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Abstract
Recent advances in machine-learning interatomic potentials have enabled the efficient modeling
of complex atomistic systems with an accuracy that is comparable to that of conventional
quantum-mechanics based methods. At the same time, the construction of new machine-learning
potentials can seem a daunting task, as it involves data-science techniques that are not yet common
in chemistry and materials science. Here, we provide a tutorial-style overview of strategies and best
practices for the construction of artificial neural network (ANN) potentials. We illustrate the most
important aspects of (a) data collection, (b) model selection, (c) training and validation, and
(d) testing and refinement of ANN potentials on the basis of practical examples. Current research
in the areas of active learning and delta learning are also discussed in the context of ANN
potentials. This tutorial review aims at equipping computational chemists and materials scientists
with the required background knowledge for ANN potential construction and application, with
the intention to accelerate the adoption of the method, so that it can facilitate exciting research that
would otherwise be challenging with conventional strategies.

1. Introduction

First-principles-based atomic scale simulations, for example using density-functional theory (DFT) [1–6],
can predict many materials properties with quantitative accuracy [7–14]. However, they are usually limited
to small atomic structures with less than 1000 atoms and time scales on the order of nanoseconds, owing to
the high computational demand and polynomial scaling with the system size. During the last decade,
a family of methods for accelerating first-principles sampling based on machine learning (ML) has
emerged [15–21], which holds promise to overcome these limitations. ML regression models, usually based
on artificial neural networks (ANNs) [22, 23] or Gaussian process regression (GPR) [24], are trained to
interpolate the outcomes from first-principles calculations, so that the trained ML model can be used as
computationally efficient drop-in replacements for the original method.

Predicting the preferred atomic structure at specific thermodynamic conditions and its evolution over a
certain period of time requires a description of the relative energy of atomic arrangements, i.e. the potential
energy surface (PES). First-principles methods, such as DFT or quantum-chemical methods based on
wavefunction theory [25–30], approximate the PES based on the interactions of electrons and atomic nuclei
arising from the laws of quantum mechanics.

Most ML potential (MLP) approaches do not consider electronic interactions explicitly but instead
approximate the PES as a function of the atomic positions only. For many modeling applications, this general
strategy allows MLPs to deliver the accuracy of the reference method at a computational cost that is orders
of magnitude lower and scales only linearly with the number of atoms. Owing to the success of early
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Figure 1. Iterative construction of a machine-learning potential (MLP) based on artificial neural networks (ANNs). The process
starts with (1) an initial data set, which is then used for (2) model construction, i.e., a model is selected, trained, and its
hyperparameters are validated. The accuracy of the trained model is then assessed in (3) a testing step. If the MLP passes the
testing, it is ready for applications. Otherwise, additional data points are included in the reference data set (generated through
active learning), and the process is repeated.

ANN-based Behler-Parrinello MLPs [23, 31] and GPR-based Gaussian approximation potentials (GAPs)
[24, 32], the number of MLP methods proposed in the literature has been rapidly growing: examples include
MLPs based on GPR and other kernel-based methods, such as kernel ridge regression [33–36], moment
tensor potentials [37, 38], graph-networks using message passing [39–47], spectral neighbor analysis
potentials (SNAPs) [48, 49], and other ANN-based approaches [50–53]. We emphasize that this list is not
exhaustive and also does not include the various ML methods for atomistic modeling that cannot be
considered interatomic potentials [54–70]. For a comparison of different MLP methods we refer the reader
also to perspectives and reviews by Behler [15], Deringer [71], Mueller [17], Noé [18], and Unke [19, 21].

Although the ML regression models can be used in simulations in the same fashion as conventional
interatomic potentials (force fields) [72, 73], the construction and applicability range of MLPs is significantly
different. Here, we review and discuss the practical aspects of constructing and validating MLPs in the form
of a tutorial with concrete examples. To be as specific as possible, the tutorial focuses on ANN-based
MLPs (ANN potentials), although many aspects of the discussion on data selection (section 2) and active
learning (section 5) apply to other MLP methods as well. The sections on model selection (section 3) and
training/validation (section 4) are mostly specific to ANN potentials.

The construction of ANN potentials and other MLPs is centered around the compilation of reference
data sets with atomic structures and their corresponding first principles energies, and potentially further
information such as interatomic forces and atomic charges. Unlike many conventional potentials with
functional forms derived from physical approximations, MLPs are usually not capable of extrapolating to
atomic structures and compositions that lie outside of the PES region described by the reference data. The
reference data set therefore needs to span the entire structural and chemical space that the MLP must
represent for the intended application range, while it should include as few unnecessary or redundant data
points as possible. In practice, MLP construction and the compilation of reference data is therefore
(typically) an iterative process, shown in figure 1, that involves:

(a) data collection,
(b) model construction, and
(c) testing,

which is repeated until the MLP passes the testing step with the desired accuracy. In each iteration, the
reference data set is extended through an active learning scheme.

As also hinted at in figure 1, the model construction consists itself of three iterative steps: (i)Model
selection is the process of deciding the type, complexity, and other hyperparameters of the ML model;
(ii) training is the optimization of the adjustable model parameters to best reproduce the reference data set,
as measured by a loss function; and (iii) in the validation step, over- or underfitting is detected, and, if
necessary, the process is repeated from step (i) with adjusted model complexity and hyperparameters.
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Figure 2. (a) Graph representation of an example feedforward ANN with two input nodes (x0,1 and x0,2), one output node (x3,1),
and two hidden layers with each three nodes. The operation performed by each node is given in equation (1). In an ANN
potential, the input nodes correspond to features of an atomic environment σi and the value of the output node is equal to an
atomic energy Ei. (b) Diagram of the high-dimensional neural network that combines the atomic ANNs of all atoms in a
structure for an N-atom system. The output is the total energy E, which is the sum of the individual atomic energy contributions
Ei, which are in turn the outputs of atomic feedforward ANNs as shown in panel (a).

In this work, we discuss each of the steps outlined in figure 1 from a practical perspective. The next
section first provides a brief introduction to the ANN potential method, which is followed by separate
sections on data selection, the individual steps of model construction, testing, and active learning. In the final
discussion section, current limitations and advanced techniques of the ANN potential method are
considered.

