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Abstract
The microwave cavity perturbation method is widely used for material parameter measurements
in connection with small homogeneous samples. Its applicability to larger and inhomogeneous
samples is uncertain, but highly desirable in connection with the in-situ condition monitoring of
chemical reactors. We have investigated the problem of the reconstruction of axially
inhomogeneous permittivity distributions in tubular reactors from measured cavity resonance
frequencies of the reactor. It is shown that the use of a priori knowledge about the function class
of the permittivity distribution, which in turn follows from assumptions about the chemical
process inside the reactor, allows one to reconstruct the permittivity distribution based on a few
resonances only. The resulting errors in the function parameters or in the permittivity values
identified are on the order of 5%, as demonstrated by analytical and numerical calculations, by
numerical experiments, and by laboratory experiments.

Keywords: microwave cavity resonator, chemical reactor, resonant frequency, material
parameter distribution, permittivity, in-situ monitoring, chemical process

1. Introduction

The in-situmonitoring of chemical reactors is of major interest
because a broad range of processes could be operated more
efficiently or more safely if the process state were known in
more detail. If, for example, the instantaneous oxygen stor-
age level of a three-way catalytic converter in an automotive
exhaust gas system were known, emissions could be reduced
by well-timed switches between lean or rich operation of the
engine [1]. For general chemical reactor processes, several
solutions to in-situ monitoring problems have been proposed.
Flow injection analysis (FIA) is commercially available and in
use in the chemical industry [2].With this method, samples are
injected in a continuous carrier solution and the product result-
ing from the reaction of sample and solution is run through an

Original content from this workmay be used under the terms
of the Creative Commons Attribution 3.0 licence. Any fur-
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analyzer. This procedure is repeated continuously. The time
span between two sample injections is chosen in the order of
ten seconds. FIA does not allow one to monitor a reactor as a
whole, as the samples are drawn from a specific fixed position.

Another common method is Raman spectroscopy. It can be
used either as the detector in an FIA system or on its own for
direct monitoring [3]. The main drawback is the same as for
FIA, viz. only localized analysis is possible.

Microwave imaging, in contrast, can cope with spatial dis-
tributions of materials in the reactor. The method responds to
spatial variations of the electric permittivity and the electric
conductivity inside the reactor. Many details of this approach
are still under research. The main issues are long data acquisi-
tion times, long computation times, and comparatively large
reconstruction errors [4]. This renders microwave imaging
unsuitable for in-line process monitoring purposes.

A new approach that has the potential to overcome the prob-
lems of the aforementioned existing methods is the use of res-
onant microwave cavities. A reactor (e.g. a tubular reactor) is
closed with metallic grids to form a cavity resonator. The grids
let fluids flow in and out of the reactor and simultaneously
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Figure 1. Schematic drawing of the setup for the proposed
measurement method.

form a conductive enclosure for microwaves (figure 1). The
resonance behavior of the cavity is influenced by the material
parameter (permittivity and conductivity) distribution inside.
Thus, from the measured cavity resonance behavior one can
obtain information about the electrical material parameter dis-
tribution (and hence the state of the reaction). In the remainder
of the article, ‘material parameters’ is taken to be short for
‘electrical material parameters’.

Material parameters have been measured for decades with
samples placed in cavities [5–8]. The scattering parameter
spectra of the microwave one- or two-ports formed by the cav-
ities, together with appropriate coupling structures, are meas-
ured with scalar or vector network analyzers (VNAs). Selected
features of these spectra, for example the resonance frequency
f 0 and the quality factorQ0 of a resonance peak or the average
return loss over a given frequency band, are extracted from the
spectra. The material parameters of interest are then inferred
from the features.

The simplest approach is to fill the cavity completely with
a homogeneous material (whole-medium perturbation, WMP)
[9]. This allows one to calculate the relative permittivity ε′r
and loss parameters (either ε′′r or σ) from measured resonance
parameters by rather simple equations [10].

