components almost being filtered by calcu-
lating the second-order derivatives in the time direction, and
the FM components are blurred by somemutational points. By
contrast, the large-amplitude IFs of a2(t) + a3(t) + e(t) still
remain in the frequency direction. Hence, it is validated that
the algorithm can be employed to extract time-varying com-
ponents such as impulse-like IF from the signal. As such, it
also clarifies the essence that we adopt a convex function in
the time direction rather than in the frequency direction.

For the purpose of further exploring the effectiveness of dif-
ferent TFR methods for weak fast-varying IF extraction, the
simulation signal is analyzed by some TFR methods such as
STFT, FSST, FSST2, MDT, MSST and the proposed method,
as shown in figure 6. All of the above methods employ the
same window function, and the parameters are given as α=
0, β = 20, kt = 3 as an example. It can be seen that the TFR
obtained by STFT is blurred, and the impulse-like IF cannot be
clear. While the IFs are sharpened by FSST, FSST2 MDT and
MSST, the weak impulse component is submerged to some
extent by large-value IFs. After applying the ET-FSST2, the
weak impulse is concentrated, and its wide-band frequency
and time-decay characteristics are both displayed obviously.

4.3. Energy concentration and robustness

The robustness is a critical index for TFR methods. In order to
study the influence of the background noise on ET-FSST2, σ
is given as large as 20. Figure 7 gives the signal in the time–
frequency domain of ET-FSST2; the IF of an impulse-like
component on the t–f plane is blurred by employing STFT but
still obvious by ET-FSST2, as shown in figures 6(a) and (c).

Energy concentration is significant to evaluate the perform-
ance of the method which is often measured by Renyi entrop-
ies. Figure 7 illustrates the Renyi entropies under different
SNR when α= 0, β = 20 and a = 3 as an example. Table
2 shows the Renyi entropies of noiseless signals. The Renyi
entropies of FSST2, MDT and MSST are similar, namely 15–
16, not as large as FSST. By contrast, the Renyi entropies of
ET-FSST2, which is smaller than other algorithms, represents
the lowest information complexity.

In summary, the result of the simulation signal indicates
that the ET-FSST2 algorithm outperforms the STFT, FSST
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Figure 8. The fault experiment of rolling bearings

Figure 8. Fault experiment of a rolling bearing.

and FSST2, MDT and MSST in feature extraction of small-
amplitude fast-varying IFs such as impulse-like components.
Furthermore, the ET-FSST2 algorithm is robust under back-
ground noise. Hence, the simulation results provide valuable
pre-validations for follow-up research on the diagnosis of
rolling bearings serviced in aerospace engines.

5. Application in fault diagnosis of rolling bearings
serviced in aerospace engines

5.1. Case 1: application to defect diagnosis on the ring race
of rolling bearings

In order to validate the effectiveness of the proposed method
for weak IF extraction from the large-amplitude multi-
components, an experiment for testing the performance of the
fault rolling bearings was held. Vibration signals from a motor
bearing test rig were recorded. The test rig contained (see
figure 8) a generator, a rotor system, speed controller, laser
velocimeter, data acquisition system and rolling bearings. The
motor speed could be adjusted by an installed speed control-
ler. The tested bearings are ER16 K type, which were man-
ufactured with single-point defects, such as outer race fault
(ORF), inner race fault (IRF), and rolling element fault (REF).
An accelerometer was installed vertically on the drive end and
signals were recorded by data acquisition. The testbed and the
fault bearing are shown in figures 8 and 9 respectively.

Looking at the results of figure 10, it is worth noting that the
qualities of TFR are quite different after applying the differ-
ent methods. The characteristic of the bearing defect on the t–f
plane are still blurred by employing STFT, FSST and FSST2.
In the ET-FSST2, the parametersα= 0.2, β = 20 and kt = 3 as
examples. Although there are plenty of time-varying compon-
ents enhanced during the transform on the t–f plane, it clearly
interprets that ET-FSST2 can enhance the weak fault IF com-
pared to other TFA methods.