1.1. High-dimensional ANN potentials
ANNs are a class of mathematical functions that can be represented by graphs which resemble networks of
nodes (artificial neurons) that calculate the weighted sum of multiple input values and apply an activation
function to the result. The operation performed by a single node can be expressed as

xi,j = f ia

(Ni−1∑
k

wi
k,jxi−1,k + bi,j

)
(1)

where the output xi,j is the value of the jth node in the ith layer of the ANN, the input value xi− 1,k is the kth
node in the previous layer (i− 1), wi

k,j is the weight of the input value, bi,j is an additional bias weight that is

always added to the input irrespective of the input values, and f ia is an activation (or transfer) function.
Equivalently, equation (1) can also be expressed using matrix-vector operations

x⃗i = f ia

(
Wi⃗xi−1 + b⃗i

)
, (2)

where the vectors x⃗i−1 = (xi−1,1, . . . ,xi−1,Ni−1)
T and x⃗i = (xi,1, . . . ,xi,Ni)

T contain the values of all nodes in

the input and output layers, respectively, (Wi)k,j = wi
k,j is the weight matrix, and (⃗bi) = bi,j. ANN potentials

are based on feedforward ANNs in which layers of nodes are connected such that values are passed
layer-by-layer from an input layer through one or more hidden layers to an output layer. A graph
representation of an example feedforward ANN is shown in figure 2(a). The number of layers, the number of
nodes per layer, and the choice of activation function are hyperparameters that need to be chosen in the
model selection step and are discussed in section 3.2. Note that the input dimension (number of nodes in the
input layer) and output dimension (number of nodes in output layer), i.e. the dimensions of the domain and
co-domain of the ANN function, are fixed for a given ANN. ANN training is the process of optimizing the
weight parameters {wi

k,j} and {bi,j} such that the target values of the reference data set are reproduced as well
as possible (see section 4). For a more thorough introduction to ANNs, we refer the reader to previous
literature [50] and standard textbooks [74].

In principle, PESs can be directly represented by ANNs, feeding the atomic coordinates (in form of
internal coordinates) into the input layer and producing the potential energy as the sole value of the output
layer [75]. While useful for many applications, such direct ANN-PES models are limited to a fixed number of
atoms and do not automatically reflect the physical invariances of the potential energy with respect to
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rotation and translation of the entire atomic structure and the exchange of equivalent atoms. As such, direct
ANN-PES models are not comparable to conventional interatomic potentials.

To leverage the flexibility of ANNs for the construction of actual, reusable interatomic potentials, Behler
and Parrinello proposed an alternative approach [23] that was later extended to multiple chemical species by
Artrith, Morawietz, and Behler [76], in which the total energy E(σ) of an atomic structure σ is decomposed
into atomic energy contributions Ei

E(σ)≈
atoms∑

i

Ei(σi)

with σi = {R⃗j, tj for |R⃗j − R⃗i|⩽ Rcut}

, (3)

where σi represents the local atomic environment of atom i that contains the positions R⃗j and species t j of all

atoms within a cutoff distance Rcut from atom i, including the position R⃗i and type ti of atom i itself. In the
high-dimensional ANN potential method by Behler and Parrinello, the atomic energies Ei(σi) are predicted
by species-specific ANNs. A graph representation of such a high-dimensional ANN potential is shown in
figure 2(b).

As expressed in equation (3), the ANN potential does not yet incorporate the invariances of the potential
energy, since the input of the atomic ANNs are still atomic (Cartesian) coordinates. Even worse, the number
of atoms within the local atomic environment is generally structure dependent, but the input dimension of
ANNs is fixed, which would render the atomic ANNs essentially not transferable to other structures. These
limitations can be removed by representing the atomic coordinates within local atomic environments with a
fixed number of features that have the same invariances as the potential energy. Once the atomic species are
also encoded, a fingerprint σ̃i of the local atomic environment σi is obtained that can be used as input for the
atomic ANNs, so that equation (3) can be written as

E(σ)≈ EANN(σ) =

atom
types∑
t

atoms of
type t∑

i

ANNt(σ̃i), (4)

where ANNt is the atomic ANN for atoms of type t.
It is important to note that the high-dimensional ANN potential method as introduced by Behler and

Parrinello uses ANNs to represent atomic energies, even though the training targets are the total energies.
Atomic energies are not uniquely defined and are not a quantum-mechanical observable. ANN potential
training, i.e. the weight optimization problem, can be expressed completely in terms of the total energies
without knowledge of the atomic energies, as discussed further in section 4.1.3. It is possible to come up with
rigorous (but non-unique) definitions of the atomic energies and use those as targets for training [77], but
such schemes require additional processing of first principles calculations and are not considered in the
following.

Further note that the atomic-energy approach of equation (4) can only work with good accuracy if the
total energy is determined fully by short-ranged interactions. Long- and intermediate-ranged interactions,
such as electrostatic (Coulomb) and dispersive (London or van der Waals) interactions need to be accounted
for separately. Extensions of the high-dimensional ANN potential method to electrostatic and dispersive
interactions have been developed and are briefly discussed in section 6.

2. Data selection

Since the mathematical form of ANN potentials and other types of MLPs is unconstrained and not derived
from physical approximations, MLPs are poor at extrapolating to atomic structures or compositions that are
very different from those included in the data that the MLP was trained on. The lack of extrapolation
capabilities is, in fact, a general property of ANNs [78]. The quality of an ANN potential therefore depends
strongly on the reference data set that it is trained on:

• anMLP’s accuracy for the prediction ofmaterials ormolecular properties cannot exceed that of the reference
method, and

• the transferability (the ability to generalize) of an MLP is determined by the structural and chemical space
that is represented in the reference data set.

Incorrect data points, noise, and redundant data can further impede the MLP training process. Data
selection is therefore of great importance for the construction of accurate and transferable MLPs [79, 80].
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The atomic structures and compositions within the reference data set determine the feature space. The
target space depends on the types of derived physical properties that are present in the data set and can be
represented by the selected model (see section 3). In addition to total energies, other quantifiable physical
properties, such as atomic charges [46, 76, 81], electronegativities [82–84], molecular dipole moments
[63, 85], and atomic forces or higher-order derivatives [76, 86, 87] can in principle be included in the
reference data set.

In this section, we discuss strategies for the compilation of initial reference data sets, i.e. data sets
generated before any model construction or testing has occurred. The refinement of reference data in
subsequent iterations of the process in figure 1 is discussed in the context of active learning approaches in
section 5.

While data selection is crucial for any kind of MLP, there are some specifics that apply to ANN potentials:
in their conventional form, ANN potentials can be most easily trained on energies and forces (see also
section 4), but it is challenging to include other target properties of interest (such as higher order derivatives
of the potential energy) as well. This is an area where other MLP methods could be better suited. The
computational cost of evaluating ANN potentials does not increase with the size of the reference data set, so
that ANN potentials can be trained on very large reference data sets containing millions of data points [51].
This is not generally the case for MLP methods, and depending on the method it can be beneficial to reduce
the size of the reference data set.

2.1. Recipe: generation of initial reference data sets
The initial reference data set is used to kick off the iterative refinement of the MLP shown in the flow chart of
figure 1. The data set should already include structures that are close to those relevant for the eventual
application of the potential. An initial data set could, for example, comprise of

(a) relevant ideal atomic structures from databases, e.g. ideal crystal structures from crystallographic
databases;

(b) structures that were derived from the ideal structures by modifying the atomic positions, e.g. by displacing
atoms;

(c) derived structures that were generated by altering the lattice parameters or by scaling the ideal structures;
and

(d) derived structures that exhibit relevant defects, e.g. point defects, substitutional disorder, etc.

Including distorted structures is particularly important, so that the initial data set contains structures
with bond length that are significantly shorter and longer than those in the ideal structures. While compiling
the initial data set, it is important to keep an eye on its energy distribution: (a) structures that are so high in
relative energy that they are realistically never encountered in the planned simulations should not be
included in the data set, (b) the data set should not exhibit gaps in energy space, i.e. the energies between the
most and least stable structures should be relatively evenly represented in the data set. Note that the maximal
reasonable relative energy depends on the specific application that the potential is going to be used for.