Another approach is the small-sample perturbation (SSP)
method according to [9]. A small material sample (having a
volume of less than about 1% of the cavity volume) is inserted
in the cavity. From the difference between the resonance para-
meters of the unloaded cavity and those of the sample-loaded
cavity, the material parameters can be easily calculated (e.g.
ch. 6.2.1 in [9]).

Both the uniform large-sample and the small-sample
method are well suited for laboratory experiments, but less
so for the in-line monitoring of industrial processes. Such
industrial processes usually involve inhomogeneous material
parameter distributions, which cannot be controlled to sat-
isfy experimental conditions but are dictated by the process.
Recently, we have shown that large nonuniform material para-
meter distributions may be investigated by evaluating multiple
resonances in a cavity [9].

A discretized model of an axially inhomogeneous circu-
lar cylindrical cavity is shown in figure 2. The continuous

Figure 2. Model of a multi-segment cavity.

material parameter distribution is modeled by a piecewise con-
stant function, i.e. the cavity is treated as if it consisted of N
homogeneous segments in the direction of propagation. The
actual material parameter distribution is approximated the bet-
ter by this model, the more segments are used. In the direction
perpendicular to the direction of flow (viz. in the radial and
azimuthal direction), homogeneity can be assumed with little
error in many cases, especially in automotive exhaust treat-
ment systems [11, 12]. We have demonstrated for the case
of N = 5 that the permittivities of the five homogeneous seg-
ments can be determined on the basis of five measured reson-
ance frequencies [10].

However, this method has its limitations. The inversion
algorithm for the inference of the material parameters from the
resonance frequencies has convergence issues. It is necessary
to carefully choose the start values for the iterative algorithm.
A multi-start algorithm can help to find the global optimum
[13], but consumes more computing time, which is a decisive
drawback in real-time monitoring applications.

Another issue is the sensitivity of the measurement system.
On the one hand, this is good for the accuracy of the mater-
ial parameter measurement, as small changes have a large
impact on the resonance frequencies. On the other hand, even
small errors in the measured resonance parameters due to, for
example, errors of the VNA or a coupling-related cavity detun-
ing have a large impact on the inversion result. This sensitiv-
ity to influence quantities is worse for segmented cavities. (It
is true in general that the estimation of many parameters is
more critical than the estimation of a single parameter. Most
ill-posed problems are multi-parameter problems.)

According to [10], three to five segments do not lead to
problems. If the errors in the measured resonance parameters
are small enough, a fewmore segments are possible. Even such
a coarse discretization suffices to provide valuable information
about the instantaneous state of a process which enables one
to improve the process efficiency [14].

2. Material parameter distributions in tubular
reactors, particle filters, and catalytic converters

The material parameter distribution in chemical reactors (with
or without catalyst) or particle filters is a function of the spatial
coordinates. We will focus on processes occuring in tubular
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metal enclosures. The cross-section of the tube can be arbit-
rary, but usually is circular. For this reason, we limit ourselves
to circular cross-sections in the following.

As a consequence of the operation of the reactor, the mater-
ial parameters in the cavity vary in the axial direction and can
be considered constant in the transverse direction. This vari-
ation of material parameters is a consequence of a varying con-
centration of chemical species.

The conversion of a species is described by its reaction
order. It describes the influence of the concentration of a spe-
cies on the reaction rate. For a zeroth-order reaction, the cur-
rent concentration does not influence the reaction rate at all.
The conversion equation for a first-order reaction with a reac-
tion rate constant of k in a tubular reactor is

X(z) = 1− e−Da(z) = 1− e−(k/v ) ·z (1)

where X is the conversion of the reactant of interest (negative
relative deviation of the local concentration from the starting
concentration), Da(z) is the dimensionless Damkoehler num-
ber for the reaction at position z, and v is the velocity of flow
through the reactor [15].

