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ABSTRACT

Where, when and how much animals eat provide valuable
insights into their ecology. In this paper, we present a com-
parative analysis between Support Vector Machine (SVM) and
Input Delay Neural Network (IDNN) models to identify prey
capture events from penguin accelerometry data. A pre-classi-
fied dataset of 3D time-series data from back-mounted accel-
erometers was used. We trained both the models to classify
the penguins’ behavior at intervals as either ‘prey handling’ or
‘swimming’. The aim was to determine whether IDNN could
achieve the same level of classification accuracy as SVM, but
with reduced memory demands. This would enable the IDNN
model to be embedded on the accelerometer micro-system
itself, and hence reduce the magnitude of the output data to
be uploaded. Based on the classification results, this paper
provides an analysis of the two models from both an accuracy
and applicability point of view. The experimental results show
that both models achieve an equivalent accuracy of approx.
85% using the featured data, with a memory demand of 0.5 kB
for IDNN and 0.7 Mb for SVM. The raw accelerometer data let
us improve the generalizability of the models with a slightly
lower accuracy to around 80%. This indicates that the IDNN
model can embed on the accelerometer itself, reducing pro-
blems associated with raw time-series data retrieval and loss.

Introduction

Understanding when, where and how much food animals eat under different
conditions provides valuable insight into their ecology. This is particularly
important for marine animals such as seabirds, which must find food in
ocean environments where prey availability is dynamic (Carroll et al. 2016)
and is likely to be affected by multiple pressures including climate change
(Yasuda 1999) and overfishing (Cury 2011). However, directly observing
marine animals foraging in the wild is challenging, as they may travel large
distances from land (Burton 1999) and/or consume prey underwater (Sutton,
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2015). Hence, remote activity monitoring using telemetry technology is often
the only way to identify the behavior of animals when they are feeding at sea
(Hussey 2015).

Animal telemetry studies have made unbridled progress in recent decades,
spurred on by technological advancement (Kays 2015). For example, tech-
nology has advanced from simple Global Positioning System (GPS) loggers
that record position and a timestamp, to increasingly complex devices that
incorporate a range of sensors aimed at detecting more complex activities
(Hussey 2015; Kays 2015). The recent development of Micro-Electrical and
Mechanical Systems (MEMS) technologies has enabled the embedding of
sensors and wireless communication facilities in microsystems, thus provid-
ing the ability to sense and record all aspects of animals’ lives. These tools,
which can be attached directly onto the animal, enable biotelemetry and
biologging to be used to evaluate the behavior of wild animals virtually
without range limitations (Wilson 2015).

Identification of animal’s activities has primarily been performed by ana-
lyzing data captured by a camera and/or accelerometers. Analyses of animal-
borne video to identify different activities appear in the literature as early as
the late 1990s (Davis 1999; Davis 2008; Heaslip 2014; Payne 2014). The use of
accelerometer data in animal monitoring has also increased dramatically over
the past 10 years, not only in frequency but also in significance. From early
studies that quantified human energy expenditure and activity (Eston 1998;
Montoye 1982), there has been a broad application of accelerometry for
investigating animal activity (Barbuti 2016; Dubois 2009; Gao 2013;
Miyashita 2014; Soltis 2012). The accelerometer represents a useful alterna-
tive to animal-borne video due to its significantly lower intrusiveness, energy
efficiency and much smaller size and weight (Wilson 2006). Furthermore,
provided it is sampled at sufficiently high frequency (see Broell 2013), the
data from an accelerometer is extremely reliable as: it is not vulnerable to
ambient conditions or the inclination of the sensor; it can easily be placed on
different positions on the animal’s body; and it is, to some extent, tolerant to
minor misplacements.