In this section, through the conventional verification for the
rolling bearing fault diagnosis, it can be concluded that the ET-
FSST2 surpasses other TFA algorithms such as STFT, FSST

Figure 9. Manufactured defect of bearings: (a) IRF, (b) ORF.

Table 3. Characteristic frequency of the tested bearings.

Frequency Value/Hz Frequency Value/Hz

IRF/fi 108.64 ORF/fo 71.44

and FSST2 in diagnosing the weak fault of rolling bearings
based on vibration signals.

5.2. Case 2: application to Ni–Cu–Ag PVD coating exfoliation
diagnosis of rolling bearing in aerospace engines

5.2.1. Introduction of the cryogenic test In accordance with
the working condition of a rolling bearings serviced aerospace
engine, a cryogenic experiment was carried out to test the per-
formance of the abovementioned bearings. The testbed (see
figure 11) consisted of a tested bearing, two service bearings,
a driving system, an axial loading equipment, a radical load-
ing equipment, coupling, and an LN2 supplying system. The
axial load was exerted on the shaft which connects with the
service bearing on the left of the tested bearings. The driving
system was mainly composed of a turbine and appurtenance.
The turbine was driven by high-pressure air. The LN2 supply-
ing system could provide LN2 at high pressure, mass flow and
cryogenic temperature. During the experiment, the temperat-
ure of LN2 in the inner cavity was steadied at 85–90 K initially.
Then, the system was driven by the air turbine. Besides, the
feature frequencies of the tested bearings are listed in table 3.
When the rolling speed reached the designed value, the loads
were exerted on the service bearing. In the test, three vibra-
tion accelerometers in the orthogonal direction were set on
the outer shell surface and a temperature sensor was installed
on the outer ring of the tested bearings. The experiment las-
ted about 120 s for each bearing. The sampling frequency was
25.6 KHz. The data was obtained by special cryogenic temper-
ature vibration sensors. Meanwhile, the signal was sampled by
NI-9234 C and GETAC S41O with the Inter Core i7-8550 U.
Each bearing sample was tested under the same conditions as
illustrated in table 4.

After the experiment, the tested bearings took a differ-
ent appearance on the surface by using microscopes of 500
times magnification. Some Ni–Cu–Ag PVD coatings on the
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Figure 10. Result of IRF signal for tested bearing: (a) signal in the time domain, (b) signal in the frequency domain, (c) STFT, (d) FSST, (e)
FSST2, (f) ET-FSST2.
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Figure 11. Rolling bearings running experiment in LN2.

Table 4. Conditions of the rolling bearings and experiment.

Items Value Items Value

Style Angular
contact

LN2 pres-
sure

3.0–5.0 MPa

Material 9Cr18 LN2 tem-
perature

85–90 K

Coating
material

Ni–Cu–Ag Rolling
speed/fr

14 000 ± 200
rpm

Coating
thickness

10 µm IRF/fi 7.03 f r

ORF/fi 5.31f r REF/f e 2.70f r

inner ring of other bearings exfoliated as shown in figure 12.
Moreover, there were some surface scratching-like defects on
the outer ring of some tested bearings. In order to validate the
effectiveness and generality of the proposed method for weak
impulse-like signal processing as well as fault diagnosis, the
above two kinds of defects were both analyzed by several TFA
methods, detailed in section 5.2.2 and section 5.3 respectively.

5.2.2. Time–frequency characteristic by the ET-FSST2
algorithm The vibration signal in the time domain and fre-
quency domain (by FFT) is illustrated in figure 13, on which
the health state of the tested bearings cannot be estimated
directly. This is because the mass flow of LN2 and its high
flow velocity lead to fierce vibration and plenty of noise. By
contrast, the vibration caused by Ni–Cu–Ag PVD coating
exfoliation of the tested bearing is relatively weak. The pro-
posed method is compared with FK, STFT, FSST, FSST2,
MDT and MSST for feature extraction. To clarify the essence
of the above algorithm, the results are discussed as follows.

