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Double-stream Convolutional Neural Networks for
Machine Vision Inspection of Natural Products
Przemysław Dolata, Mariusz Mrzygłód, and Jacek Reiner

Centre for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, Wroclaw
University of Science and Technology, Wroclaw, Poland

ABSTRACT
There are known applications of convolutional neural networks to
vision inspection of natural products. For many products it is
sufficient to acquire and process a single image, but some might
require imaging from two sides. Human experts performing quality
inspection ofmalting barley typically only observe one side of each
grain, but in doubtful cases look at both sides, intrinsically combin-
ing the information. In this paper, we make two contributions. We
present a method for determining whether imaging objects from
two sides yields performance benefits over single-sided imaging.
Then we introduce a double-stream convolutional network for
reasoning from two images simultaneously and analyze several
methods of combining information from two streams. We find that
when orientation of the object is unpredictable and the streams
are not specialized to process a particular view, a fully shared
architecture combining information on the prediction level yields
best performance (98.7% accuracy on our dataset).
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Introduction

Modern food processing industry has to guarantee high quality and safety of
products, therefore quality inspection is one of themost important and universal
operations. Machine vision methods are widely known as successful tools for
automating this inspection in manufacturing. But in the food industry source
materials are unique in the fact that they are inherently irregular and variable.
They cannot be analyzed with the same algorithms as most synthetic goods.
Acceptable quality objects have a high intra-class variance of features, while the
inter-class variance between good and defective objects is relatively low, making
the task of automating the inspection challenging.

An example of such product is barley grain, a key ingredient in production of
beer and whiskey, with high quality requirements. In current industrial practice,
identifying defects and contaminations of barley still has to be done visually,
based on statistical sampling. A human expert usually looks at multiple grains
scattered over a flat surface and hand-picks the defective ones. In case when a
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decision cannot be made with enough confidence, an individual grain is picked
up and viewed with more detail, including rotating to reveal its opposite side.
This means that a human is able to perform reasoning based on combined
information from multiple views.

Existing approaches to machine vision inspection of samples of barley grain
rely on typical document scanners for data acquisition and digital image
processing techniques such as morphological operations, edge detection, or
segmentation. In these works, arbitrary sets of shape, color, and texture
features are extracted from images, so that each grain is represented with a
feature vector. Those vectors are then used to train classifiers such as Linear
Discriminant Analysis (Zapotoczny, Zielinska, and Nita 2008), artificial neural
networks (Nowakowski et al. 2012), hyperellipsoidal decision boundary clas-
sifiers (Szczypiński, Klepaczko, and Zapotoczny 2015), or k nearest neighbors
(Hailu and Meshesha 2016). However, none of them consider simultaneous
processing and reasoning from more than one image of a grain, despite
(Szczypiński and Zapotoczny 2012) suggesting that for varietal recognition,
both dorsal and ventral sides should be analyzed.

Over the last few years, a new branch of machine learning known as deep
learning has improved the state-of-the-art in computer vision. Convolutional
neural networks (CNNs) have been particularly successful at tasks such as
image classification and object detection. In classical machine learning, a
number of arbitrary, hand-engineered features is extracted from image, and
then supplied to a trainable classifier. Performance of the model is thus limited
by the quality of detected features. The principle behind deep learning is that
both classification function and the feature extraction transformation are
trained. There is no arbitrariness of a designer (human) and the model learns
the most relevant features directly from data.

One of the earliest industrial applications of deep learning was recognition
of handwritten postal codes (LeCun et al. 1989). Since then several more
complex industrial problems have been solved using CNNs of various archi-
tectures—Deng (2014) presents a detailed applications survey. Recent years
brought deep learning solutions to natural objects inspection problems
(Brahimi, Boukhalfa, and Moussaoui 2017; Grinblat et al. 2016; Lee et al.
2015; Potena, Nardi, and Pretto 2016; Reyes, Caicedo, and Camargo 2015;
Sladojevic et al. 2016; Sünderhauf et al. 2014).

The concept of reasoning from multiple images or using multiple classifiers
has been researched in the context of deep learning, starting with Cireșan,
Meier, and Schmidhuber (2012) who used ensemble methods for road sign
recognition. More recently, Scott et al. (2017) proposed a prediction-level
fusion of multiple CNN classifiers processing a single image. Other works
(Lin, RoyChowdhury, and Maji 2015; Liu et al. 2017), particularly concerning
facial recognition (Lu et al. 2017; Xiong et al. 2016), extract different kinds of
features and perform classification basing on a fused representation. This
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approach has been found successful in processing images of different mod-
alities (Audebert, Saux, and Lefèvre 2017; Su et al. 2015), particularly in video
analysis and action recognition (Park et al. 2016). In this area however,
prediction-level fusion is also being researched (Li, Chen, and Hu 2017;
Simonyan and Zisserman 2014; Ye et al. 2015). Snoek et al. (2005) provide a
comparison of early versus late fusion approaches, but their results are not
definitely conclusive.