Assuming losslessness, the resulting permittivity at the
reactor input (z= 0) is the effective permittivity of the starting
fluid mixture. For ideal mixing, we find [16]

εr0 = εr(z= 0) =

∑
i
εr,i · ni∑
i
ni

. (2)

Here, εr, i and ni respectively are the relative permittivity
and the mole fraction of the i-th species. There have been pub-
lished many papers on the issue of fluid mixing, which par-
tially disagree with each other as to what mixing rule is the
most appropriate. Reference [17] uses the volumetric fraction
instead of the mole fraction. Other, more complex equations
were also presented [16, 18]. The following will be based on
equation (2).

The relative permittivity of the product after sufficiently
long interaction between the various species in the reactor is

εr∞ = lim
z→∞

εr(z). (3)

By equations (1) through (3), the permittivity distribution
along the reactor axis is

εr(z) =
εr0ṅin(1−X)+ εr∞ṅinX

ṅin
(4)

where ṅin denotes the amount of substance entering the reactor
per unit time (in mol s−1). Inserting (1) into (4) leads to the
permittivity distribution resulting from a first-order reaction
inside a reactor:

εr(z) = εr∞ − (εr∞ − εr0)e
−(k/v ) ·z. (5)

Table 1. Permittivity distribution functions for different processes.

Model
No. Description Permittivity distribution εr(z)

1 Zeroth-order reac-
tion

εr∞ +(εr0 − εr∞) · (1− (k/v) · z)
for 0⩽ (k/v) · z⩽ 1,

εr∞ for 1⩽ (k/v) · z

2 First-order reaction εr∞ +(εr0 − εr∞)e−(k/v) ·z

3 Second-order reac-
tion εr∞ + εr0−εr∞

1+(k/v) ·z

4 Sigmoidal func-
tion (propagating
reaction front)

εr∞ + εr0−εr∞
1+ e(z−a)/d

This model equation only involves the three parameters εr0,
εr∞, and k/v. For use in an industrial process, one could meas-
ure εr0 and εr∞ a priori in the laboratory. This would reduce
the problem to only one parameter (k/v). If the velocity of flow
v is measured additionally, the reaction rate constant k can
be determined. This is one key information about a process.
Being able to measure this parameter in-line and in real-time,
one can control the process better and make it more efficent.

The principle can be applied to other processes if one uses
an appropriate permittivity distribution function. Some basic
exemplary functions are listed in table 1.

3. Measurement method for nonuniformly loaded
cavities using model functions

The discretization method described in section 1, by which a
continuous material parameter distribution is approximated by
a piecewise constant (staircase) function, is no longer applic-
able when the number N of pieces becomes large. By way of
an example, N = 100 would require the measurement of 100
resonance frequencies to determine the (approximated) mater-
ial parameter distribution. The associated measurement effort,
the accumulation of measurement errors when many meas-
ured quantities enter into a measurement result, and the sens-
itivity of the iterative inversion algorithm to these numerical
errors all argue against this approach. It is equivalent to finding
the global minimum of a function of 100 unknowns based on
100 inaccurate data points. Without measurement errors and
with a (vector-valued) start value sufficiently near the solution,
the iterative inversion algorithm converges toward the correct
solution. Otherwise, and this is the typical process monitor-
ing situation, it finds one of many local minima in the multi-
dimensional space of unknowns but may miss the global min-
imum. In other words, if one aims at the detailed (rather than
merely approximate) reconstruction of the spatial variance of
material parameters, one needs a different method. Such a
method, based on model functions, will be proposed in the fol-
lowing.
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Figure 3. Analytically calculated resonance frequency of the TE123

mode in a cavity with a permittivity distribution given by the
first-order reaction model (5)—model 2 in table 1—as a function of
the discretization parameter N. For more details on dimensions and
the permittivity distribution see section 3.3.