FK is applied to calculate the kurtosis index, and the
impulse components are extracted and highlighted after the
raw signal is processed by the band filter of which the cen-
ter frequency and bandwidth are optimized. Figure 14 presents
FK and the squared envelope spectrum of the simulated signal.
It indicates the optimal filtering center spectrum is 333.33 Hz,
and the optimum bandwidth is 166.67 Hz. As shown in figure
14(b), the feature of f 0 is unclear. Hence, the component of the
impulse fault caused by Ni–Cu–Ag PVD coating exfoliation is
not effectively extracted by FK.

ET-FSST2 is compared with traiditional TFA algorithms
such as STFT, FSST, FSST2, MDT and MSST for extracting
weak fault IFs from the complex multi-component vibration
signal. Figure 15 shows the diagnosis results of ORF caused
by Ni–Cu–Ag PVD coating exfoliation of the tested bearings,
and α = 0.2, β = 20 (as an example), f 0 = 1238 Hz, and
kt = 1. This indicates that the noises are very complicated by
STFT, and the feature of f 0 cannot be detected directly (see
figure 15(a)). Although the noises are suppressed partially by
FSST, there are still plenty of high-amplitude IFs which sub-
merge the feature of f 0. By contrast, in spite of the character-
istics of f 0 shown by FSST2, MDT and MSST being clear to
some extent on the t–f plane as illustrated in figures 15(c)–
(e), there is still some noise, and the impulse characterist-
ics are not depicted obviously. After employing the proposed
method, the noise is effectively suppressed, and the features of
the fault IFs are shown clearly. In order to further explore the
difference between the FSST2 and its theoretical basismethod,
namely FSST, the segment spectrum in the frequency direction
is given (see figure 16). It can be regarded as an auxiliary ana-
lysis for the TFAmethods. Taking the fault point P (0.03625 s,
1238 Hz) for example, the amplitude is only 4.24, which is
overflowed under the noise by adopting FSST2. However, the
amplitude of f 0 is 86.99 which is still obvious by employing
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Figure 12. Rolling bearings after experiment: (a) normal inner ring, (b) exfoliation of the Ni–Cu–Ag coating on the inner ring.

Figure 13. Original vibration signal of the tested rolling bearing: (a) in the time domain, (b) in the frequency domain.

Figure 14. Results of the kurtogram for vibration signal of the tested bearings: (a) kurtogram, (b) squared envelope spectrum.

14



Meas. Sci. Technol. 31 (2020) 125105 Z Chen et al

Figure 15. Time–frequency image of Ni–Cu–Ag PVD coating exfoliation on the outer ring: (a) STFT, (b) FSST, (c) FSST2, (d) MDT, (e)
MSST, (f) ET-FSST2.

ET-FSST2, and most frequency components which are unre-
lated to f 0 are reduced effectively, as shown in figure 15(f).
Consequently, the feature of f 0 is more obvious than FSST2.

Energy concentration is employed to test the performance
of the signal processing result. Figure 17 gives the Renyi
entropies of the different methods when the coefficients α and
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Figure 16. Frequency spectrum of the FSST2 and ET-FSST2 when t = 0.03625 s: (a) FSST2, (b) ET-FSST2 (α = 0.2, β = 20).

Figure 17. Renyi entropies of different α and β: (a) α, (b) β.

β are given different values and a = 3. It indicates that the
ET-FSST2 algorithm has the smallest entropies in compar-
ison with the other methods in the time–frequency domain.
When α = 0.2 and β is given a series values between 1 and
50, the Renyi entropy is steadied in the range of 17.82–15.41.
In addition, when β = 20 and α is given a series of values
between 0 and 1, the Renyi entropy is steadied in the range of
15.21–16.46 while the Renyi entropies of the other methods
are more than 18.40, especially by STFT. Hence, the energy
concentration in the time–frequency domain by ET-FSST2 is
improved compared to the other methods.