2.2. Example: an initial reference data set for liquid water
MLP-based simulation have previously been shown to achieve high accuracy for both liquid and solid
water [12, 80, 88, 90–92]. Here, we illustrate some of the considerations that go into the selection of an initial
data set using the example of an MLP for liquid water which was applied to the calculation of vibrational
spectra across the full liquid temperature range [88, 91]. Figures 3(a) and (b) show the distribution of
interatomic energies and forces in an initial reference data set for the liquid water MLP. In this particular
case, the data set was obtained by selecting periodic water structures (containing 64 H2Omolecules) from
DFT-based ab initiomolecular dynamics (AIMD) simulations at ambient conditions, in which the thermal
motion of the atoms was used to sample the relevant structure space [89]. In addition to configurations from
AIMD simulations with classical nuclei, the initial data set also contains snapshots from AIMD trajectories
with quantum nuclei as described by the path integral (PI) method [93] which are located in a higher energy
region of the PES (shown in orange in figure 3). Furthermore, distorted structures were generated by
randomly displacing atoms from the original structures (obtained from equally spaced snapshots of the
AIMD and AIMD+PI trajectories) with maximum displacements of 0.05 Å and 0.10 Å, respectively, to
further increase the structural diversity in the initial reference data set. The initial data set comprising of a
total of 5369 atomic structures was then used for the construction of an initial ANN potential. As seen in
figure 3, the initial structures fully cover a large energy range of 500 meV/H2O (the thermal energy kBT,
where kB is Boltzmann’s constant, at 300 K is around 26 meV per degree of freedom) which can be expected
to be sufficient for performing stable MD simulations even at temperatures above ambient conditions with
the ANN potential trained to this initial data set.
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Figure 3. Distribution of (a) total energies and (b) forces of the reference configurations used to train the initial machine learning
potential (MLP) for liquid water (64 H2Omolecules) [88]. Reference configurations were obtained from ab initiomolecular
dynamics (AIMD) trajectories with classical and quantum nuclei (AIMD+PI) [89]. In addition to the MD snapshots, distorted
configurations with higher forces where added by randomly displacing Cartesian coordinates by a maximum displacement of 0.05
and 0.10 Angstrom, respectively.

3. Model selection

Once an initial data set has been compiled, the next step in the flow chart of figure 1 is the selection of a
model to represent the data. This means, in the case of ANN potentials, to decide on (A) the descriptor that
is used for the featurization of local atomic environments, i.e. the fingerprint σ̃i in equation (4), and (B) the
ANN hyperparameters, for example, the number of ANN layers, the number of nodes per layer, and the type
of activation function.

3.1. Recipe: featurization of local atomic environments
As discussed in section 1.1, to be suitable as input for an ANN, the coordinates and atomic species of the
atoms within the local atomic environment σi of an atom i need to be transformed into a feature vector with
fixed length that should also be invariant with respect to rotation and translation of the atomic structure and
the exchange of equivalent atoms. The amount of detail captured by this descriptor also determines the ability
of the ANN potential to distinguish between different atomic structures: If the descriptor is too approximate,
different atomic structures might yield the same feature vector. Hence, the choice of descriptor is crucial for
the accuracy of the ANN potential.

The choices to be made are (a) the type of descriptor that is used for the featurization of the local atomic
structure and compositions, (b) the resolution of the descriptor, and (c) the radial cutoff, i.e. the size of the
local atomic environment.

3.1.1. Selecting a descriptor
Various descriptors have been proposed in the literature [94], most of which are derived from basis-set
expansions of either the atomic density of the local atomic environment [24, 32, 95–98], the radial and
angular distribution functions (RDF and ADF) and higher-order distribution functions within the local
atomic environment [23, 51, 99–103], or directly the local PES [37, 104]. In addition to differences in the
features for the geometry of the local atomic environment, the above descriptors also differ in their approach
for encoding chemical species. We note that the above list of descriptors is not exhaustive, and the
development of new methods is currently an active field of research. Several of the expansion-based
descriptors are available in open-source libraries [105, 106]. As an alternative to expansion-based descriptors
for hand-crafted feature construction, an invariant representation of the atomic coordinates can also be
machine learned [42, 45, 46, 107–109].

For the purpose of ANN potentials, an ideal descriptor

(a) exhibits the symmetries of the potential energy,
(b) requires minimal manual fine-tuning,
(c) provides a parameter for adjusting its resolution,
(d) is continuous and differentiable, so that analytical forces can be obtained,
(e) is computationally efficient, and
(f) does not scale with the number of chemical species.
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Figure 4. The Chebyshev descriptor (implemented in ænet [50, 100]) enables the simulation of multicomponent compositions
with many different chemical species. (a) Product of the basis functions {ϕα} of equation (5) up to order 4 and the cosine cutoff
function f c(R) for a radial cutoff of Rc = 8 Å. (b) shows the same for expansion order 10.

Here, we discuss one specific choice of descriptor that fulfills the above criteria, has been frequently used
for the construction of ANN potentials [110–114], and is available in the free and open-source ANN
potential package ænet [50].

The original high-dimensional ANN potential by Behler and Parrinello (BP) introduced a set of
symmetry functions for the sampling of bond lengths and bond angles within local atomic environments
[23, 99], which were in the spirit of earlier techniques for the symmetry-invariant representation of atomic
coordinates [22]. Artrith, Urban, and Ceder (AUC) showed that the symmetry-function descriptor can be
understood as a basis set expansion of the RDF and ADF, and proposed to replace the original BP functions
with an orthonormal basis set of Chebyshev polynomials [100]. The expansion of the RDF of the local
atomic environment of atom i can then be written as (the ADF expansion is analogous)

RDFi(R)≈
αRDF

max∑
α=0

cRDFα ϕα(R) with cRDFα =
∑
R⃗j∈σi

ϕα(Rij)fc(Rij), (5)

where ϕα is the Chebyshev polynomial of order α and ϕα is the orthonormal dual function. The cutoff
function fc(R) = 0.5[cos(πR/Rc)+ 1] for R⩽ Rc goes smoothly to zero at the cutoff radius Rc and
Rij = |R⃗j − R⃗i| is the distance of neighbor atom j from the central atom i. The RDF and ADF themselves
already exhibit the symmetries of the potential energy, so that the joint sets of expansion coefficients
{cRDFα }∪ {cADFα } can be used as an invariant feature vector, and the precision and the length of the AUC
feature vector can be adjusted by deciding on the polynomial orders αRDF

max and αADF
max at which the expansions

are truncated.
Figure 4 shows the Chebyshev basis functions, and figures 5(a) and (c) show a schematic of the

construction of the feature vector for the local atomic structure.
The expansion in equation (5) provides the featurization of the atomic positions within the local atomic

environment, but it does not account for the different chemical species, since all atoms are considered equal.
To encode also information about atom types, an additional set of expansion coefficients is included as
features, for which the contributions from each atom are weighted with species-specific weights wtj for atom
type t j [100]

c̃RDFα =
∑
R⃗j∈σi

wtjϕα(Rij)fc(Rij)