This study is a part of a project to design a complete, automatic barley grain
inspection system, capable of imaging individual grains and separating them
basing on defects. Whether to equip the system with a single camera or a pair of
cameras is an important design choice, influencing costs of the finished device. If
imaging the grain from both sides improves classification accuracy, this addi-
tional expense will be justified. In this case, the most effective method of
combining information from both images needs to be developed.

In this paper, we apply a CNN to barley defect recognition problem, introdu-
cing a novel double-stream architecture for simultaneous processing of both
sides of a grain.We present our contribution in two distinct sections. In the first,
we provide a problem-independent method of examining whether double-sided
imaging really increases classification performance of the system. In the second,
we analyze several methods of combining information from the dual streams,
comparing architectures with different fusion points.

Convolutional neural networks

In computer vision input data are high-dimensional, every pixel of an image
constituting an independent dimension. For this reason, classical machine
learning algorithms do not input pixel data directly. Instead, images are first
processed with feature extraction algorithms in order to reduce representa-
tion to a less dimensional form. The difficulty lies in designing this extraction
algorithm, so that it provided meaningful information about samples, allow-
ing distinguishing classes in the problem space. CNNs alleviate this difficulty
by learning to perform feature extraction.

Connections in those networks are arranged in special patterns, instead of full
connectivity between units of subsequent layers. Each unit is only connected to
some region of the input space (receptive field). Weights are also constrained, so
that units with different receptive fields share the sameweights. Effectively, a single
layer of a CNN performs a convolution operation on its input, with convolution
kernel being a trainable parameter. Stacking convolutional layers with activation
functions allows construction of deep networks which learn to detect a hierarchy
of features—from simple ones, like edges or color gradients, to more abstract
patterns. Those deep CNNs are usually followed by fully connected neural net-
works (FC) in order to perform classification or regression. This way both the
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classification and feature detection functions can be jointly learned directly from
data, using known gradient descent algorithms.

There are several unique problems regarding CNNs. The convolution alone
does not reduce dimensionality effectively enough—for this reason pooling is
typically used. Making the networks deep by stacking many layers of neurons is
the crucial factor in their performance, but gradients tend to vanish at saturating
activation functions. As a solution, a new type of nonlinearity, the rectified linear
unit (ReLU), has been introduced (Krizhevsky, Sutskever, and Hinton 2012).
Several methods of normalizing responses betweenmultiple convolution kernels
have been developed (Ioffe and Szegedy 2015; Krizhevsky, Sutskever, and
Hinton 2012). Dropout has been proposed as a countermeasure to overfitting
and co-adaptation of units in large networks (Srivastava et al. 2014).
Normalization of network outputs into a probability distribution is typically
done with the softmax function.

Training a network, assuming each sample belongs to only one of the
possible classes, can be understood as minimizing a multinomial logistic loss
function:

E ¼ � 1
N

XN

i¼1
log pi;l

� �

where N is the number of examples in a batch and pi,l is the probability
assigned to the correct label for i-th example.

The standard gradient descent is not used to train CNNs: calculating the
exact gradient of the loss function is computationally prohibitive due to large
number of parameters to optimize and typically large amount of training
data. Instead, gradient from only a small portion of the training data (batch)
is computed and used to update weights—this is referred to as stochastic
gradient descent (SGD).

Experimental setup

Training deep CNNs is still a computationally heavy task and in order to do
it efficiently an optimized software implementation is necessary. We chose to
use the Caffe framework (Jia et al. 2014), due to its high performance GPU
implementation via cuDNN and a freely available repository of pretrained
models, the ModelZoo.

Primary CNN architecture used throughout this study is based on AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), consisting of five convolutional and
three fully connected layers. It was originally designed for the ImageNet classi-
fication task (Jia Deng et al. 2009), which is by two orders of magnitude larger in
terms of amount of data and number of classes than our problem. Thus we
decided to reduce the number of neurons in fully-connected layers from 4096 to
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512 neurons to reduce potential of overfitting in the classifier. Additionally, we
initialize weights in convolutional layers by transferring them from a model
pretrained on ImageNet in order to increase detection performance and limit
overfitting in that part of the network.