5.3. Case 3: application to scratching-like defect diagnosis
of rolling bearings under cryogenic temperature in aerospace
engines

The process and conditions of the scratchings test for the
rolling bearings at cryogenic temperature is same as the exper-
iment described in section 5.2.1, and the rotating speed is set

to 15 000–15 500 rpm. After the test, there are some surface
scratching-like defects in the circumferential direction of the
outer ring for some tested bearings. It is clearly visible as
shown in figure 18.

To validate the performance of the proposed methods for
scratching detection, the vibration signals under crygenic tem-
perature of the rolling bearings are analyzed by FSST2, MDT,
MSST and ET-FSST2. The results are shown in figure 19.
Because of the fierce vibration, strong noises and mass flow of
the LN2 during the cryogenic experiment, the features of the
impulses caused by scratchings are to some extent blurry on
the t–f plane in spite of employing FSST2 and MSST (see fig-
ure 19). By contrast, the fault characters of f i are easily found
on the t–f plane by adopting ET-FSST2. Moreover, the wide-
frequency character and the attenuation feature are also found
clearly.

Table 5 lists the Renyi entropies of the different meth-
ods when a = 3, and the Renyi entropies of the three
compared methods are 13–15. As such, the value is smallest
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Figure 18. (a) Tested bearing, (b) scratching-like defect on the outer ring.

by employing the ET-FSST2, which represents the the lowest
information complexity and the highest energy concentration.

In summary, the ET-FSST2 algorithm has an advant-
age over the FSST like FSST2, MDT and MSST in
improving the energy concentration of time-varing signals.
More importantly, it can enhance the weak impulse-like com-
ponent from the vibration signals. Additionally, in this section,
the proposed method is further validated effctively in some
kinds of weak fault detection such as exfoliation of Ni–Cu–Ag
coatings and the scratching-like defects of the rolling bearings
serviced in aerospace engines under fierce vibration.

6. Conclusion

In this study, a TFA method named ET-FSST2 is proposed
for extracting the time-varying IFs with small amplitudes

from multi-component vibration signals. The ET-FSST2 is
presented first, followed by numerical simulation and bearing
fault tests to validate its effectiveness, energy concentration
and robustness. After this, cryogenic experiments are carried
out to test the effectiveness of ET-FSST2 for diagnosing the
performance of rolling bearings serviced in aerospace engines.
Based on the study, the main conclusions are listed as follows:

(a) In addition to retaining the advantage of FSST2 in energy
concentration of TFR, ET-FSST2 can extract the non-
stationary IFs by calculating the energy convexity func-
tion in the time direction after FSST2. More importantly,
it can extract the weak components of the non-stationary
IFs by structuring an optimization function consisting of
a hyperbolic tangent function and chi-square distribution
function.
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Figure 19. TFA result of scratchings of rolling bearings in a cryogenic test: (a) FSST2, (b) MDT, (c) MSST (d) ET-FSST2.
Table 5. Renyi entropies of TFA methods for scratching detection.

Algorithm FSST2 MDT MSST ET-FSST2

Renyi entropies 15.613 15.573 14.324 13.698

(b) The simulation and rolling bearing tests show that the pro-
posed method has good robustness under complex back-
ground noise. It has the smallest Renyi entropy in com-
parison with the traditional TFA algorithms, such as STFT,
FSST, FSST2,MDT andMSST, and also reduces the com-
plexity of the vibration signal.

(c) For the application of the ET-FSST2 algorithm, it can
diagnose weak faults such as exfoliation of coatings and
scratching-like defects of the rolling bearings working in
aerospace engines. Furthermore, it has the potential to be
generalized in the fields of mechanical signal processing,
health monitoring and fault diagnosis.
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[29] Thakur G, Brevdo E, Fučkar N S and Wu H T 2013 The
synchrosqueezing algorithm for time-varying spectral
analysis: robustness properties and new paleoclimate
applications Signal Process. 93 1079–94

[30] Yi C C, Lv Y, Xiao H, Huang T and You G H 2018
Multisensor signal denoising based on matching
synchrosqueezing wavelet transform for mechanical fault
condition assessment Meas. Sci. Technol. 29 244–58