c̃ADFα =
∑
R⃗j∈σi

∑
R⃗k∈σi

wtjwtkϕα(θijk)fc(Rij)fc(Rik),
(6)

where θijk is the cosine of the angle between atoms i, j, and k. This weighted expansion gives rise to two more
sets of expansion coefficients {̃cRDFα } and {̃cADFα } that can be calculated at essentially no additional cost
together with the unweighted coefficients. This featurization of the composition is shown schematically in
figures 5(b) and (d). Note that the length of the feature vector does not depend on the number of chemical
species that are present in the atomic structure.
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Figure 5. Schematic of the Artrith-Urban-Ceder (AUC) descriptor that is implemented in ænet [50]. The atomic arrangement
within the local atomic environment is described by the coefficients of an expansion in Chebyshev polynomials (ϕα) of the
(a) radial and (c) angular distribution functions. The atomic species (i.e. the local composition) is encoded in further sets of
expansion coefficients, shown in (b) and (d), obtained for basis functions that are weighted with species-specific weights wtj
(t j is the atom type of atom j) that can be calculated at no extra cost, see equation (6).

3.1.2. Selecting the descriptor resolution
The representation of the local atomic environment by expansion-based descriptors, such as the AUC
descriptor discussed above, becomes more precise as the number of basis functions is increased. However,
the computational cost of both the featurization and the evaluation of the atomic energy ANNs also depends
on the number of features. The descriptor resolution should therefore be considered a hyperparameter that
has to be optimized for a given application, so that the number of features is as large as needed and as small
as possible.

For descriptors that are not based on expansion, an additional feature selection step can be introduced.
Feature engineering and feature selection are subject of current research, and various methods have been
proposed for constructing descriptors and selecting relevant features automatically [115–118].

3.1.3. Selecting a radial cutoff
Another hyperparameter that should be optimized during the model construction phase is the cutoff radius
Rc of the local atomic environments.

The larger the cutoff radius is, the more information is available for featurization, and the more atomic
structures can, in principle, be distinguished. However, the computational cost of featurization also generally
increases with the number of atoms within the local atomic environment, and the number of atoms scales as
R3
c . For computational efficiency it is therefore beneficial to choose a radial cutoff that is as small as possible.
The radial cutoff Rc can also strongly affect the convergence of training. If Rc is chosen too small, the

feature vectors might contain insufficient information for the construction of accurate ANN potentials,
resulting in poor generalization. But if Rc is chosen too large, the feature vectors might become dominated by
irrelevant structural and compositional differences that do not actually affect the atomic energies, thus
leading to poor training convergence.

Typical cutoff radii lie after the second or third coordination shell of the central atom, which corresponds
to∼ 6–8 Å for metal oxides [50, 100, 119, 120] and∼ 4–6 Å for organic molecules [51]. It can be beneficial
to increase Rc further to capture also non-bonded interactions, such as hydrogen bonds, and for water cutoff
distances of 6–10 Å have been reported to give accurate results [12, 88, 121].

However, since the optimal cutoff range can be strongly dependent on the chemical system and
application, it is necessary to perform a parameter study and compare the accuracy and transferability of the
resulting ANNs in the validation stage of model construction (section 4).
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Figure 6. Plot of the six activation functions that are currently available in ænet [50]. (a) Function values (output signals) for
input values between−2 and+2. (b) Function derivatives for the same input values.

3.2. Recipe: ANNmodel parameters
While the featurization determines the input dimension of the atomic energy ANNs, the internal architecture
of the ANNs and the employed activation functions are also hyperparameters that need to be optimized.

3.2.1. Selecting the ANN architecture
The architecture of an atomic ANN is defined by the number of hidden layers and the number of neurons
(nodes) in each hidden layer. As discussed in section 1.1, the number of nodes in the input layer is defined by
the dimension of the feature vector, and the output layer consists of a single node that returns the atomic
energy.

The ANN architecture thus determines the model complexity, in the sense that it determines the number
of optimization parameters, i.e. the weights {wi

k,j} and {bi,j} of equation (1). If the ANN is too small, i.e. if it
has too few hidden layers or nodes per layer, the MLP will not be flexible enough to reproduce the underlying
PES well. However, if the ANN is too large and too flexible, it might learn spurious information such as noise
during training, which leads to overfitting (see section 4).

It is possible to monitor for and to avoid overfitting even with large ANN architectures, such as deep
ANNs with more than three layers, but larger-than-needed ANN architectures are also undesirable because
the computational effort for training and ANN potential evaluation increases approximately as N2 with the
number of neurons per layer N. Thus, generally the smallest ANN architecture yielding the required accuracy
and transferability standards should be employed for constructing ANN potentials [122].

Many reported accurate ANN potentials are based on architectures with two hidden layers. The number
of neurons per layer is a hyperparameter that has to be optimized for a given chemical system and
application, though often∼ 20–30 nodes per layer can already yield highly accurate ANN potentials even
for complex materials [31]. For large reference data sets and complex structure/composition spaces,
architectures with more than two hidden layers and more than 50 nodes per layer may be beneficial [51].

3.2.2. Selecting the activation functions
The choice of the activation function f a in equation (1) is another hyperparameter. For ANN training with
standard backpropagation methods (see section 4), the activation function needs to be differentiable. The
activation function needs to be non-linear, or otherwise the ANN function becomes a linear model. Further,
it was found that monotonically increasing activation functions can accelerate the convergence of the weights
during training [123].

Some of the most common activation functions and their derivatives used for atomic-energy ANNs are
shown in figure 6. The activation potential of biological neurons resembles a step function, and step-like or
sigmoidal activation functions, such as the logistic function or the hyperbolic tangent, are also a popular
choice for artificial neurons. However, both functions are non-constant for only a small range of input
values (activations), so that care must be taken during training to ensure a non-vanishing gradient of the
loss function (section 4.1.3). To avoid such saturation issues, a constant linear slope can be added to the
sigmoidal function, an example of which is the twisted hyperbolic tangent function [74] shown in figure 6.
The rectified linear unit (ReLU) activation function has been introduced more recently [124] to avoid
vanishing gradients in deep ANNs. Although the derivative of the ReLU function exhibits a discontinuity at
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0, good training results can be obtained in practice also for regression models such as ANN potentials [125,
126]. The Gaussian error linear unit (GELU) function [127] has similar properties to ReLU but does not
exhibit any discontinuity in its derivative and is thus an even better choice for ANN potentials. Many more
activation functions have been proposed in the literature, and the development of activation functions is still
an active area of research.

In conclusion, the activation functions for the hidden layers of ANN potentials have undergone an
evolution over time, and the twisted hyperbolic tangent and the GELU function address the shortcomings of
the previous generation and are typically good choices in practice.

Note that the range of output values that an artificial neuron can produce is determined by the
co-domain of the activation function. Therefore, the activation function of the final layer of atomic-energy
ANNs is typically chosen to be the linear function, so that the output of the ANNs, i.e. the atomic energy, is
unconstrained.