Double-stream networks

In the case of double-sided imaging, each sample would be given by a pair of
images. A naïve solution would be to process each image separately and
combine those predictions externally. Xu, Krzyzak, and Suen (1992) give
several methods of combining classifiers. But a human expert can view a single
grain from many angles during the reasoning process itself, instead of rating
two separate images. Intuitively, a network simultaneously processing two
images might learn correlations between features found in each of them,
potentially providing more accurate predictions at test time.

Since both images are of the same modality (RGB data), they should be
processed using the same architecture. Therefore, we decide to duplicate
layers from the baseline model in order to create a double-stream network.
This network will take a pair of images as input, feeding each one to a
corresponding stream. Computation will take place independently for both
streams, until the merging point where the information will be combined.
The actual choice of this merging point and method of fusion is dependent
on the architecture and will be discussed in respective section.

We make no assumptions regarding the arrangement of images—that is,
there are no guarantees that, for example, a dorsal side view will always be in
the first image of a pair. The network must be robust to randomness in
arrangement. We accomplish that by sharing weights and gradients between
the duplicated layers, enforcing that their parameters will always be equal. This
has the following technical consequence. One training iteration in a single-
stream network results in one update of its weights (the following assumes
training with simple SGD with momentum):

Vt  μVt�1 � α�L Wt�1ð Þ
Wt  Wt�1 þ Vt

where Wi is the weights vector in iteration i, Vi is the weight updates vector in
iteration i, �L Wð Þ is gradient w.r.t. the weights W and μ; α are learning
hyperparameters: momentum and learning rate. In a double-stream network,
each stream has its own, different gradient�L 1ð Þ and�L 2ð Þ, but the update is still
applied to a single weights vector:

Vt  μVt�1 � α�L 1ð Þ Wt�1ð Þ � α�L 2ð Þ Wt�1ð Þ
Wt  Wt�1 þ Vt
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This is effectively the same as doubling the batch size for this network,
making the training more aggressive. In case of a network that consists of
a shared double-stream part merged into a single stream, this makes the
shared part learn faster than the single-stream part.

Output of every network will be normalized into a probability distribution
using the softmax function. Those distributions will be transformed into
correct or false answers differently in two settings: binary classification
(grain defective or acceptable) and multi-class classification (index of exact
defect or acceptable class). For the multi-class task, probabilities will be con-
verted into indices by choosing the highest ranked element (argmax). For
binary classification, the probabilities corresponding to defect classes will be
summed and a sample will be marked as acceptable if this collective defect
probability will be lower than some threshold. This gives a degree of control
over the classifier, allowing tuning of its sensitivity and precision, but is
infeasible in cases where no preferred class can be specified (e.g. varietal
classification). Additionally, we analyze the binary classifier performance in
the case of simply choosing the most probable element (argmax).

Data acquisition and preprocessing

Malting barley grains were obtained from malting house supply and segre-
gated by an expert into seven classes, corresponding to healthy grains and six
types of defects and impurities as specified by the Polish Standard (Polish
Committee for Standardization 1998).

In order to acquire images of many grains efficiently, a prototype automatic
imaging system is used (Lampa, Mrzygłód, and Reiner 2016). Barley is imaged
by two color CCD cameras with lenses and strobed LED ring illuminators,
installed coaxially above and below a transparent plate (Figure 1). Grains
transportation through system is ensured by vibratory and screw feeders and
rotation of the plate. Due to additional barriers fixed above the plate each grain is
centered in cameras’ fields of view. This allows for acquisition of two images per
grain: one showing its ventral, another its dorsal side, with efficiency of up to 8
grains per second. However, at such processing speed it is not possible to force
the grains to assume any desired orientation in the imaging area—consequently,
there is no information which side of the grain is shown in which image.

Images acquired in this process are not modified in any way except for a
crop to a square of 800 × 800 pixels, centered on a grain’s visual center of mass,
and resize to 227 × 227 pixels with bilinear interpolation. Directly before
putting into the neural network, a mean image of the entire dataset is sub-
tracted from each image, in order to zero-center the data.

We acquired 18,463 pairs of images in seven classes ranging from 160 to
7753 pairs in each class. Figure 2 shows examples of several defects and a good
quality grain (bottom most row) for comparison. Data were randomly
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partitioned into three complementary, approximately equal bins, preserving
the class size proportions. These bins were then assembled into three cross-
validation folds: each time a different bin was selected as training dataset, with
the two remaining ones constituting a validation set.