3.1. Discretization with model functions

Except for special situations, no closed-form solution of the
wave equation for an inhomogeneously loaded cavity is avail-
able [19]. The authors of [20] succeeded in deriving a closed-
form solution for the E-field of plane waves in unbounded
media with a given permittivity distribution, but the effort is
considerable. In general, one must tackle the problem numer-
ically, which raises the issue of discretization errors.

For the forward problem, we approximate a continuous per-
mittivity distribution from a given function class (e.g. from
table (1) by a staircase function as described in section 1. The
mode functions in each segment with homogeneous permit-
tivity distribution are known up to multiplicative scale factors.
By enforcing the boundary conditions at the segment inter-
faces (mode matching), one derives a transcendental eigen-
value equation the infinitely many solutions of which give the
resonance frequencies of the cavity modes [10]. The eigen-
value equation involves a matrix determinant which is calcu-
lated logarithmically for numerical reasons [21].

figure 3 shows the influence of the discretization (number
of segments N of the approximating staircase function) on
an exemplary resonance frequency (TE123 mode in a cavity
with a permittivity distribution given by the first-order reac-
tion model 2 in table 1; for an explanation of mode indices see.
[22]). It is obvious that there is a major difference between
the resonance frequency computed with a coarse approxim-
ation (N = 1,…,50) and the actual frequency (N = ∞). To
accurately describe a real cavity, a rather large amount of seg-
ments is needed in the forward problem. This is easily done.
However, as stated in the introduction to section 3, it is quite
impossible to numerically solve the inverse problem of estim-
ating the N permittivities of the N homogeneous segments
from N measured resonance frequencies.

3.2. Optimization problem

The optimization or inverse problem consists in reconstruct-
ing the material parameter distribution in a cavity from known
(measured) resonance frequencies. Instead of approximat-
ing the distribution with a staircase function involving N ∼
10,…,100 unknowns, we exploit a-priori knowledge of the
process. If we know, for instance, that the chemical reaction
occuring in the cavity is of first order, the material parameter
distribution can be expected to belong to the function class
equation (5) (model 2 in table 1). This leaves us with the task
of estimating just three parameters: εr0, εr∞, and k/v. In other
words, incorporating knowledge about the observed process
leads to a model order reduction from N to 3.

When equation (5) holds, the measured resonance fre-
quency of mode i can be written as

fmeas,i = fmeas,i(εr0, εr∞,k/v). (6)

The analytically calculated resonance frequency is based
on an approximating staircase function with N steps:

fcalc,i = fcalc,i(εr1, εr2, . . . , εrj, . . . , εrN) (7)

where the term εrj denotes the effective permittivity of the jth
segment:

εrj =
N
L

zjˆ

zj−1

εr(z; ε̂r0, ε̂r∞, k̂/v̂) dz. (8)

The circumflex superscripts indicate estimated parameter
values as they are not exactly known in a measurement. The
optimization problem consists in finding the values of the para-
meters ε̂r0, ε̂r∞, and k̂/v̂ which minimize the mean square
error:

P(ε̂r0, ε̂r∞, k̂
/
v̂) =

∑
i

(fcalc,i− fmeas,i)
2
=min . (9)

This optimization problem can be solved by different
methods. We chose a Levenberg–Marquardt algorithm. The
required derivatives are calculated numerically. The number of
measured resonance frequencies must at least equal the num-
ber of model function parameters (three), but can be greater,
which then yields an overdetermined system of equations.

During the optimization, it is necessary to evaluate f calc,i
multiple times. To keep the error between the continuous
material parameter distribution and the discretized one small, a
discretization with N ∼ 100 or more is necessary. This consid-
erably slows the optimization process down. Fortunately, there
appears to exist a simple functional relationship between a true
resonance frequency and the discretization parameterN for the
cases considered. Curves such as the one shown in figure 3 are
well described by

f(N; a, b, c) = aNb+ c (10)
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Figure 4. Algorithm to find the one permittivity distribution from
the class of functions following from a first-order reaction which
best explains measured resonance frequencies. The adaptation of the
algorithm to other function classes is obvious.

where a, b, and c are to be determined by fitting. The parameter
c correspondes to the true resonance frequency lim

N→∞
fcalc.