There are a number of different approaches to analyzing the accelerometer
data stream, including machine learning methods, in order to identify spe-
cific animal activities. Machine learning methods provide a computationally
powerful means of data classification that can detect complex patterns, which
may not otherwise be evident to the human eye. Previous works have used
Support Vector Machines (SVMs) to classify animal behavior from accel-
erometry data streams (Carroll 2014; Escalante 2013; Nathan 2012).
Although these models can be highly accurate, they are very computationally
intensive, and this can limit their application. An alternative approach
includes Artificial Neural Network (ANN) models (Haykin 2009), and
more specifically the Input Delay Neural Network (IDNN) (Haykin 2009).
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One of the advantages of the IDNN approach is that it is possible to optimize
the memory storage setting by adjusting and comparing alternative architec-
ture configurations. Hence, an IDNN-based approach, as opposed to an
SVM-based approach, allows the possibility that the classification task can
be performed on the embedded micro-system/sensor itself. Subsequently,
only the higher-level classification summary (i.e. activity summaries, not
the raw data streams) needs to be uploaded by wireless communication
networks to a server. The IDNN approach may therefore represent a more
computationally efficient approach to classifying accelerometry data, and
may allow for the development of new biologging technology where the
identification of animal behaviors such as feeding is embedded and processed
in near-real-time.

In this paper, we compare the application of an IDNN model and an SVM
model to classify the behavior of little penguins (Eudyptula minor) in captiv-
ity as either ‘swimming or ‘handling prey. Previously, this dataset was
analyzed using an SVM with a high degree of accuracy and specificity, and
the SVM was validated on data collected from penguins in the wild (Carroll
2014). In that study, the identification of feeding events was performed off-
line on the recorded accelerometer data streams because the execution of the
SVM required significant computational resources. Here, we undertake an
exploratory analysis of different SVM and IDNN configurations and input
types (raw and feature-based data representations), with a focus on the trade-
off between classification accuracy and minimal system demands (storage,
memory and computation). Explicitly, the objectives of this analysis are to
reduce computational and memory demands whilst still maintaining the high
performance quality and to improve the generality of the models by using
raw accelerometer data, without the features extraction. The ultimate aim is
to determine models that can achieve high-quality activity classification on
the embedded micro-system itself, and hence reduce the magnitude of the
output data, thus enabling the possibility of using Low Power Long Range
(LoRa) communication systems (Augustin 2016) for uploading animal activ-
ity summaries to a server.

Related works
Biologging to monitor animal activity to identify particular events

The recognition of animal activities has many applications in ecological
research. In this paper, we focus on the recognition of foraging activity
from accelerometry. Identifying feeding activity can be important for under-
standing which factors affect the amount of food that animals consume. This
is particularly important for marine animals that rely on resources that are
highly dynamic. For example, Carroll et al. (Carroll 2016) describe how a
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prey capture signature from an accelerometer is important to understand
how the warm East Australian Current shapes the foraging success of little
penguins (Eudyptula minor). Foo et al. (Foo 2016) used accelerometry to
detect rapid head movements of free-ranging benthic-divers, in the
Australian fur seal (Arctocephalus pusillus doriferus), during prey capture
events. A similar outcome was reached by Volpov et al. (Volpov 2015)
using head-mounted three-axis accelerometers and animal-mounted video
cameras. Baylis et al. (Baylis 2015) investigated the identification of foraging
activity in king penguins (Aptenodytes patagonicus) to quantify foraging site
fidelity. Similar analysis was performed to detect the movement of larger
marine animals as they feed at the sea surface. For instance, in Owen et al.
(Owen 2016) used accelerometer data to detect surface-feeding behavior in
rorqual whales (Balaenopteridae).

Machine learning methods for biologging

The primary focus of our research is the development and application of
machine learning methods for the analysis of accelerometer data collected
from animals. The processing of animal activity accelerometer data with
machine learning algorithms has, with time, become an accepted approach
to monitor animal behavior.

Barbuti et al. (Barbuti 2016) employed these machine learning methods to
identify tortoise nesting activity using accelerometer data. Nathan et al.
(Nathan 2012) identified behavioral modes in free-ranging griffon vultures
(Gyps fulvus) by analyzing accelerometer data. A hierarchical activity classi-
fication model was presented by Gao et al. (Gao 2013) to recognize specific
activities in animals. An extensive comparison of representative machine
learning methods for activity classification was provided by Escalante (2013).