3.3. Example: model selection
For the water example of section 2.2, the hyperparameters were optimized during model construction. The
best compromise of accuracy on the validation set and computational efficiency was obtained for a model
with a descriptor dimension of 51 (for hydrogen atoms) and 46 (for oxygen atoms), a radial cutoff of 6.35 Å,
two hidden layers, and 25 nodes per layer with hyperbolic tangent activation function [88].

An example of an ANN potential for an inorganic solid material is the potential for amorphous LiSi
alloys from [128], for which the hyperparameters were also thoroughly optimized. The final ANN potential
employed an AUC descriptor with radial and angular expansion order of 10 (= 44 dimensions in total
including the zeroth order), a cutoff radius of 8 Å, two hidden layers with each 15 nodes, and hyperbolic
tangent activation function.

4. Model training and validation

For a specific choice of hyperparameters (section 3), the ANN potential model needs to be trained and
validated on different parts of the data set (section 2). Model training is the process of optimizing the weight
parameters {wi

k,j} and {bi,j} of equation (1) for all nodes of the ANN such that a loss function L is minimized.
Since the optimization targets, i.e. the total energies of the reference structures, are given, this is a supervised
learning task. Combining all weight parameters in a single setW, the weight optimization can be expressed as

Wopt = argmin
W

L(W;Strain), (7)

whereWopt is the set of optimal weight parameters and Strain is the training set of all atomic structures from
the reference data set that are used for training. The remaining atomic structures make up the validation set
Sval that is used during training to monitor the progress, to detect overfitting, and to obtain an initial
estimate of the ANN potential accuracy. As indicated in the flow chart of figure 1, the model
hyperparameters are typically varied until the model achieves optimal performance on the validation set.

4.1. Recipe
To perform the optimization of equation (7) in practice:

(a) the data set needs to be split into training and validation sets,
(b) the initial values for the weight parameters need to be set,
(c) a suitable loss function needs to be defined, and
(d) a training method has to be chosen.

4.1.1. Selecting training/validation sets
Both training set Strain and validation set Sval are derived from the overall reference data set. The
training : validation split (point 1. of the above list) is often between 90% : 10% and 50% : 50%, depending
on the size of the reference data set. The validation data should be selected randomly and should be
representative for the entire reference data set. The training and validation sets must not overlap, i.e. no
atomic structure may be present within both sets.

The validation set is used only for obtaining an initial estimate of the ANN potential accuracy and its
ability to generalize, but additional independent testing of the trained model is necessary (section 5). The
main purpose of the validation set is to find the optimal set of hyperparameters that minimizes the validation
error on unseen structures.
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4.1.2. Weight initialization and feature/target standardization
The accuracy that a trained ANN model can achieve and the efficiency of solving the weight optimization of
equation (7) can strongly depend on the initial values of the weight parametersW as well as the value range
of the features and targets [129]. Feature/target normalization and the choice of initial weight parameters is
therefore an important first step for the training of ANN potentials.

As discussed in section 3.2.2 and shown in figure 6(b), the gradient of typical activation functions is
non-zero only for a narrow range of input values, which in turn depend on the value of the weights wi

k,j and
bi,j and the magnitude of the features or node outputs xi,j (equation (1)). If the initial weight parameters are
chosen such that the activation function gradients are close to or identical to zero, standard methods for the
weight optimization equation (7) that follow the gradient of the loss function are inefficient. This issue of
vanishing gradients can be alleviated by ensuring that the output values of all neurons in each given layer are
initially centered around zero [74].

A common approach is shifting and scaling the features (i.e. the descriptors of the local atomic
environment of section 3.1) such that their values are centered around the point of inflection of the
activation function (if applicable) and fall into the non-constant range of the activation function. For
example, for hyperbolic tangent activation functions (see section 3.2.2), the features can be shifted and scaled
such that their variance is equal to 1 and the values are zero-centered [74]. Note that this standardization
should be applied to each feature individually. With this convention for feature standardization, the weight
parameters should also be initialized such that the distribution of weights has a variance and center that is
appropriate for the activation function used (e.g. a variance of 1 and center of 0 for the hyperbolic tangent).
In practice, initial weights are first drawn from a random distribution and then normalized.

The convergence of the learning process generally benefits from adjusting also the weights of the hidden
layers such that the arguments of their nodes reside in the non-linear region of the activation function.
Various weight initialization methods have been developed and proposed in the literature, and an overview
on common techniques can be found in [129] and the references therein.

Although ANN potentials typically use a linear activation function in the output layer so that the energy
is unconstrained, it is still beneficial to scale the target values so that large differences in the scale of the
weights in the output layer to those in the other layers are avoided, and the initial ANN output is already
close to the target values. Thus, the structural energies are also commonly shifted and scaled such that they
are zero-centered and have the same variance as the features. Instead of standardizing the target values, the
outer ANN weights can also be adjusted before model training so that the mean and standard deviation of
the initial ANN output matches the target distribution (see figure 7).

The impact of feature/target standardization and weight initialization on the initial state of an ANN
potential is visualized in figure 7. Panel (a) of the figure shows that the initial predictions of the ANN
potential before training can be orders of magnitude different from the DFT reference values, if the target
energies and forces are not standardized. After proper standardization, the initial predictions are of the same
order of magnitude as the target values as shown in figure 7(b), which generally accelerates the training
process significantly.

4.1.3. Selecting a loss function
The loss function L (sometimes also called objective function) encodes the optimization targets, i.e. the
properties that the ANN potential is trained to reproduce, such as the total structural energy and/or the
interatomic forces. Whether only energies or only forces should be included in the loss function depends on
the planned application of the ANN potential, since the improved performance of the chosen target property
usually causes the property that is left out to be of reduced accuracy. On the other hand, training on both
energies and forces simultaneously is computationally more demanding than training on each quantity
separately.

4.1.3.1. Energy training
The most common choice of loss function L is for training on energy information only

LE(W) =
1

Ntrain

∑
σ∈Strain

1

2

(
EANN(σ;W)− Eref(σ)

)2
, (8)

where Ntrain is the number of atomic structures in the training set Strain, EANN is the ANN potential energy of
equation (3), Eref is the corresponding reference energy, and the sum runs over all structures σ within the
training set.

Although some simulation techniques do not require gradients, such as Metropolis Monte-Carlo
sampling [131], for most applications including geometry optimizations and MD simulations the
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Figure 7. Distribution of ANN energies and forces before model training compared to their corresponding target values without
(left panels) (a) and with (right panels) applying output normalization (b). Closer alignment between initial ANN output and
target values can be obtained by adjusting the outer ANN weights to match the mean and standard deviation of the target
energy distribution, enabling faster model convergence with the number of training iterations. The data shown are reference
configurations for a water monomer PES based on around 20 000 configurations generated by a grid search [130]. The structures
are sorted by ascending DFT reference energy and force.

interatomic forces need to be well represented. Training on the energy-dependent loss function LE of
equation (8) can yield accurate forces, but a fine sampling of the phase space of interest might be
required [132]. Hence, a training set with a large number of structures might be needed, and the
computational cost for the reference calculations can become limiting. It is therefore often desirable to
include the atomic forces as additional training targets [133].