Hence, by calculating a few resonance frequencies with
moderately discretized cavity models (N = 50,…,75) and fit-
ting the results by (10), the true resonance frequency for the
continuous parameter distribution is estimated fast.

Figure 4 shows the optimization algorithm used to quickly
identify the one permittivity distribution inside a cavity which
yields the best agreement between calculated and measured
resonance frequencies among all distribution functions from a
given class.

3.3. Analytical test of optimization algorithm

To validate the feasibility of our method, let us consider a tubu-
lar reactor of length L = 200 mm and radius a = 62.5 mm, in
which the starting substances A and B are mixed and react to
product C. Let the mixture of A and B have the effective relat-
ive permittivity εr0 = 1.2 and C have the relative permittivity
εr∞ = 2.5. Losses are neglected. The reaction is described as
being of first order. The quotient of reaction rate and velocity
of flow is assumed to be k/v = 0.0231 mm–1. The conversion
at the end of the reactor is to reach about 99%.

For the case discussed, the relative permittivity along the
reactor axis is given by model 2 in table 1. Therefore, if we
model the reactor as a cavity consisting of N homogeneous

Table 2. Some TE11x mode resonance frequencies, calculated by
different parameters/methods; cf. section 3.3 for geometry. The
chosen modes are the lowest-order TE11x modes that are not
evanescent in any segment of the discretized models.

Computation
method Mode resonance frequency/GHz

TE112 TE113 TE114 TE115

Segmented
model,
N = 1000

1.368154 1.774906 2.221292 2.688092

∼, N = 200 1.368124 1.774910 2.221298 2.688099
Fit, equation
(10)

1.368120 1.774901 2.221308 2.688077

segments, the effective permittivity of the material in the jth
segment is given by equation (8) with equation (5).

Forward calculation yields the resonance frequencies listed
in table 2 for N = 1000 and N = 200. The last row lists the
result c of fitting the resonance frequencies computed with N
= 50, 60, 70, 80, and 90 by equation (10). The frequency cal-
culation by fitting is twice as fast as the computation of the
resonance frequency with N = 200.

Let us assume that the resonance frequencies calculated
withN= 1000 (five segments permm) are accurate. It then fol-
lows that the associated material parameter distribution must
be reconstructed by the inversion algorithm if the algorithm
is passed the resonance frequencies. This is indeed the case.
figure 5 shows the results when the inversion is based on a
discretized cavity model with only N = 100 segments (2 mm
length each) and (bad!) start values of k/v = 0.1 mm−1, εr0 =
0.5, and εr∞ = 1.6. The optimization algorithm, implemented
in Matlab, finished in 120 s on a standard desktop PC (Xeon
E31220 @ 3.1 GHz). It is expected that a compiled optimized
C-code executable would converge much faster.

4. Experimental validation

4.1. Numerical experiments

The inversion algorithm was validated with synthetic meas-
urement data. The input data to the algorithm were created by
assuming one of the permittivity distributions 1–3 from table 1
inside a tubular reactor of given geometry and calculating
the resonance frequencies either analytically (section 1, N =
1000) or numerically by the commercial FEA software HFSS
(about 275000 elements). Four calculated resonance frequen-
cies (synthetic measurement results) were passed to the inver-
sion algorithm to check how well it reconstructs the underly-
ing permittivity distribution. (The procedure is described by
figure 4 with the first step replaced by a calculation of the res-
onance frequencies of the filled cavity.)

