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Abstract

CrossMark

In the analysis of Lagrangian particle tracking data, ensemble averaging with spatial bins is used
to generate Eulerian flow statistics. Due to the scattered nature of the particles over independent
snapshots, the possible spatial resolution is directly dependent on the measured particle position
accuracy and the amount of available data. This requires a balance between convergence of the
underlying statistic and the bin resolution. Current binning approaches use the velocity
information of the particle positions at single time steps directly and do not exploit the
additional information available from the temporal filtering of the tracking process. We present
a novel functional approach to the binning procedure that extracts all available information from
the particle tracks and improves convergence speed. For a given experiment this allows for
higher resolution of flow statistics than classical approaches or alternatively to reduce the
necessary amount of data required for a given resolution. Furthermore, uncertainty measures
from the particles position, velocity and acceleration can be propagated directly by weighting

coefficients.

Keywords: spatial binning, ensemble averaging, turbulence statistics, Lagrangian particle

tracking, Shake-the-Box

(Some figures may appear in colour only in the online journal)

1. Introduction

Ensemble averaging of flow fields measured for a time series
of snapshots is a key component in the calculation of flow stat-
istics. Measurement methods based on seeding the flow with
small tracer particles allow to relate their movement to the flow
for Stokes numbers St < 1. While particle image velocimetry
(PIV) can be used to determine the flow fields for snapshots,
it is limited by the use of correlation windows which inher-
ently introduces a low pass filtering effect on resolvable flow
structures and velocity fluctuations respective gradients. For
building statistics the spatial resolution can be improved upon
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by involving an ensemble averaging approach directly in the
image correlation process [5] allowing for single pixel res-
olution statistics of the mean flow [8] and Reynolds stresses
[17]. However this approach is limited to those statistics that
can be extracted from the ensemble image correlation and no
method to evaluate multi point statistics has been presented
yet. One common aspect of the correlation based approaches
is that their extension to three-dimensional measurements is
challenging. The reconstruction of intensity fields in 3D for
correlation is very time consuming and limits resolution.

An alternative for use in ensemble averaging can be found
using Lagrangian particle tracking approaches. Here the indi-
vidual particles in the flow are tracked, which can provide
point measurements of individual fluid elements. Due to
the individual tracking such approaches are more readily
extended into three dimensions [11]. Particle tracking veloci-
metry (PTV) can be used to recover turbulent flow statistics

© 2020 The Author(s). Published by IOP Publishing Ltd  Printed in the UK
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by spatial binning and subsequent ensemble averaging [7].
Lagrangian approaches are very well suited for ensemble aver-
aging as particle positions are distributed in a stochastic man-
ner between individual snapshots. Instead of the binning resol-
ution being predefined by correlation-windows in an Eulerian
grid like for PIV, the maximum resolution for an ensemble
average from scattered particles is theoretically limited only
by the amount of snapshots available and the particle position
measurement error. In practical applications the achievable
resolution is limited. The classical PTV measurement tech-
niques require low particle seeding densities to allow for cor-
rect identification of particle tracks which poses a challenge
when a large amount of particles is required.

Novel approaches to Lagragian particle tracking improve
these conditions drastically. The Shake-the-Box (STB)
method [16] allows for the accurate measurement of the pos-
ition, velocity and acceleration of particles at high seeding
densities with low position error by using optical transfer
functions [15], iterative particle reconstruction [20] and the
available temporal information. The greatly increased amount
of particles per snapshot allows users to quickly acquire large
amounts of particle tracking data while the increased posi-
tioning accuracy increases the upper bound for possible bin
resolutions. As Lagrangian methods allow to exploit possible
symmetry or homogeneity conditions for some investigated
flows to increase the effective particle density the STB method
makes sub-pixel sized bins for ensemble averaging viable [18].

For slow flow velocities, high speed cameras allow to build
long time-resolved tracks of particles through the entire meas-
urement volume. For faster flows approaches using double-
frame cameras are used, capturing short independent bursted
image sequences at low repetition rates. Measurements can
be performed either using two pulses [4, 6], or with a multi-
pulse approach [13, 14]. With multi-pulse STB each snapshot
consists of a sequence of four images allowing short tracks
to be fitted to the recovered particle sequences. The greater
amount of data available in each snapshot leads to better track-
ing and decreases errors when compared to two-pulse based
particle tracking. Within this paper we are using a multi-pulse
STB approach with four pulses but the introduced method can
also be applied to methods using two pulses. For both multi-
pulse and time-resolved variants, a particle distribution with
the associated velocities and accelerations is available for each
snapshot in time and both variants are processed similarly for
bin averaging.