4.1.3.2. Force training
In principle, it is possible to train an ANN potential on force information only by employing a loss function
that is based on the force errors

LF(W) =
1

Ntrain

∑
σ∈Strain

atoms∑
i

∣∣∣⃗Fi,ANN(σ;W)− F⃗i,ref(σ)
∣∣∣2, (9)

where F⃗i,ANN(σ;W) is the force acting on the ith atom in structure σ as predicted by the ANN potential and
F⃗i,ref is the corresponding reference force. For efficient force training, the ANN potential can be expressed
such that the final layer returns an atomic force vector instead of an atomic energy [134]. However, the total
structural energy can only be obtained up to an unknown constant from ANN potentials that predict forces,
which makes it challenging to validate such potentials for the prediction of thermodynamic quantities.

4.1.3.3. Energy and force training
A more comprehensive loss function can be constructed by combining the energy and force loss functions
from equations (8) and (9), which can also be generalized to higher derivatives of the energy

LE,F(W) = aELE(W)+ aFLF(W) (10)
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where aE and aF are weights that determine the contributions of the energy and force errors to the overall loss
function value.

The combined energy and force training ensures that information from both the potential energy and its
gradient enter the training, which reduces the number of reference data points required for training [112].
However, since the forces are the negative gradient of the energy, training with the loss function of
equation (10) requires the derivative of the Force with respect to the ANN weights (i.e. the second derivatives
of the energy), which can become computationally demanding and is error-prone to implement in computer
code. We note that complex implementations can be avoided by utilizing efficient numerical schemes instead
of fully analytical derivatives [135].

Another alternative is the translation of force information to additional energy reference data points by
approximating the energy of atomic structures with displaced coordinates using a Taylor expansion [112].
This approach improves the force prediction accuracy by increasing the density of training points without
requiring additional reference calculations.

4.1.4. Training methods
Various methods for ANN weight optimization (equation (7)) have been proposed in the literature. Most
practical methods make use of the gradient of the loss function, i.e. the derivative of the loss function
L with respect to the ANN weight parametersW, which can be efficiently calculated using error
backpropagation [74, 136]. The choice of training method ultimately depends on the size of the training set,
the size of the structures in the training set (in terms of atoms), and the available computer hardware.

In general, two classes of training methods are distinguished, batch training and online training methods.
In batch training, the ANN weights are updated based on the actual value and gradient of the loss function,
which requires evaluating the errors of all samples in the training set. In contrast, in online training, ANN
weights are updated sequentially based on the errors and gradients of each individual sample from the
reference data set. An intermediate approach is the online training withmini batches, in which the weight
updates are calculated based on blocks of data containing a specified number of samples.

An advantage of batch-training methods is that the second weight derivative (the Hessian) can be
approximated more readily, such as in the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [137–141], which can enable convergence to solutions with lower residual loss function. Batch
training can also be parallelized trivially, since the errors of all atomic structures in the reference data set can
be evaluated simultaneously.

One advantage of online training with stochastic gradient descent [74] or related methods such as
ADAM [142] is the efficient evaluation of weight updates. In addition, models trained with online methods
often generalize well because of the regularizing effect of the approximate loss function evaluation [74]. In
online training, the training schedule can be controlled, i.e. the order in which samples are chosen from the
reference data set, which can be useful for preferential training of atomic structures with high errors or with
low energies (Boltzmann weighting). More complex online-training methods, such as the extended Kalman
filter [143, 144], can also make use of approximate Hessian information.

4.1.5. Overfitting and extrapolation
ANN potential training using the methods of the previous section minimizes the loss function of
equation (7) for the training set only. However, good performance for the training data does not necessarily
imply that the potential will generalize to structures that were not included in the training process.

In order to estimate how well the MLP generalizes, the loss obtained for the validation set (section 4.1.1)
is typically considered. If the validation-set loss is similar to the training-set loss, it can be assumed that the
ANN potential generalizes well for structures that are reasonably similar to those in the reference data set. If
the validation-set loss is significantly larger than the training-set loss, either overfitting has occurred or the
reference data set samples the structural space to sparsely so that extrapolation is observed.

Overfitting is the phenomenon when the ANN function reproduces the training samples with high
accuracy but at the cost of introducing unreasonable behavior in the regions between the training points
(see figure 8(a)). In the case of noisy reference data, overfitting also means that the ANN incorrectly
reproduces the noise and not only the expected value of the targets. Overfitting occurs when the ANN is too
flexible for the size and density of the training set, i.e. if the training set contains too few data points or if the
model complexity is too great and an adjustment of the hyperparameters (see section 3) is needed.
Overfitting can be reduced by introducing regularization terms in the loss function [74, 145] or by extending
the training set, for example, by including force information (see figure 8(b)). During training, overfitting
can be detected by monitoring the training-set and validation-set loss, which start to diverge at the onset of
overfitting.
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Figure 8. Overfitting and use of gradient information: Fitting of the simple model function cos(x) in order to illustrate the effect
of overfitting. Here, x would correspond to an interatomic distance and the cosine function represents minima and maxima (or
saddle points) of the PES. When only energy information is used to optimize the ANN weights, the training points are accurately
interpolated but poor results for points not in the training set are found (a). Training the ANN to forces in addition to the
reference energies, results in an improved representation of points not in the training set (b). For both examples, a
1− 30− 30− 1 ANN architecture was used, and the x value was the only input.

Figure 9. Evaluation of the training set (black circles) and validation set (red circles) accuracy of the machine learning potential
(MLP) for liquid water trained on the initial reference data described in section 2. (a) ANN energies and (b) the corresponding
atomic forces plotted against their reference DFT values.

As discussed in the data selection section 2, ANNs are unreliable for extrapolation [78]. If the training set
samples the structure space too coarsely, regions of the PES may be insufficiently represented. An example is
shown in figure 8(b). Underrepresented regions can also be identified by the validation set, if at least some
relevant structures are present.

4.2. Example: training and validation
Returning to our example case on liquid water, figure 9 examines the training and validation set accuracy of
the MLP trained on the initial data set described in section 2.1 based on a training : validation split of
90% : 10%. It can be seen that both training and validation set are accurately represented by the initial MLP
across the full range of total energy and atomic force values with low validation root mean squared errors
(RMSEs) (1.4 meV/H2O and 83.2 meVÅ, respectively) that are on the same level as the corresponding
training values (1.2 meV/H2O and 84.7 meV Å−1).

These low figures and the close correspondence between training and validation errors indicate that the
initial MLP has been sufficiently optimized and a close to optimal choice of hyperparameters has been found.
There are no obvious outliers and the accuracy is similar over the entire energy range, i.e. no energy region is
underrepresented. Now, the model can be tested in the intended application to quantify its accuracy.
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Figure 10.Monitoring of critical interactions for two molecular dynamics (MDs) simulations (shown in red and blue) performed
with the initial liquid water MLP. Both simulations ended prematurely due to instabilities in the potential. The x-axis shows the
remaining simulation time until the end of the simulation. In panels (a) and (b) the intramolecular water angle with the shortest
and largest value, respectively, across all angles in the simulation cell is shown for each time step. Correspondingly, in panels
(c)–(g) extrema of different intra- and inter-molecular distances are displayed. Instabilities are first observed in the minimum
distance between inter-molecular hydrogen atoms (marked by the shades area) indicating that this interaction type might not be
properly represented in the initial MLP even though it accurately represents all reference configurations.