All permittivity distributions used the same parameters:
a mixture of starting materials (εr0 = 70) is converted to a
product (εr∞ = 80). The rate-determining term was set to
k/v = 0.1 m−1.
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Figure 5. Results of analytical test (first-order reaction; see text).
The black solid line is the true permittivity distribution εr(z), the
grey solid line is the estimated permittivity distribution εr(0)(z) based
on the bad start values passed to the reconstruction algorithm, and
the dotted line is the estimated permittivity distribution εr

(100)(z)
based on the output values of the reconstruction algorithm after the
100th iteration.

Figure 6. Permittivity distribution reconstructed using model 1
from table 1 (zeroth-order reaction). Black and grey solid lines as in
figure 5.

In all cases, the convergence criterion from figure 4 was set
to P < 1. If the algorithm had not converged after 100 itera-
tions, it was aborted.

4.1.1. Zeroth-order reaction. The result of the first numer-
ical experiment, with model 1 from table 1, is visualized in
figure 6. It is obvious that the reconstructed permittivity dis-
tribution is but a rough approximation of the true distribution,
no matter if the analytically or the numerically calculated res-
onance frequencies are passed to the reconstruction algorithm.
The reason is that the resonance frequencies are quite insensit-
ive to the smaller permittivities in the region z < 100 mm. Any

Figure 7. Permittivity distribution reconstructed using model 2 from
table 1 (first-order reaction). Line types as in figure 6.

Figure 8. Permittivity distribution reconstructed using model 3
from table 1 (second-order reaction). Line types as in figure 6.

distribution with εr(z)= 80 for 100 mm < z < 200 mm leads to
similar resonance frequencies. Therefore, the reconstruction
algorithm converges to one of many almost equivalent local
minima. To find the global optimum, a multi-start algorithm
may be useful [13], but the overall conclusion is that a zeroth-
order reaction is not easily monitored by the present method.

4.1.2. First-order reaction. The result of the second numer-
ical experiment, with model 2 from table 1, is visualized in
figure 7. In contrast to the zeroth-order reaction, the permittiv-
ity distribution caused by a first-order reaction is reconstructed
exceedingly well.

4.1.3. Second-order reaction. The result of the third numer-
ical experiment, with model 3 from table 1, is visualized in fig-
ure 8. The permittivity distribution caused by a second order
reaction is reconstructed quite well, far better than model dis-
tribution 1 from table 1, but worse than model distribution 2

6
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Table 3. Results of the permittivity distribution reconstruction based on four resonance frequencies of the loaded cavity calculated either
analytically or numerically by HFSS. The target (true) values of the distribution parameters were k/v = 0.1 m−1, εr0 = 70, and εr∞ = 80. E
denotes the relative error of the reconstructed parameter value with respect to the target value.

k/v 1000 m εr0 εr∞

Origin of res. freq. Value E/% Value E/% Value E/%

True εr(z) as by model no. 1 from table 1
Analytical 17.6 76.0 56.1 −19.9 80.8 1.0
HFSS 20.5 105.0 55.3 −21.0 80.2 0.3
True εr(z) as by model no. 2 from table 1
Analytical 10.0 0.0 70.0 0.0 80.0 0.0
HFSS 9.3 −7.0 70.1 0.1 80.3 0.4
True εr(z) as by model no. 3 from table 1
Analytical 22.0 120.0 71.1 1.6 76.6 −4.3
HFSS 5.3 −47.0 69.8 −0.3 84.6 5.8

Figure 9. Permittivity distribution reconstructed using model 4
from table 1. Line types as in figure 6.

from table 1. As the reconstruction result based on analytic-
ally calculated resonance frequencies differs from the result
based on numerically calculated resonance frequencies, the
algorithm probably converged to different local optima in the
two cases. Model function 2 may be suspected to be sensitive
to input parameter errors.

Some quantitative results of the numerical experiments
from sections 4.1.1 through 4.1.3—the identified parameter
values εr0, εr∞, and k/v—are listed in table 3 for comparison’s
sake.