Improvements in bin averaging methods so far have primar-
ily focused on improving the binning procedures for these
single data points. For a given position of a particle and a
known regular binning grid, a particle can easily be assigned
the bin whose statistic it contributes to via an integer truncated
division:

Binjpgex = div(x — x9, Ax). €))

The velocity information of that particle is then added to
the desired statistic within the bin. Commonly used are single
pass, constant memory algorithms [19] for the calculation of
flow statistics such as the Reynolds stress tensor. Particles are
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Figure 1. Sketch of the classical binning technique utilizing an
evaluation at the particle positions.

either directly assigned to a certain bin simply by the partition
given in 1 or further processed by additional weighting based
on the particle position. To minimize the impact of the spatial
averaging imposed by the size of the bin extent, particles can
be weighted by their distance to their respective midpoint. An
early example of such an approach is shown by [1] who use a
Gaussian weight on particles manually digitized from photo-
graphic film. A different approach is taken by [2] who intro-
duce a method based on a polynomial fit of particle positions
collected within each bin. All particles of a bin are gathered
and their mean velocity is expressed as a polynomial with
respect to their position relative to the bin center. The fitted
polynomial is then evaluated at the bin center to give the mean
velocity value for that bin.

All these approaches have in common that they consider
flow information at individual particle positions. In the fol-
lowing we want to motivate a different approach. This paper
focuses on the multi-pulse STB method but the described
approaches are suitable for the bin averaging of any kind of
tracking data.

For high resolution statistics utilizing a large number of
snapshots the bin size can be set very low. In these cases the
bin size can get small compared to the track length even for
the comparatively short multi-pulse STB tracks.

For the current applied methods we want to distinguish two
different approaches with respect to the use of the avaliable
particles. The classic approach uses all of the fitted particles
of the multi pulse track as shown in figure 1 with the track in
blue and the fitted particles in red. Such an approach is close
to the approach used for binning classic PTV evaluations such
as presented by [12]. The multi-pulse data considered here is
only evaluated on a short segment and with unequal particle
spacing. A different way, which is currently in use for MP-
STB, considers only the midpoint of a fitted track to provide a
single virtual particle with low error at the cost of less particles
that are available for binning. This is shown in figure 2. The
first approach will be referred to as ‘Classic’ and the second
as ‘Midpoint’ within this paper.

As can be seen in the figures even though the track passes
through all of the shown bins, the fitted particles only contrib-
ute to some of them. When using the midpoint approach this is
especially apparent as its midpoint actually lies in the neigh-
boring bin so it will only contribute to the statistic there.
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Figure 2. Sketch of the midpoint binning technique utilizing an
evaluation at the midpoint of the fitted track.

tmid

Figure 3. Sketch of a binning technique utilizing the functional
approach. The entire track is evaluated and bins are represented by a
spatial weight function shown here by the dashed contour lines.

Using just the midpoint ignores the additional data which is
available due to the tracking and functional filtering scheme.
It is not just individual particles that are available, but a track
in form of a parametric function over time, e.g. 2nd/3rd order
B-spline or polynomial fits along pulses.

One way this could be improved upon would be to sample
additional points along the track, for example at the points
closest to each bin center. While the closest point approach
does utilize the track function to provide better data points
for long tracks, it still does not extract all possible inform-
ation. Still only a few points along a track are considered,
even if more are available now and with better positions. The
approach ignores the continuous nature of the available track.
This motivates a functional approach where the entire continu-
ous parametric track is considered. Figure 3 shows a graphical
representation of such an approach which will be detailed in
the following section.

2. Method

In the following the method is introduced as used for a multi-
pulse STB setup in order to present a concrete implementation.
These steps can be transferred analogously to time-resolved
STB or different tracking approaches. Each track of a multi-
pulse STB evaluation is represented by, for example, a quad-
ratic polynomial for each dimension, giving the parametric
functions:

pi(t) = aut® + Bit + i, )

vi(t) = pi(t) = 20t + B;, (3)

Cli(l) = 1./,'(1‘) = 2(1,‘, (4)

for the position p;(¢), the velocity v;(f) and acceleration a;(¢)
for the component i € (x, y, z) over time ¢. Instead of evaluat-
ing these functions at the midpoint #,,;q as done for the mid-
point bin averaging approach they are used in their entirety. A
given bin is represented by a spatial weighting function. In the
following the weight function:

win(x) = exp(— (e ) TS (x— ) e

withc = (27)"/2 det(X)"/?, (5)
the probability density function of a multivariate Gaussian dis-
tribution of dimension k centered at the bin center u with its
shape determined by the co-variance matrix 3 is used. The
use of a Gaussian allows for an intuitive parametrization based
on the co-variance matrix but any other appropriate weight-
ing function can be used. The current implementation uses the
same diagonal X for all bins with the standard deviations o,
oy and o set proportional to the bin extent for each coordin-
ate direction. This is not a restriction imposed by the method
as fully individual ¥ for each bin are possible. This would
for example enable adaptively shaping bins according to mean
flow field gradients. It is also not required that the bin centers
remain arranged in a regular grid as done in figure 3. Bins are
fully independent of each other and can be freely positioned
in space using their p value. For better comparison with other
bin methods and easier visualization bins are placed in a rect-
angular grid for this paper.