[31] He D, Cao H R, Wang S B and Chen X F 2019
Time-reassigned synchrosqueezing transform: the algorithm
and its applications in mechanical signal processing Mech.
Syst. Signal Process. 117 255–79

[32] Fourer D, Auger F, Czarnecki K, Meignen S and Flandrin P
2017 Chirp rate and instantaneous frequency estimation:
application to recursive vertical synchrosqueezing IEEE
Signal Process Lett. 24 1724–8

[33] Jiang Q T and Suter B W 2017 Instantaneous
frequencyestimation based on synchrosqueezing wavelet
transform Signal Process. 138 167–81

[34] Yu G, Lin T R, Wang Z H and Li Y Y 2020 Time-reassigned
multisynchrosqueezing transform for bearing fault
diagnosis of rotating machinery IEEE Trans. Ind. Electron.
10.1109/TIE.2020.2970571

[35] Wang S B, Chen X F, Cai G G, Chen B Q, Li X and He Z J
2014 Matching demodulation transform and
synchrosqueezing in time–frequency analysis IEEE Trans.
Signal Process 62 69–84

[36] Yu K, Ma H, Han H Z, Zeng J, Li H F, Li X, Xu Z T and Wen
B C 2019 Second order multi-synchrosqueezing transform
for rub-impact detection of rotor systems Mech. Mach.
Theory 140 31–49

[37] Qu H Y, Li T T and Chen G D 2019 Synchro-squeezed
adaptive wavelet transform Mech. Syst. Signal Process. 114
366–77

[38] Behera R, Meignen S and Oberlin T 2018 Theoretical analysis
of the second synchrosqueezing transform Appl. Comput.
Harmon. Anal. 45 379–404

[39] Wang S B, Chen X F, Tong C W and Zhao Z B 2017 Matching
synchrosqueezing wavelet transform and application to
aeroengine vibration monitoring IEEE Trans. Instrum.
Meas. 66 360–72

[40] Chen P, Wang K S, Zuo M J and Wei D D 2019 An
ameliorated sychroeextracting transform based on upgraded
local instantaneous frequency approxmation Measurement
148 10693

[41] van Maanen H R E and Oldenziel A 1998 Estimation of
turbulence power spectra from randomly sampled data by
curve-fit to the autocorrelation function applied to
laser-Doppler anemometry Meas. Sci. Technol. 9 458–67

[42] Sun Z Q and Zhang H J 2007 Neural networks approach for
prediction of gas–liquid two-phase flow pattern based on
frequency domain analysis of vortex flowmeter signals
Meas. Sci. Technol. 19 015401

[43] Ding K Y, Xiao L F and Weng G R 2017 Impulsive noise
detection by second-order differential image and noise
removal using adaptive nearest neighbourhood filter Signal
Process. 134 224–33

[44] Baraniuk R, Flandrin P, Janssen A and Michel O 2001
Measuring time–frequency information content using the
Renyi entropy IEEE Trans. Inf. Theory 47 1391–409

[45] Kaiser J F 1974 Nonrecursive digital filter design using the
I0-sinh window function Proc. IEEE Int. Symp. Circuits
and Systems pp 20–3

[46] Oppenheim A V, Ronald W S and John R B 1999
Discrete-Time Signal Processing (Upper Saddle River, NJ:
Prentice Hall) pp 474