One notes that all models had problems with the identific-
ation of the parameter k/v. The other two parameters presen-
ted fewer problems, and especially εr∞ was reproduced by all
models with small error.

Model 1 produced high errors, except for the variable εr∞.
Model 2 resulted in relative errors below 1% in most cases,
one exception being the result based on numerically calculated
resonance frequencies. It is obvious that the proposed meas-
urement method works extremely well for this model func-
tion. The quantitative results of model 3 confirm the previously
made statement: model 3 works better than model 1, but worse
than model 2.

Figure 10. Schematic drawing of the sand-filled cavity used for
experiments.

4.1.4. Sigmoidal function as reaction-front model. Yet
another numerical experiment was conducted with the distri-
bution function model no. 4 in table 1. It is treated separately
as it has an additional parameter and is not based on a reac-
tion order. Such a sigmoidal function approximates situations
occurring with reaction fronts running through a catalyst. Con-
sider, for example, the hypothetical monitoring of oxygen stor-
age in a cerium oxide catalyst. The respective permittivities
of the oxygen-less Ce2O3 and the oxygen-loaded CeO2 were
chosen as εr0 = 2.0 and εr∞ = 1.4 based on [14, 23]. With the
position a= 175 mm of the oxygen storage front and the slope
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Table 4. Results of the permittivity distribution reconstruction based on five resonance frequencies of the loaded cavity calculated either
analytically or numerically by HFSS. The target (true) permittivity distribution was that of model no. 4 in table 1 with parameter values εr0
= 2.0, εr∞ = 1.4, a = 175 mm, and d = 10 mm. E denotes the relative error of the reconstructed parameter value with respect to the target
value.

a mm−1 εr0 εr∞ d mm−1

Origin of res. freq. Val. E/% Val. E/% Val. E/% Val. E/%

Analytical 175 0 1.4 0 2.0 0 9.9 1
HFSS 174 −0.6 1.4 0 2.0 0 10.3 3

Figure 11. Permittivity distributions inside a sand-filled cavity
reconstructed from measured cavity resonance frequencies.

parameter d = 10 mm, all parameters of the model function 4
are defined.

The result of this numerical experiment with model 4,
based on five resonance frequencies, is visualized in figure 9.
The permittivity distribution is reconstruted exceedingly
well (cf. table 4).

4.2. Experiments with sand-filled cavity

A cylindrical cavity with length L = 380 mm and radius a
= 62.5 mm was partially filled with sand (cf. figure 10). The
target relative fill levels were 25%, 50%, 75%, and 100%,
checked with a ruler. The boundary between the sand-filled
region and the air-filled region was flat up to small bumps in
the sand from the pouring-in process. The sand was dry and
not compressed. The cavity was coupled with a small stub (LC

= 5 mm, aC = 0.5 mm) at z = L/4, pointing in the radial dir-
ection.

The differences between the calculated and the measured
resonance frequencies amounted to a few MHz, which was
much larger than in the previous numerical experiments. As
a consequence, the residuum of equation (9) was larger, too.

The start values for the parameter estimation were chosen
close to the expected final values. In a real-time process mon-
itoring scenario, the known result of a preceding measurement

Table 5. Permittivities of sand and air experimentally determined
with the sand-filled cavity experiment.

Reconstructed parameters

Relative sand-fill level/% εr, sand εr, air

25 2.45 1.01
50 2.56 0.95
75 2.55 0.95
100 2.52 —
Ref. [23] 2.55 1.00

would provide these start values. The reconstructed permittiv-
ity distributions inside the cavity are shown in figure 11 for
all investigated fill levels. The corresponding identified per-
mittivities of sand and air are listed in table 5. The unphysical
values for the relative permittivity of air (less than unity) have
not been corrected to provide an indication of the magnitude
of the measurement error.