In addition to the spatial weighting function wy,(X)
assigned to each bin, a temporal weighting function wygcx ()
is assigned to each track. This allows to introduce additional
information about the data quality along the track into the bin-
ning process. A detailed analysis of uncertainty quantification
in Lagrangian particle tracking approaches lies outside of the
scope of this paper, a comprehensive approach through the
entire measurement chain is presented by [3]. Instead, we use
a simpler approach starting from a known constant positional
error of triangulated particles and consider only the track fit-
ting process that then follows. An uncertainty propagation ana-
lysis through the tracking process allows to quantify the chan-
ging uncertainty along the track over time. The positional error
for the triangulated particles is estimated based on realistic
synthetic experiments and assumed to be uncorrelated across
the separate pulses. While there are some sources of error that
are correlated between the particles within a track, such as
errors in the camera calibration affecting close by particles
similarly, their influence is negligible compared to the random
sources.

This known uncertainty is then propagated through the
polynomial fit and the derivation to obtain a local uncertainty
for the velocity along the track. For the four-pulse scheme
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Figure 4. Example of the error analysis result used for determining
the track weighting function wyeek (f) for a track with a duration of
8.75 ps for two different pulse spacings. The circles mark the time
instants of the pulses.

evaluated here, this results in a value for the uncertainty that
is smallest at the midpoint of the track and increases towards
both ends. An example for such an evaluation is shown in
figure 4 for two different pulse spacing strategies. Previous
strategies (Spacing A in figure) for pulse spacing have among
other aspects focused on reducing the error at the midpoint
as this is the only location considered in binning making use
only of the point with the highest velocity accuracy. With func-
tional binning the integral error over the entire track length is
of relevance and one could optimize pulse spacing with this in
mind. Current practice for multi exposure based multi-pulse
STB has changed towards greater spacing between the initial
two pulses due to tracking requirements [13] (Spacing B in fig-
ure). This results in an error distribution that is slightly worse
at the midpoint but exhibits a flatter trajectory over the rest of
the track resulting in a lower integral error. Such a distribution
is thus even better suited for the functional binning approach
and is indeed close to the optimal pulse spacing when consid-
ering only the integral error. This optimal pulse spacing can be
found by fixing the endpoints of the time interval and minim-
izing the integral error function in terms of the placement of
the two middle pulses. The result places both pulses exactly on
the midpoint of the time interval, a solution which might min-
imize the integral error but is not feasible for use in an actual
tracking approach. While modifying the pulse spacing would
be beneficial for the application of functional binning, it is not
a necessity and all results shown use a non-optimized pulse
spacing (Spacing A).

The calculated error function in figure 4 can then directly
be translated into a weighting function wy,x (¢). For the cur-
rent implementation one single weight function is used for
all tracks. If future improvements in uncertainty quantifica-
tion within the STB method allow for individual position error
estimates for each particle, this could be directly introduced
here resulting in individual weighting functions tailored for
each track.

The total weight function is then given by a combination of
the two weighting functions, with the spatial weighting func-
tion 5 evaluated at the parametrized track position x = p(¢) =

[px(t)vpy(t)vpz(t) ]:

w(t) = Whin(P(t)) Werack (2)- (6)

The mean velocity value V of a track from time #, to ¢; with
respect to this continuous weighting function can be expressed
using integrals as

i v(@)w(z)de
f,;l w(t)dt

condensing the available velocity data from the track into a
single value for a given bin .

When building the bin average over many tracks, each of
the values needs to be weighted according to the properties
of the track data it was calculated from. Tracks which pass
closer to the bin center should be weighted higher than ones
further away from it. Additionally the individual uncertainty
values of the tracks need to be considered. Even if all tracks
follow the same weight function this leads to differences as
a low certainty outer region of one track should be weighted
lower than the higher certainty middle region of a different
track even if both are at the same distance to the center of the
bin. These concerns are directly captured in the integral of the
weight functions w(¢) used for the mean values of the indi-
vidual tracks which are therefore used as weights for the bin
averaging process. For an individual track with id » this leads
to the velocity value V,, and accumulated weight function W,,:

V= (7)

Al
_ Va(H)wu(t)dt  _ g
Vn = M) VVn = / Wn(t) dt. (8)
To

Ji wa(t)dt

A weighted velocity mean My for a bin over all N tracks
can therefore be calculated by the following equation:

_ ZnN:IVan . Zi,vzl t(t)l Vn(t)Wn(t) dt
= =t = L .
Zn:l Wn Zn:l j;(t]l Wn(t) dt

The actual implementation uses a different approach than
just summing and dividing the terms in order to reduce numer-
ical errors. A constant memory streaming weighted mean
algorithm is used instead [9]. Other relevant bin averaging stat-
istics can also be calculated at this point using the results given
by 8 such as the co-variance matrix for the Reynolds stresses
or other higher statistical moments. The approach is not lim-
ited to the analysis of velocities either, other quantities derived
from the particle motion such as the acceleration can be con-
sidered analogously.