Comparison of single-stream and double-stream architectures

In this section we demonstrate a method of comparing, whether imaging
objects from two sides provides any classification performance benefit over
imaging only one side. In the case of double-sided imaging, the resulting
dataset would be twice as large as in the latter case, giving the double-sided
approach the advantage of more training data. We attempt to isolate the
improvement introduced by imaging method itself from the influence of
increased dataset size.

For the default double-stream architecture we choose to duplicate the
convolutional part of the network, join the extracted features using simple
concatenation, and train a fully-connected classifier on that representation.
This however introduces the earlier described problem of gradient flow
inequality through shared and non-shared parts of the network. In order to
provide equal conditions for comparison of single-stream and double-stream
architectures, we apply the following procedure (Figure 3):

Figure 1. Double-sided image acquisition system.
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● First we train a dummy single-stream network on a dataset consisting of
an unordered sequence of images from both cameras (no information
about dorsal/ventral correlation is provided at this stage).

● Then we extract weights of its convolutional part and use them to
initialize the single-stream and both of the double-stream convolutional
parts. Subsequently, we freeze those layers, that is: prevent them from
further updates—thus making sure both networks will extract the same
features. This will also alleviate the uneven gradient flow in the double-
stream architecture.

● Finally we proceed to train the networks, exposing the double-stream
model to all pairs of the training set, but picking only one image from
each pair for the single-stream network.

Figure 2. Examples of pairs of acquired images.
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This ensures equal exposition of feature extractors to training samples, while
allowing the classifiers to only learn from the amount of data they would be
given during normal operation.

Training hyper-parameters for both networks are the same: we use the
standard SGD algorithm with momentum term μ ¼ 0:9, batch size 128 and
initial learning rate α ¼ 0:005, which is divided by 10 after the first 10 training
epochs, and again after the next 3. Results after the total of 15 epochs, averaged
between three runs for each model on each of the cross-validation folds, are
shown in Table 1.

Figure 4 shows obtained classification accuracy (continuous lines)
achieved on the validation set by both models as a function of the threshold
value. The maximum accuracy point is marked on each curve. They are
additionally compared with performance of the argmax method, shown as a
dashed line in the same color as the corresponding curve.

Figure 5 shows the ROC curves for both models, that is plots of false
positive ratio on x axis and true positive ratio on the y axis as functions of
threshold value, centered on the most interesting region. Performance at the
threshold value corresponding to the best binary accuracy is marked with a
full circle on each curve. Performance of argmax classifiers is marked with a
star. Each point is drawn in the same color as the corresponding curve.

Figure 3. Training procedure.
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Double-stream architecture outperforms the single-stream one by 0.2% in
binary classification task, regardless of method of decision-making, and by over
0.3% in multi-class task. Analysis of the ROC proves that the double-stream

Table 1. Results of the single-stream vs double-stream comparison.

Task Binary classification Multi-class clasification

Decision method Argmax Threshold (best) Argmax

Measure Accuracy TPR FPR Accuracy Accuracy
Single-stream 97.95% 98.07% 2.21% 98.03% 96.50%
Double-stream 98.18% 98.17% 1.81% 98.22% 96.82%

Figure 4. Binary classification accuracy plotted as function of threshold value.

Figure 5. Binary classification ROC with argmax performance for reference.
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yielded better results at every setting of the threshold. The double-stream model
made less errors of the first type (false alarms).

It is worth repeating, that results of this experiment will be task-specific,
depending on the data. For the case of machine vision inspection of barley
grain, we however conclude that imaging objects from both sides will indeed
improve classification performance.

Combining information in double-stream convolutional neural
networks

Here we present and compare several methods for joining information from
two convolutional network streams. We begin with the early fusion model
(Figure 6a) and the view-pooling method of Su et al. (2015) (Figure 6b). In
both of them the convolutional parts are shared and their outputs are joined
before the fully connected classifier. In the early fusion model this is realized
by simple concatenation and in the view-pooling method by an element-wise
max operation (Eq. 1).

yi ¼ max ai; bið Þ (1)

In the next architecture, the late fusion (Figure 6c), streams are not joined
until the final classifier layer. The convolutional parts and first two of the
fully-connected layers are shared, their outputs are concatenated and this
intermediate vector is an input to the final layer.

In this experiment, it is assumed that all models will be trained and
deployed on pairs of images, so there is no need for special conditions
ensuring equal comparison. Therefore, those three models can be learned
jointly in a uniform setting, the same as in the previous experiment.