4.3. Error analysis

It is of paramount importance to pass the unloaded reson-
ance frequencies to the inversion algorithm. When loaded
resonance frequencies are measured and compared with cal-
culated unloaded frequencies, a perfect agreement between
measurement and simulation can only be achieved by assum-
ing ‘wrong’ material parameters in the simulation.

The error in the identified material parameters depends on
many factors, e.g. the model function, its discretization, the
number and types of observed resonance modes, the cavity
geometry, etc. In an effort to shed more light on this issue,
we repeated the analytical test from section 3.3 in a modified
form. The synthetic measured resonance frequencies passed
to the reconstruction algorithm for validation purposes were
calculated with a discretization of N = 100 segments. The
same discretization was used by the algorithm. Hence, in the
absence of errors, the algorithm reproduces the exact mater-
ial parameter distribution because it can reproduce the ‘meas-
ured’ resonance frequencies.

To emulate measurement errors, the resonance frequen-
cies passed to the reconstruction algorithm were disturbed by
additive white Gaussian noise (AWGN). For a given stand-
ard deviation σf of the noise, the reconstruction process was
repeated 100 times. Figure 12(a) shows the standard devi-
ations of the three distribution parameters εr0, εr∞, and k/v of
the first-order reaction model estimated by the reconstruction

8



Meas. Sci. Technol. 31 (2020) 094019 R Peter and G Fischerauer

Figure 12. Influence of measurement noise in the resonance
frequencies passed to the reconstruction algorithm, for the example
of a first-order reaction (model no. 2 in table 1). (a) Standard
deviation of the reconstructed model parameters εr0, εr∞, and k/v,
normalized to their respective mean values, as functions of the
standard deviation σf of the AWGN corrupting the resonance
frequencies. (b) Mean value and uncertainty interval at the 95-%
level for the reconstructed parameter k/v.

algorithm as functions of the noise parameter σf. figure 12b
shows the complete measurement result for the parameter k/v
by theGuide to the Expression of Uncertainty in Measurement
(GUM) [24].

From these results, it is obvious that noise in the order of a
few 100 kHz in themeasured resonance frequencies (which are
in theGHz range) has a negligible influence on the output para-
meter. Larger errors up to a standard deviation of 1 MHz lead
to appreciable uncertainties in the identified material paramet-
ers, but may still be tolerable. A coarse condition monitoring
is much better than no information.

5. Conclusion

We have investigated the problem of the reconstruction of axi-
ally inhomogeneous permittivity distributions in tubular react-
ors frommeasured cavity resonance frequencies of the reactor.
The results are sufficiently promising to make us believe that
the cavity perturbation method is suited in principle for the
in-situ monitoring of chemical reactions or similar processes.
The analytical, numerical, and experimental findings all indic-
ate that the resulting error in an identified permittivity is in the
order of 5%.

A frequency measurement noise below 10−4 (100 kHz for
a 1 GHz resonance) was shown to have a negligible effect. In
contrast, systematic errors due to the detuning of the cavity
by the coupling are detrimental; the reconstruction algorithm
must be passed unloaded resonance frequencies, not loaded
ones.

In real-time monitoring situations, one can only measure
a few resonance frequencies for reasons of time and effort. It
will then be impossible to uniquely reconstruct an arbitrary
material parameter distribution inside the cavity. As we have
shown, the inclusion of a-priori knowledge about the process
occurring inside the cavity enables one to both speed up the
reconstruction and to tackle the ambiguity of the inverse prob-
lem. The assumption of a parametrized model function for the
permittivity distribution in the cavity led to well-behaved and
quickly solvable inversion problems requiring but a few res-
onance frequencies. However, as it turned out, some model
functions are more sensitive to the material parameter distri-
bution than others. The reconstruction of the distribution based
on less sensitive model functions obviously does not work
well.

As to the start values for the iterative reconstruction
algorithm, the best choices in a continuous monitoring situ-
ation are the results of the previous measurement (parameter
identification). This improves the convergence behavior very
much.
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