Depending on the choice of weight function, the integrals
given in 8 generally do not have an analytical solution in terms
of standard mathematical functions. If a constant track weight
were used as is typical for time-resolved STB tracks, meaning

My €))




Meas. Sci. Technol. 31 (2020) 095304

P Godbersen and A Schrdder
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Figure 5. Double stages filtering process to reduce the number of tracks that need to be integrated. Tracks that are eliminated at each stage
are shown in gray, filter regions in blue. The first stage removes far away tracks measured by their midpoints as a rough pre-filter. In the
second stage the support of the weight function is used together with the closest point along the track to accurately determine relevant tracks.

only the spatial Gaussian weight is present, the upper term in
7 can be expressed in terms of the error function:

/ 3(2at+ B)exp(—(ar® + fr+7)*)dt

= 1/merf(ar® + Bt+v) + C. (10)

But even for this simplification there is no analytical solu-
tion for the integral in the lower term containing only the
weight function. Therefore a numerical solution for the integ-
rals is required. Since all the functions can be continuously
evaluated, a Gaussian quadrature rule is used for the integra-
tion.

While (9) provides a complete mathematical description of
the procedure to calculate a mean velocity bin average, care
must be taken to reduce computational effort as the numer-
ical solution of the integrals is comparatively expensive. In
the midpoint binning approach each particle only contributes
to a single bin that is easily identified. The computational
effort therefore only scales with the number of particles N, not
that of the bins Np. A naive implementation of the functional
method would require each bin to consider every particle res-
ulting in a method that scales with the number of bins as well,
being proportional to N, N,. Even without the increased effort
of a numeric integration this would be infeasible. It is clear
however, that only tracks within a certain neighborhood of a
given bin need to be considered. The known spatial weighting
function is therefore used as an indication to filter out tracks
which are far away from the bin. Only tracks whose closest
point to the bin center lies within the support of the weight
function are considered. While the Gaussian window function
for a bin chosen here technically does not have a compact sup-
port, a threshold can be set proportional to the standard devi-
ation beyond which any contribution would be negligible. An
analytical expression for the quadratic distance d(#) of a track
described by p(7) to the bin center at py = [xo,Yo0,z0] is given

by

Ip(t) — poll®
= (p(t) = x0)> + (py(1) — y0)*
+(p:(1) — 20)*.

The minimum distance is found by using the derivative

an

d(t) = 2((Bc+20u8) (7 + But + ant* — xp)
+(By + 2a41) (9 + Byt + O‘ytz — o)
+(B: + 2at) (v, + Bt + azt2 —20))
= AP+BP+Ct+D=0, (12)
requiring the solution of a cubic equation which can be done
analytically. To reduce the computation time even further, a
double staged filtering process is used. Before using the closest
point filter described above, a rough pre-filter based on a Kd-
tree range search of track midpoints is employed. Since only
the midpoints are used this will be an inaccurate approxima-
tion of track distance so a generous exclusion range based on
some multiple of the expected maximum track length should
be used. The only goal is to use the very fast tree based search
to exclude tracks which are so far away they could not pos-
sibly contribute to the considered bin. The only cost of setting
the exclusion range too far is an increase in computational cost
while setting it too low could exclude relevant data. Depending
on the mean track length it could be advantageous to sample
multiple points along the track for this filter stage in order to
enable tighter bounds for the exclusion range.

With this combined setup the tracks are therefore directed
through multiple stages of increasing computational complex-
ity. The entirety of the tracks is sent to the first filter, requiring
a Kd-tree based search. The relevant subset of the tracks is then
directed to the next filter stage, requiring the solution of a cubic
polynomial for each track which is done analytically. This final
subset of the tracks is then directed to the actual binning stage,
requiring the numerical calculation of integrals using Gaussian
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quadrature rules. An initial implementation used an adaptive
Gauf—Kronrod quadrature to ensure a low error for the integ-
ration result. As the considered functions are smooth a Gauf3-
Legendre quadrature using a suitable fixed number of nodes is
used instead for faster performance. Additionally, since cur-
rently all tracks use the identical weight term wigck (¢) in (6),
this term can be precomputed by directly including it in the
determination of the quadrature rule leaving only the evalu-
ation of the spatial weighting term wy, ().