5. Model testing and active learning

Once an ANN potential has been obtained that performs well on the validation set (section 4), the potential
needs to be tested in actual applications, such as MD simulations. Generally, an initial data set generated as
described in section 2, e.g. by sampling from MD simulations and/or by manually perturbing equilibrium
structures, does not ensure that the configuration space visited during the intended application is fully
covered and can therefore lead to ANN potentials that exhibit instabilities in simulations. This is exemplified
in our water case study when the initial MLP was first employed in MD simulations. As demonstrated in
figure 10, the initial MLP exhibits stability issues leading to a premature termination of the simulation even
though its validation accuracy is high (figure 9) and its initial training set comprises of a diverse set of
structures which cover a broad energy and force range (figure 3). A detailed analysis of the corresponding
trajectories reveals the underlying reason for the stability issue: the interactions between inter-molecular
hydrogen atoms is not properly described.

Such generalization issues can be addressed by iteratively including additional data points in the
reference data set, as shown in the outer loop of figure 1. Here, a model trained on an initial data set is used
in preliminary applications and then retrained once it encounters configurations for which the model
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Figure 11. Iterative refinement of the initial liquid water dataset with additional structures from compressed force field MD
simulations: (a) distribution of the minimum inter-molecular hydrogen distance across the configurations in the reference data
set (blue and orange) and the high density configurations obtained form force field MD (grey). (b) Energy distribution of the
initial structures and the added compressed structures which together form the second iteration of the reference data set.

prediction shows a low accuracy. The challenge here is how to identify such configurations with a high model
uncertainty.

While in principle one could recompute all configurations generated with a given model by the
underlying reference method to detect inaccurately described structures, this is computationally very
inefficient. A solution to this is to make use of active learning approaches that select the next training set
iteration from unlabeled data in an automated fashion with the benefit that the amount of expensive
reference calculations is limited.

Active learning approaches for the construction of MLPs [122, 146, 147] comprise of three steps which
are executed in a loop until the desired model performance is reached:

(a) efficient exploration of the configuration space,
(b) selection of relevant configurations and labeling, i.e. calculations of reference energies and forces,
(c) followed by model retraining.

One can distinguish between on-the-fly active learning [147–149] in which retraining happens during the
simulation and offline active learning where the next iteration of training structures is first accumulated,
then a new model is trained, and subsequently a new simulation with the improved MLP will be launched.

The crucial step in an active learning approach is the selection of data points with high model uncertainty
without knowing their reference properties beforehand. The goal is to find a query strategy to decide if a
given configuration is already well described by the current ANN potential or if it should be added to the
reference data set. Approaches proposed in the literature generally belong to one of the following classes:

(a) Data set reduction approaches: A large set of candidate configurations is generated with some
sampling strategy, redundant/similar configurations are removed, and additional reference calculations are
only performed for the configurations that are most different from those in the present reference data set. For
example, Bernstein et al selected a subset of configurations from relaxation trajectories by (1) Leverage-score
CUR algorithm, and (2) Flat histogram sampling (selection from low-density regions) with
Boltzmann-probability bias [150].

(b) Query-by-committee approaches: An ensemble of models is used to evaluate a set of candidate
configurations that were generated with some sampling strategy using one specific model. The standard
deviation of the energy (and potentially the forces) across the committee of models is then used as an
uncertainty estimate [79, 122, 151]. Ensemble methods can be also combined with data set reduction
techniques as described above [79].

(c) Statistical uncertainty quantification: Statistical inference, e.g. based on the Bayesian framework [152],
can be used to estimate the uncertainty of predictions. GPR models provide an intrinsic uncertainty estimate
that can be employed [147, 149]. In ANN potentials, dropout can provide an uncertainty estimate [153], i.e.
the query-by-committee can be build into the ANN architecture. In the case of MLP methods that depend
linearly on the model parameters, such as moment tensor potentials [148], extrapolation can also be detected
on-the-fly, which can be exploited for active learning.
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5.1. Example: model testing and refinement
In the case of the liquid water MLP, the initial dataset was extended manually instead of using an active
learning technique since the underlying reason for its stability issue could be identified by the analysis
summarized in figure 10. To improve the representation of the ill-described inter-molecular hydrogen
interactions additional reference structures were obtained from compressed MD simulations (employing an
artificially increased density and a higher temperature) with a classical force field. As shown in figure 11,
these structures sample short hydrogen-hydrogen distances and are located in a high-energy region. After
labeling the additional structures with the corresponding DFT energies and forces, the retrained MLP could
be applied in MD simulations without any stability issues even at elevated temperatures. Additional rounds
of model testing and refinement at higher temperatures followed and the final reference set comprising of a
total of 9189 structures can be obtained online from [154].

6. Discussion and outlook

In this tutorial review, we outlined common strategies for the construction of ANN-based machine-learning
potentials. However, even if the best practices for the construction of MLPs are followed and active learning
approaches are implemented for data selection, there are still remaining challenges that hinder the universal
application of MLPs.

Depending on the size of the relevant configuration space, one significant challenge can be the expense of
the reference calculations. Compiling a reference data set that captures all regions of the PES of a
multi-component system can be a formidable challenge.

The construction of MLPs can be simplified by focusing on (a) the description of specific parts of the
potential-energy, (b) certain regions of the system, or (c) using MLPs alongside full first-principles
calculations, instead of describing the full PES of all atoms in the simulation box with a single MLP.
Compared to general MLPs these specialized MLP approaches are generally more robust, require a lower
number of expensive high-level reference calculations, and are easier to converge during training, while
having the downside of being computationally more involved during the execution of the actual simulation.

Potentials fitted not on the full PE but on the differences to some reference are commonly referred to as
delta ML approaches.

6.1. Energy decomposition approaches
Rather than learning the full potential energy, long-range contributions such as electrostatics or van der
Waals (vdW) interactions can be removed before model training and the remaining short-range energy is
used as the target property which can be more easily described by atomic ANNs that depend on local
environments.

Etotal = E short
ANN + E elec

ANN + EvdW. (11)

The removed energy contributions can then be added back in by employing expressions that explicitly
consider the physical distance dependence. This can be done by either employing already available analytic
expression, as in the case of vdW interactions [90, 155] (e.g. with Grimme’s D2/D3 methods [156, 157]),
or by training separate ML models, for example to represent atomic charges for calculating long-range
electrostatics based on Coulomb’s law [76, 121, 155]. A dependence of the MLP energy on long-ranged
features can also be directly included, avoiding the need to explicitly model atomic charges which are no
uniquely defined observables [81].

6.2. Energy-difference approaches
Another group of delta ML approaches focuses on the prediction of energy differences between two reference
methods of different quality. Here the energy difference between a lower-level method and a higher-level
quantum-mechanics (QMs) based method is predicted by an MLP. An early example of such a composite
strategy in which an ML correction is added to a computationally efficient but less accurate QMmethod is
the delta-machine learning approach by Ramakrishnan et al [158]. Other examples using different
levels of theory are discussed in [111] and [158]. Instead of predicting total energy differences,
molecular-orbital-based schemes model high-level electronic structure correlation energies using inputs
from Hartree–Fock calculations with the goal of being more transferable across chemical systems [159, 160].