This is not the case with the prediction-level fusion. In this architecture
the entire networks are shared, including the classifiers which are however
stripped of the softmax function. Raw fully-connected outputs are concate-
nated and input to an additional classifying layer. This model is trained in
two stages: first the shared streams are trained as single networks without any
fusion (Figure 6d), then they are frozen and the additional classifier is trained
on their outputs (Figure 6e).

These architectures are finally compared to the naïve approach. This is to
train only one network like in the first stage of the prediction-level fusion
model (Figure 6d), and test it on two images separately, performing the
fusion of predictions for each image externally (Figure 6f). This operation
can be performed in several ways, depending on the decision mode (e.g.
request that both streams assign at least some minimum confidence to the
preferred class, average the distributions). We have found that simply calcu-
lating the average of two outputs yields the best performance, therefore we
chose to use this method in comparisons.
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Table 2 summarizes performance of the trained models, as tested on
respective validation sets and averaged over three cross-validation folds.
Figure 7 shows a plot of binary accuracy versus threshold setting along
with argmax performance while Figure 8 compares ROC. Both figures are
organized as in the previous experiment.

Architectures with late fusion perform generally better than those with early
fusion. Models with convolutional feature fusion are significantly less accurate
than those where merging occurs near or after the classifier, as much as 0.6% less
accuracy in binary classification and 1.5% less in the multi-class task. The view-
pooling method yielded worst results. We suppose this is due to the element-wise
max operation only propagating gradients to the stream which produced the
maximum output. This means that gradients are split between streams instead
of shared, effectively slowing down the learning for that part of the model.

Surprisingly, the naïve classifier performs on par with the best, prediction-
level model, equaling its performance in binary task and surpassing it by 0.1% in

Figure 6. Fusion architectures.
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multi-class. This might mean that none of the double-stream architectures were
able to learn any conditional relationships between features extracted from two
images. It could be due to the fact that images are fed into the networks with no

Table 2. Results of comparison of various fusion models, best results in bold.

Task Binary classification Multi-class clasification

Decision method Argmax Threshold Argmax

Measure Accuracy TPR FPR Accuracy Accuracy
Early fusion 98.23% 98.27% 1.83% 98.26% 96.26%
View pooling 98.10% 98.10% 1.90% 98.15% 96.08%
Late fusion 98.58% 98.79% 1.70% 98.60% 97.28%
Prediction-level f. 98.74% 98.88% 1.46% 98.74% 97.61%
Naïve approach 98.72% 98.85% 1.46% 98.73% 97.70%

Figure 7. Binary classification accuracy plotted as function of threshold value.

Figure 8. Binary classification ROC with argmax performance for reference.
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predictable arrangement—results would have been different if either the grains
could be forced to assume a specific orientation in the imaging device, or this
orientation could be recognized in a preprocessing step. However, in an indus-
trial environment requiring high processing speed, this might not be feasible.

Accuracy plots in binary classification with threshold decision mode reveal
the primary weakness of the naïve approach. While the double-stream network
with prediction-level fusion remains highly accurate over a much wider range of
values, the naïve classifier only has a single accuracy peak—its performance
quickly degrades in both directions. This means that the double-stream archi-
tecture gives more freedom in setting the cut-off point and allows more custo-
mization of balance between sensitivity and precision of the classifier.

Conclusions

We introduced a double-stream CNN architecture for double-sided machine
vision inspection of natural products on the example of barley grains. We
presented a method of verifying, whether such approach yields classification
performance benefit, separating the improved architecture factor from the
influence of simply increased amount of training data. For the task of barley
classification, it proved that double-sided imaging results in better perfor-
mance (98.22% vs 98.03% for single-sided approach).

We analyzed several information fusion models, testing them on the task of
barley grain classification. We found that the best double-stream architecture
with prediction-level fusion performs almost equally well as a naïve approach of
averaging two independent predictions. Both models achieved 98.74% accuracy
in binary and, respectively, 97.61% and 97.70% in multi-class classification. Still,
the double-stream network, due to amore stable accuracy characteristic, allows a
greater freedom of tuning the binary classifier.

The reason that the most straightforward approach was as effective as the
complex double-stream network might have been the fact that images were
assigned to the streams in a random order. Each side of the grain looks
differently, potentially containing different features to extract. An alternative
approach would be to use a model consisting of two specialized networks to
process dorsal and ventral sides separately, together with a preprocessing step to
identify the orientation of a grain. This might provide performance improve-
ment over a model processing both images agnostic of their arrangement.
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