3. Application

The three different methods are evaluated on synthetic data
based on a known ground truth velocity field:

B sinh(y)
~ cosh(y) +ecos(x — ct) e and (13)
b esin(x — ct) (14)

~ cosh(y) +ecos(x—ct)’

This field is taken from an example given by [10] and is
based on the so called Stuart vortex representing a vortex mov-
ing along a shear layer. Within this work, the coefficients used
are ¢ =3 and € =0.7. Synthetic four-pulse tracks are gener-
ated for each snapshot by advecting randomly placed particles
using a differential equation solver. Each track is then sampled
at the four pulses according to the prescribed timing strategy
and artificial noise is added to represent particle position meas-
urement error.

This approach allows to compare the values calculated by
bin-averaging the synthetic snapshots to the known mean val-
ues of the velocity field in order to define an error value for
the binning statistic. All velocity comparisons shown here use
the u-component unless otherwise noted. The local ground
truth mean value is calculated using the integral over the time

domain:
1 n
/ u(r)dt,
h—1oJy

which can then also be used to calculate a ground truth value
for the fluctuations:

ﬁ:

5)

1
- / (u(r) —u)* dt. (16)

- tO to
The synthetic data is generated for the spatial domain ) =
[-27,27] x [—m, 7] and over the time domain T =[0,27]
equivalent to one period of the function. Snapshots are gen-
erated for random times within this interval.

To provide a good analog to actual applications, the para-
meters for the synthetic measurement are chosen such that they
resemble a real world measurement.

The desired parameters from table 1 are used to appropri-
ately scale the synthetic setup, leading to a scaling factor of
approximately 32 px per length unit and 76 tracks per snap-
shot. A particle positioning error of 0.1 px is used for the gen-
eration of the synthetic tracks. Both methods are then applied

Table 1. Parameters used for the synthetic measurement study.
These represent realistic values as found in a real experiment.

Parameter Value
Particle image density 0.03 ppp
Number of snapshots 10,000
Length of tracks 30-80 px
Positioning error 0.1px

Relative pulse spacing (0.0,0.2,0.8, 1.0)

-6 -4 -2 0 2 4

X

(@)

Figure 6. Mean velocity field for a bin size of 4 px calculated using
10,000 images with the the midpoint (top) and the functional
binning approach (bottom). Bins with missing data are blanked out.

using high resolution two-dimensional bins with a side length
of 2 px. An additional evaluation is conducted using larger bins
with a size of 4 px.

Figure 6 shows the recovered mean velocity field using the
4 px bin size for both methods. Apart from the larger amount of
noise for the midpoint method a region of missing data near the
inflow region is also apparent, the size of which is increased
for higher velocities. This is due to the initialization of syn-
thetic particles only within the binning domain. When only the
track midpoint is considered, bins that are closer to the inflow
boundary that half the maximum track length show either no
entries at all or a result biased towards the shorter, and there-
fore slower, tracks which still register. This issue is not present
itself for the functional method as it considers the full length
of the track. While this aspect highlights a nice feature of the
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Figure 7. Evolution of the mean squared error of mean velocities over the number of snapshots used for the bin averaging shown for the

different methods at three different bin resolutions.

functional approach, it is often not as relevant in experimental
investigations as it can be avoided by using a measurement
domain larger than the binning domain of interest. To provide
a fairer comparison between the two methods, all following
calculations use a synthetic measurement domain that is large
enough to prevent this issue from occurring.

While the visual difference between the two mean velocity
fields in figure 6 provides some initial indication on the relative
performance of the two methods, a systematic evaluation is
facilitated through the available ground truth values.

The mean squared error over the entire field of the mean
velocity can be used to quantify the quality of bin-wise recon-
struction of the true mean field. Calculating the error over the
amount of snapshots used allows to analyze the convergence
behavior of the binning methods as shown in figure 7. The
figure shows the results for the different methods for both bin-
ning resolutions and additionally for a resolution of 0.5 px. The
improvement in convergence speed offered by the functional
approach is immediately apparent. Even for the 2 px binning
resolution convergence is reached well before the full num-
ber of snapshots while the midpoint approach barely does so
using the full amount. The classic approach converges better
than the midpoint variant as expected by the different amount
of particles used. For the resolution of 0.5 px which has been
included here as an extra evaluation one can see that the func-
tional approach is less affected by the increase in resolution
providing a viable approach for sub-pixel resolution ensemble
averaging.