6.3. Embedding approaches
Following the spirit of QM/MM approaches [161–166], delta MLPs can be developed to focus on certain
regions in space within the entire system. Those regions of the system that are not described by the MLP are
instead described by molecular mechanics-based or lower-level QMmethods [167]. This strategy can also be
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combined with energy-difference approaches, for example by predicting the energy difference between a
low-level QMmethod and a high-level QMmethod by an MLP for atoms inside a limited spatial region
which is coupled to molecular mechanics-based interactions for describing the larger environment (making
it a QM/MM/ML approach in which the delta refers to energy difference and spatial separation) [168].

6.4. Domain-limited approaches
Finally, specializedMLPs can be employed alongside conventional first principles calculations to accelerate
the calculation of QM properties. These potentials are often focused on a specific region of the
configurational space and generally do not need to be trained to the highest degree of accuracy since final
first principles reference calculations are included as part of the full workflow. Examples are the use of
ML-accelerated geometry optimizations in which initial structures are pre-optimized with an MLP, followed
by a final ab initio optimization that requires fewer steps to convergence since its input structure is already
close to the ground state [169, 170]. Specialized MLPs have also been employed in combination with
evolutionary algorithms to determine the phase diagram of amorphous alloys [128].

7. Summary

Machine-learning interatomic potentials enable accurate and efficient atomic-scale simulations of complex
systems that are not accessible by conventional first principles methods, but for many systems of interest
machine-learning potentials have not yet been developed. Here, we reviewed common strategies and best
practices for the construction of machine-learning potentials based on ANNs. Data selection, model
selection, training/validation, and testing/refinement have been exemplified using practical examples. The
number of available tools and data sets for machine-learning potential applications is rapidly growing, and
we refer the reader to a curated and editable list at https://github.com/atomisticnet/tools-and-data with a
collection of free and open-source tools and data resources. As discussed, the construction of ANN potentials
is still a complex and manual process involving many steps. Recipes are provided here with the hope that in
future more automated and standardized workflows for ANN construction will be established, so that the
method can achieve its full potential in accelerating the prediction of materials and molecular properties
with an unparalleled combination of accuracy and speed.
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[166] Magalhães R P, Fernandes H S and Sousa S F 2020 Isr. J. Chem. 60 655
[167] Zhang Y-J, Khorshidi A, Kastlunger G and Peterson A A 2018 J. Chem. Phys. 148 241740
[168] Shen L and Yang W 2018 J. Chem. Theory Comput. 14 1442
[169] Peterson A A 2016 J. Chem. Phys. 145 074106
[170] Jacobsen T, Jørgensen M and Hammer B 2018 Phys. Rev. Lett. 120 026102

21

https://doi.org/10.1103/PhysRevB.85.045439
https://doi.org/10.1103/PhysRevB.85.045439
https://doi.org/10.1016/j.ins.2009.06.006
https://doi.org/10.1016/j.ins.2009.06.006
https://doi.org/10.4208/cicp.OA-2017-0213
https://doi.org/10.4208/cicp.OA-2017-0213
https://doi.org/10.1021/acs.jpca.0c03926
https://doi.org/10.1021/acs.jpca.0c03926
https://arxiv.org/abs/1606.08415 [cs]
https://doi.org/10.1063/1.5017661
https://doi.org/10.1063/1.5017661
https://doi.org/10.1109/72.557673
https://doi.org/10.1109/72.557673
https://doi.org/10.1021/nl5005674
https://doi.org/10.1021/nl5005674
https://doi.org/10.1021/ct049976i
https://doi.org/10.1021/ct049976i
https://doi.org/10.1088/2632-2153/abba6f
https://doi.org/10.1088/2632-2153/abba6f
https://doi.org/10.1039/C8CP04508A
https://doi.org/10.1039/C8CP04508A
https://arxiv.org/abs/2006.05475
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://arxiv.org/abs/1412.6980 [cs.LG]
https://doi.org/10.1002/cem.1180080605
https://doi.org/10.1002/cem.1180080605
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1038/s41524-019-0153-8
https://doi.org/10.1038/s41524-019-0153-8
https://doi.org/10.1021/acs.jpclett.0c01061
https://doi.org/10.1021/acs.jpclett.0c01061
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1038/s41524-019-0236-6
https://doi.org/10.1038/s41524-019-0236-6
https://doi.org/10.1063/5.0016004
https://doi.org/10.1063/5.0016004
https://doi.org/10.1038/s41524-020-00390-8
https://doi.org/10.1038/s41524-020-00390-8
https://doi.org/10.1039/C7SC04934J
https://doi.org/10.1039/C7SC04934J
https://doi.org/10.1002/jcc.20495
https://doi.org/10.1002/jcc.20495
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1021/acs.jctc.8b00636
https://doi.org/10.1021/acs.jctc.8b00636
https://doi.org/10.1063/1.5088393
https://doi.org/10.1063/1.5088393
https://doi.org/10.1038/229558a0
https://doi.org/10.1038/229558a0
https://doi.org/10.1016/0022-2836(76)90311-9
https://doi.org/10.1016/0022-2836(76)90311-9
https://doi.org/10.1021/cr00023a010
https://doi.org/10.1021/cr00023a010
https://doi.org/10.1021/ja992874v
https://doi.org/10.1021/ja992874v
https://doi.org/10.1016/j.cbpa.2007.01.684
https://doi.org/10.1016/j.cbpa.2007.01.684
https://doi.org/10.1002/ijch.202000014
https://doi.org/10.1002/ijch.202000014
https://doi.org/10.1063/1.5029879
https://doi.org/10.1063/1.5029879
https://doi.org/10.1021/acs.jctc.7b01195
https://doi.org/10.1021/acs.jctc.7b01195
https://doi.org/10.1063/1.4960708
https://doi.org/10.1063/1.4960708
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1103/PhysRevLett.120.026102

	Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations    
	1. Introduction
	1.1. High-dimensional ANN potentials

	2. Data selection
	2.1. Recipe: generation of initial reference data sets
	2.2. Example: an initial reference data set for liquid water

	3. Model selection
	3.1. Recipe: featurization of local atomic environments
	3.1.1. Selecting a descriptor
	3.1.2. Selecting the descriptor resolution
	3.1.3. Selecting a radial cutoff

	3.2. Recipe: ANN model parameters
	3.2.1. Selecting the ANN architecture
	3.2.2. Selecting the activation functions

	3.3. Example: model selection

	4. Model training and validation
	4.1. Recipe
	4.1.1. Selecting training/validation sets
	4.1.2. Weight initialization and feature/target standardization
	4.1.3. Selecting a loss function
	4.1.4. Training methods
	4.1.5. Overfitting and extrapolation

	4.2. Example: training and validation

	5. Model testing and active learning
	5.1. Example: model testing and refinement

	6. Discussion and outlook
	6.1. Energy decomposition approaches
	6.2. Energy-difference approaches
	6.3. Embedding approaches
	6.4. Domain-limited approaches

	7. Summary
	Acknowledgments
	References