19

https://doi.org/10.1080/05698190490279047
https://doi.org/10.1080/05698190490279047
https://doi.org/10.1088/0957-0233/21/4/045201
https://doi.org/10.1088/0957-0233/21/4/045201
https://doi.org/10.1016/j.ymssp.2018.06.009
https://doi.org/10.1016/j.ymssp.2018.06.009
https://doi.org/10.1088/0957-0233/13/7/319
https://doi.org/10.1088/0957-0233/13/7/319
https://doi.org/10.1016/j.sigpro.2015.07.026
https://doi.org/10.1016/j.sigpro.2015.07.026
https://doi.org/10.1088/0957-0233/24/12/125002
https://doi.org/10.1088/0957-0233/24/12/125002
https://doi.org/10.1088/0957-0233/26/8/085008
https://doi.org/10.1088/0957-0233/26/8/085008
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1109/TSP.2017.2656838
https://doi.org/10.1109/TSP.2017.2656838
https://doi.org/10.1109/TIM.2019.2901514
https://doi.org/10.1109/TIM.2019.2901514
https://doi.org/10.1109/TIM.2019.2913058
https://doi.org/10.1109/TIM.2019.2913058
https://doi.org/10.1109/78.492555
https://doi.org/10.1109/78.492555
https://doi.org/10.1016/j.acha.2010.08.002
https://doi.org/10.1016/j.acha.2010.08.002
https://doi.org/10.1016/j.sigpro.2012.11.029
https://doi.org/10.1016/j.sigpro.2012.11.029
https://doi.org/10.1088/1361-6501/aaa50a
https://doi.org/10.1088/1361-6501/aaa50a
https://doi.org/10.1016/j.ymssp.2018.08.004
https://doi.org/10.1016/j.ymssp.2018.08.004
https://doi.org/10.1109/LSP.2017.2714578
https://doi.org/10.1109/LSP.2017.2714578
https://doi.org/10.1016/j.sigpro.2017.03.007
https://doi.org/10.1016/j.sigpro.2017.03.007
https://doi.org/10.1109/TIE.2020.2970571
https://doi.org/10.1109/TSP.2013.2276393
https://doi.org/10.1109/TSP.2013.2276393
https://doi.org/10.1016/j.mechmachtheory.2019.06.007
https://doi.org/10.1016/j.mechmachtheory.2019.06.007
https://doi.org/10.1016/j.ymssp.2018.05.020
https://doi.org/10.1016/j.ymssp.2018.05.020
https://doi.org/10.1016/j.acha.2016.11.001
https://doi.org/10.1016/j.acha.2016.11.001
https://doi.org/10.1109/TIM.2016.2613359
https://doi.org/10.1109/TIM.2016.2613359
https://doi.org/10.1016/j.measurement.2019.106953
https://doi.org/10.1016/j.measurement.2019.106953
https://doi.org/10.1088/0957-0233/9/3/021
https://doi.org/10.1088/0957-0233/9/3/021
https://doi.org/10.1088/0957-0233/19/1/015401
https://doi.org/10.1088/0957-0233/19/1/015401
https://doi.org/10.1016/j.sigpro.2016.12.021
https://doi.org/10.1016/j.sigpro.2016.12.021
https://doi.org/10.1109/18.923723
https://doi.org/10.1109/18.923723

	An energy time-convexity second-order synchrosqueezing transform and application in weak fault diagnosis of rolling bearings in an aerospace engine
	1. Introduction
	2. Theoretical basis
	2.1. STFT-based synchrosqueezing transform (FSST)
	2.2. Second-order STFT-based synchrosqueezing transform (FSST2)

	3. Energy time-convexity of second-order STFT-based synchrosqueezing transform
	3.1. Rationale of the proposed method
	3.2. Parameter optimization of the proposed method
	3.3. Time–frequency concentration and robustness

	4. Numerical experiments for the proposed method
	4.1. Simulation study for ET-FSST2
	4.2. Time–frequency characteristic by the ET-FSST2
	4.3. Energy concentration and robustness

	5. Application in fault diagnosis of rolling bearings serviced in aerospace engines
	5.1. Case 1: application to defect diagnosis on the ring race of rolling bearings
	5.2. Case 2: application to Ni–Cu–Ag PVD coating exfoliation diagnosis of rolling bearing in aerospace engines
	5.2.1. Introduction of the cryogenic test
	5.2.2. Time–frequency characteristic by the ET-FSST2 algorithm

	5.3. Case 3: application to scratching-like defect diagnosis of rolling bearings under cryogenic temperature in aerospace engines

	6. Conclusion
	Acknowledgments
	References