In practice one would not necessarily require full conver-
gence of the desired statistics due to the diminishing returns of
increasing the number of snapshots. If the error level the mid-
point method exhibits using 5000 snapshots is deemed accept-
able, less than 500 snapshots are required to reach the same
error level using the functional method for this example. The
classic method performs better than the midpoint approach
and requires a level of about 2000 snapshots. The left figure
shows the results for the coarser bins with 4 px length. It can be
seen that the convergence penalty of moving from 4 px to the

Midpoint;

Classic; Functional.

smaller bin size is smaller in the functional method than in the
classic one. This is inherent in the functional approach. While
the total number of bins has increased and their size decreased,
the ratio of track length to bin size has increased. The num-
ber of bins one given track contributes to thereby increases,
counteracting some of the impact of using a finer resolution.
This effect depends on the dimension of the binning grid as
the region of influence of a track is in form of a line. In 1D
the lines for both resolutions should lie on top of each other as
bins are fully aligned with tracks in one dimension. For the 2D
case as considered here, some decrease is expected as tracks
are still quasi one dimensional while the bin size decreases
in two dimensions. In 3D this effect will be stronger. As the
same consideration applies for the classic approach, the bene-
fit of using the functional approach is not diminished even in
higher dimensions.

Statistical independence of functional binning is assured
by the ratio of track length to bin size and the sparsity of the
scattered track data available in 2D or 3D. The time length of
four-pulse tracks consists of statistical dependent data typic-
ally with a length in the range of Kolmogorov time scales 7,,.
The size of bins is a small fraction of the spatial extent of the
tracks.

In addition to the analysis of the convergence of the mean,
the dataset also allows to study the behavior of the conver-
gence of velocity fluctuations. Figure 8 shows this using the
same approach used for the mean velocities. The development
of the error shows the advantage of the midpoint approach
over the classic one. Although initially converging slower,
the midpoint approach surpasses the classic approach after
some time leading to higher accuracy for the fluctuation statist-
ics. The new functional approach shows a significantly lower
error than the other considered methods. To improve the clas-
sic approach, various additional weighting methods can be
applied. We consider a spatial weighting by the distance from
the bin center as well as as version that additionally includes an
error based weight for the particles along a track. The results
are shown in figure 9. While improvement in the error of the
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Figure 9. Evolution of the mean squared error over the number of snapshots used for the bin averaging with 4 px resolution shown for the

different methods using the velocity mean (left) and velocity fluctuation (right).
Classic with error and spatial weight.

Functional; Classic with spatial weight;

fluctuations is evident, the weighting approaches also have a
negative impact on the convergence of the mean velocity. For
all compared methods the functional approach remains super-
ior.

To provide a better overview of the improvement afforded
by the functional approach, figures 10 and 11 show the ratio
of error of the midpoint approach and the different classic
approaches to the error of the functional approach for the mean
velocity and velocity fluctuations respectively. For the mean
velocity value there is an initial development region where
many bins have only few contributing particles. Due to dif-
ferences in convergence speed there is a possible peak and
the ratio then stabilizes towards a nearly constant value. The
classic approach with both weighting strategies shows a higher
ratio than the classic approach without weighting as expected
from the results in figure 9.

For the velocity fluctuation a different picture emerges. The
midpoint method approaches the lowest ratio to the functional
method for a sufficiently large number of snapshots. A strong
rise of the ratio for the classical method for a large amount
of images is due to the larger inherent velocity error of this

Midpoint; Classic;

approach. As seen in figure 9 the error plateaus for a large
number of images and additional data does not significantly
improve the result anymore. Since the functional approach
is still improving at this stage, the ratio between them keeps
rising. The weighting strategies can improve upon this some-
what by taking the error into consideration.

The reason for the differing performance of the approaches
can be seen in the amount of particles contributing to the stat-
istic for a given bin. Figure 12 shows such an analysis for the
bin at the center of the domain. As expected the midpoint based
approach registers the least amount of contributing particles,
focusing on fewer entries with a higher quality. The classic
approach with its use of four particles per track quadruples the
number of entries for the bin. Using the functional approach
a drastically higher number of tracks are able to contribute to
the statistic. It should be noted that this is the raw number of
contributing tracks independent of the weight value assigned
to them. Therefore even tracks which are assigned a minuscule
weight value are therefore included. Including the weighting
of the tracks in this figure would seem like an obvious solution
to better relate the functional method to the others but doing
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so would be detrimental for this aim. The individual weights
used during the evaluation are consistent with respect to each
other but there is no obvious normalization that would allow
for comparison to the individual particles used in the discrete
approaches.