Background

In this paper, we employ a typical machine learning workflow. The raw
accelerometer dataset is split into two subsets: the training dataset and the
test dataset. The training dataset is then randomly split into a training subset
and a validation subset by the cross-validation (CV) procedure. The training
subset is used to tune the free parameters of the model using a suitable
learning algorithm (training phase). The test dataset is divided to the training
set and it is used only to evaluate the accuracy of the assembled machine
learning models after the training phase. The same data splitting procedure
to generate the training and testing data subsets is employed in both the SVM
and IDNN approaches. In this paper, we employ the SVM and IDNN
algorithms available via MatLab (Grant 2008).
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Support vector machine

The main idea of SVM is to construct a hyperplane as the decision surface in order
to have the maximum margin between two classes of observations. Through the
concept of margin maximization, the SVM represents an approximate implemen-
tation of the method of structural risk minimization (Vapnik 1998). The hyper-
parameter C is the penalty parameter of the SVM error term.

In our context, it is useful to recall that the SVM learning algorithm is
constructed using the kernel, and the inner product kernel between support
vectors. The support vectors consist of a subset of the training dataset
extracted by the learning algorithm, corresponding to the patterns in the
feature space that lie closest to the hyperplane or violating the margin. The
feature space is an n-dimensional abstract space where each pattern is
represented as a point in that space. The kernel function allows the SVM
to be applied to either linearly or nonlinearly separable patterns. Specifically,
we consider the Radial Basis Function (RBF), polynomial and linear kernels
(Haykin 2009). As described in Section 2.1, these models generally achieve
good results for animal activity classification.

Input delay neural network

The IDNN is a model in the class of Multi-layer Perceptron (MLP) (feedfor-
ward Artificial Neural Networks) (Haykin 2009) specifically designed to treat
sequential data by using a sliding-window approach over time.

The IDNN consists of computational units that constitute the input layer,
the hidden layers and the output layer, of a weighted and oriented graph.
Each layer can be set up with different numbers of units, which allows us to
easily investigate the different configurations to find a good trade-off
between model computational cost and classification accuracy. The evalua-
tion of this trade-off allows for the possibility to develop the IDNN on
MEMS (Francis 2013), as introduced in Section 1. In the following section,
we consider three popular learning algorithms: the back-propagation algo-
rithm (in the form of the Gradient Descent with Momentum - GDM)
(Haykin 2009), the Resilient Propagation algorithm (RP) (Riedmiller 1994)
and the Levenberg-Marquardt algorithm (LM) (More 1978).

The learning algorithm allows us to obtain an approximation of the
desired outputs (Target) by adapting the free parameters used to weight the
connections of the model units. This adaptation of weights is based on a
gradient descent of the error function through the weight space in order to
reduce error. To calculate the error, we used the classical least-mean-square
approach (MSE) - we considered the square of the difference between the
output of the neural network and the target values across the training data.
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We considered the inclusion of regularization approaches, with the
weight-decay hyper-parameter lambda (A) and of the momentum of the
training phase, with the hyper-parameter alpha (a). The momentum is
used to decrease the fluctuations in weight changes over consecutive itera-
tions of the learning algorithm. The weight decay penalizes increasing weight
sizes. These two methods together help the gradient descent to control over-
fitting (i.e. the model is too focused on the training dataset) as well as
fluctuation of the gradient.

The GDM algorithm uses the raw estimation of the gradient with each
input in the iterative training algorithm (Haykin 2009). The magnitude of the
gradient descent is managed by the learning rate, which is referred to as the
hyper-parameter eta (). The eta controls the magnitude of the weight, as
well as bias changes in the training algorithm.

The RP algorithm is similar to the back-propagation algorithm, but the
algorithm does not directly estimate the gradient, rather it recognizes the sign
of the partial derivative. The RP is able to quickly escape flat areas of the
error surface. The algorithm used in this application allows only for the
possibility of managing the learning rate (n) and the weight-decay (A) hyper-
parameters.

The LM algorithm is used to resolve nonlinear least squares problems. The
basic idea of the LM algorithm is based on the gradient descent and
Gaussian-Newton algorithms (Fletcher 2013, Gill 1978). The LM algorithm
switches to the gradient descent algorithm until the local error curvature is
proper to make a quadratic approximation. In this latter case, it becomes the
Gauss-Newton algorithm. This switch speeds up the convergence signifi-
cantly compared with the GDM.

Validation and test procedures

Evaluation of the models is performed by following the standard validation
procedure based on two aims: model selection and model assessment.