The effect of the improved convergence behavior can be
seen when examining a slice through the mean velocity field
calculated without the full number of snapshots available
as shown in figure 13 for 2000 snapshots. The functional
approach results in a profile that is much closer to the true
profile without much of the noisy artifacts still visible in the
midpoint result. Figure 14 shows a similar comparison for the
velocity fluctuation, again highlighting a better convergence
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Figure 12. Number of contributions to the central bin over the
number of snapshots shown for all methods at two bin resolutions
_____ 4 px; 2 px. The axis starts at 10 snapshots
for this visualization.
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Figure 13. Slice through velocity mean field for bins of size 2 px
using only 2000 images. Midpoint;
Functional; = — — — — Truth.

towards the true result. When using the full amount of 30 000
snapshots as shown in figure 15, the functional approach fol-
lows the true solution very well except for some remaining
deviations at the peaks. The classical solution, while visibly
improved, still displays noisy artifacts and overestimates the
fluctuation at the peaks. Using the classical solution with spa-
tial and error weighting improves the situation as known from
figure 9 but deviations are still visible. The midpoint solution
shows more accurate results at the peaks but is still somewhat
noisy. A better solution is provided by the functional approach
with a smooth profile and accurate values at the peaks. Some
small deviations are still visible.

One aspect that needs to be considered is the increase
in computational effort. However the synthetic data set con-
sidered here is not well suited for such an evaluation. While
the chosen parameters represent an actual measurement well
in terms of the relative sizes, the amount of data involved is
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not representative. Only 76 tracks are used per snapshot due to
the small image size. For a better example of the time require-
ment of the functional binning approach, its is applied to a real
world 3D multi-pulse STB data set using 30 000 snapshots and
approximately 60 000 tracks per snapshot. The results of this
processing using 3D bins on a 16-core CPU are shown in table
2 for two bin sizes to highlight the impact of the amount of
bins on the processing time. For the classic binning approach
the run time is fairly independent of the amount of bins. This
is the expected result as the approach is only dependent on the
number of tracks used. The small difference seen here can be
explained by variances in the time to read in the files from stor-
age. The short run time of 10 to 13 minutes is a reflection of the
simple assignment of each track midpoint to a single bin. Only
a small amount of the time is dedicated to the actual binning,
reading in the data from the file is the dominant factor. In con-
trast the functional binning requires much more time, here the
actual computation effort dominates. For the larger bin size
functional binning takes approximately 12 times longer than
the classic approach. The time required scales with the number
of bins as can be seen in the comparison with the finer bin size.
Here the processing takes approximately 46 times longer than
the classic approach for a total duration of 10 hours. Although
the time required increases with the number of bins used, it
does not do so directly. The time taken per individual bin
decreases for greater bin numbers due to the efforts to con-
sider only relevant tracks.

Reducing the computational requirements in the applica-
tion of functional binning is an ongoing development effort.
One immediate improvement can be realized by careful con-
sideration of the spatial weight function. Within this paper,
a Gaussian weight has been used to highlight a very flexible
and intuitively parametrizeable weight function. The ability to
chose arbitrary weight functions provides opportunities to bet-
ter adapt bins to the desired flow statistics. In many cases this
flexibility is not necessary and simpler weight functions can
be used to avoid the comparatively expensive evaluation of the
exponential function within the Gaussian. One of such weights
considered is the quartic function:

-]

used for an anisotropic radial basis function with center u,
scaling s and ® as the elementwise multiplication operator:

2(1—u*)? forll<1

. (17
otherwise

woin(x) = £(| (e — ) @s])). (18)

The scaling should be set based on the bin extent in each
coordinate direction. Such a spatial weight then allows some
anisotropy through stretching the radial basis in each coordin-
ate direction but can no longer be tilted in arbitrary directions.
For many applications this would be sufficient and current grid
based binning methods face the same restrictions. The advant-
age in this weight function lies in the restriction to polyno-
mial operations which can be computed much cheaper than
the exponential required for the Gaussian weight with initial

Table 2. Runtime comparison for a real world 3D multi-pulse STB
data set with 10 000 snapshots.

Midpoint Functional
Size 8 px 4 px 8 px 4 px
Bins 1.6 M 128 M 1.6 M 12.8 M
Runtime 10 m 13 m 1h56m 10h 1 m
Time per bin 356 us 60 us 4380 us 2816 ps

tests showing an additional 20% reduction on the numbers
shown in table 2. While there is a large increase in the time
required to calculate a bin average from tracking data for the
functional approach, one should consider the total processing
times that are required. The midpoint binning approach is
extremely fast so previously there was no need to approach
it as a post-processing step with significant time or comput-
ing resource requirements. Functional binning now requires
to view the ensemble averaging as a more elaborate process.
Instead of the results being available within several minutes,
an evaluation might now need to run over night. Considering
the large amount of effort typically involved in acquiring the
experimental track data, such run times are still acceptable.
Especially if the improvement in convergence is taken into
account. If we consider the improvement in figure 7 we can
use 1000 snapshots for the functional binning of that measure-
ment to reach similar convergence than the midpoint method
with 10000. As seen in figure 10 the error ratio of the vari-
ous methods to the functional approach varies between 10
and 4. As the STB processing of a single typical multi-pulse
snapshot takes approximately four minutes, the reduction of
the necessary STB processing time from over 666 hours by
a factor of ten easily dwarfs the increase in binning time. An
additional factor is that this comparison was conducted using
three-dimensional bins on a three-dimensional measurement.
If only two-dimensional bins from such a measurement are
desired because profiles are averaged along one dimension, the
amount of bins decreases drastically thereby reducing the run
time difference between the functional and classic approach. If
desired, this difference can also be improved upon by includ-
ing more computational resources. As the individual snapshots
are independent of each other, the binning can easily be cal-
culated in batches in parallel on different machines with near
perfect scaling and the statistics then merged together.

4. Conclusion and outlook

By use of a functional approach to the spatial binning of
particle tracking data better convergence of the desired stat-
istics is achieved. The functional approach extracts all of the
available information of the track and allows for easy inclu-
sion of auxiliary data such as uncertainty quantification. The
method provides a very generalized framework based on the
weight functions that allows to tailor the evaluation to the indi-
vidual needs.

An concrete implementation for synthetic multi-pulse STB
data, short particle tracks, using Gaussian shape functions was
shown and the benefits in convergence demonstrated.
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Many other flow field statistics are at their core also based
on a spatial binning approach and can equally be transferred
into a functional binning framework. Besides the improve-
ments in convergence evident in the calculation of the mean,
the functional approach also has as an additional advantage
when calculating statistics that involve considering pairs of
particles as done for the calculation of two-point statistics and
of spatial gradients respective velocity differences for dissipa-
tion rate. There the distance between particles is used to calcu-
late two-point correlation functions. A focus lies on close dis-
tances which are relevant for the calculation of wave number
spectra and length scales such as the Taylor micro-scale. Using
the classical approach the resolution close to the origin is lim-
ited, especially for time-resolved tracking. Data is only avail-
able at the actual reconstructed particle positions themselves
and therefore particle pairs cannot get arbitrarily close to each
other due to imaging requirements. Particle images have a size
of several pixels on the sensor and positioning error increases
once they start to overlap. This introduces a lower bound for
the achievable resolution near the origin. Using a functional
approach for the tracks this can be improved upon since the
parametric functions can get arbitrarily close to each other
even if the relevant particles stay sufficiently far away from
each other as shown in figure 16. The distance should never
reach exactly zero as this would imply a collision but much
closer approaches than suggested by the particle images are
possible due to the diffraction limited imaging. While reach-
ing very close distances is possible, the positioning error of
the particles should be taken into account to achieve mean-
ingful results which again imposes a lower bound for the min-
imum distance. As this error is in the order of 0.1 px the bound
is much smaller than the one imposed by the approximately
3 px particle diameter, thereby allowing for increased resolu-
tion near the origin for two-point statistics.

The distance between two parametric functions can be
expressed as another parametric function as shown in fig-
ure 17, directly allowing for functional binning in the relative
distance space as is necessary for two-point statistics. Provid-
ing similar benefits as shown here for the velocity mean and
fluctuations, this would allow for better resolution and conver-
gence of two-points statistics. The binning in the relative space
is not just filled by single points but along the full length of the
function. As both tracks are parametrized via the same time
variable it is ensured that no temporal dependence is intro-
duced by differing time instants.

Other possible improvements can be introduced even
without direct usage of the functional binning approach, using
just the continuous nature of parametric tracks over time. Eval-
uations that require triplets or tetrahedrons of particles within
a certain distance to each other for the calculation of statistics
over spatial gradients are one example. Suitable pairings can
be searched for along the entire length of the track, thereby
increasing the chance of encountering a fitting one.

Apart from improvements to the individual statistics, the
method also allows for a more flexible approach to the bin-
ning itself. The classic approach generally assumes a regu-
lar Cartesian grid for its binning domain, which can pose a
challenge when flow around complex geometries needs to be
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Figure 16. Sketch of two particle tracks in space and the distance
between them over time. Pulse timings are shown by the black
circles.
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Figure 17. Sketch of the path of the position difference between two
tracks in the relative space. Functional binning in this space would
allow to calculate two-point correlations.

evaluated. Deviating from such a grid is possible but gener-
ally requires abandoning the very simple formula for particle
to bin association given in (1) which drastically impacts per-
formance. In functional binning a different approach already
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has to be used by design thereby allowing for fully flexible
placement and sizing of each bin without additionally redu-
cing performance. The individual shaping of the weight func-
tions for each bin allows for adaptive schemes that could orient
them according to local mean flow properties such as velo-
city gradients. Depending on the nature of the flow field it
could be advantageous to perform a rough fast initial binning
using the classic approach to gather some preliminary inform-
ation and then use these statistics to select appropriate local
bin shapes for a functional binning evaluation. When working
with complex geometries, bins in a region close to the wall
could additionally be shaped to better conform to the local
geometry.
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