For the purposes of this paper, the standard validation procedure for both
SVM and IDNN is performed using CV. In CV, the dataset is randomly split
into a training dataset and a test dataset, which are used, respectively, for
model selection (by splitting the training data to obtain a validation subset)
and model assessment. In the following section, we describe the two phases,
model selection and model assessment, within this procedure. Model selec-
tion finds the best model by comparing the performance of different models
on a validation set. Different values of hyper-parameters are evaluated to
choose the best configuration of the models. For the SVM, model selection is
required to identify both the best kernel and the best C parameter. The
evaluation of the IDNN model is based on different sets of hyper-parameters
and learning algorithms.
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Using a k-fold CV approach, the training dataset is further partitioned in k
disjointed subsets, where the k value is defined as the number of folds used.
For the model selection task, one of the k subsets is used as a validation
subset and the other k-1 subsets are used as training subsets. This is repeated
for all the combinations of the k subsets for each combination of parameters
and learning algorithms/kernels. The model selected by this tool is used for
the assessment of the model.

Model assessment follows model selection, and estimates the prediction
error of the chosen model on the test dataset. This phase returns an estima-
tion of the model performance.

Methodology

In this section, we describe how the SVM and the IDNN are configured to
classify feeding events by penguins. We studied little penguins housed at
Taronga Zoo, in Sydney, Australia. Seven penguins were captured and
equipped with accelerometer data loggers (G6a and Gé6a+, CEFAS
Technology Pty Ltd, Suffolk, UK). Data were recorded from the time the
penguins were released until they returned, during which time they were
foraging for whole fish in their pool. The data logging unit was attached to
feathers below the midpoint of the back by colored cloth tape. Recorded data
included depth, as well as the acceleration along three spatial axes (heave, surge
and sway). The data are recorded as streams of four tuples (one for depth and
three axes of acceleration) with a frequency of 30 Hz. For each penguin, a
different quantity of data streams was collected for the dataset. The dataset
consists of 20 data streams and each stream has a different length.

Three high-definition underwater cameras (GoPro Hero 3, San Mateo,
CA, USA) filming in HD 1080 at 60 frames s~' were placed in the pool to
collect information that can be used to ground truth the penguin activity.
The video was used to create a behavior label for each data point within each
data stream at 30 Hz resolution (Carroll 2014). For our purposes, we then
partitioned each data stream into sequences of 0.3 s and attributed the
behavior corresponding to the majority of observations for each sequence.
It is worth noting that since the raw data were collected with a frequency of
30 Hz, each sequence of 0.3 s is 30 data points (10 for each accelerometer
axis). Note also that we disregard the information about depth, which is not
relevant for our study. We identified a total of 5244 behavior sequences (3971
swimming events and 1273 prey handling events).

We used a two-stage automatic classifier (Figure 1). The first stage (hereafter
referred to as the filter stage) can be an empty filter (in this case, the second stage
operates directly on the raw data) or it can be implemented by applying the
following techniques over the raw data sequences: down-sampling, feature extrac-
tion and normalization. In our application, the down-sampling reduces the
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Classification

stage
Filter stage
SVM
Down Sampiing IDNN

Features extraction
Features extraction
normafsation

Figure 1. The automatic classifier consists of two stages: the filter stage and the classification
stage. The raw dataset can be used as direct input to the classification stage, or can be input to
the filter stage. The filter stage elaborates the raw dataset, thus generating a preprocessed
dataset. The preprocessed dataset is then used as input to the classification stage. The output is
the classification of the data, in this case as “prey handling” or “swimming”.

frequency of the sequence to 15 Hz (from 30 to 15 data points, five for each
accelerometer axis). The feature extraction is applied over each individual accel-
erometer axis independently. In accordance with Carroll (2014) and Lara (2013),
we considered the following features: mean, standard deviation, minimum, max-
imum, skew, kurtosis, pairwise correlation and overall dynamic body acceleration.
We also analyzed the isolated use of only the standard deviation as an input to the
second stage. For the normalization, we used a normalization by standard devia-
tion applied to all features extracted. Through these configurations, hereafter, we
use: Raw, to represent the dataset of raw accelerometer sequences; Down-sampled,
to represent the dataset of down-sampled sequences from the dataset Raw;
Standard deviation, to represent the standard deviation computed for each
sequence of raw data; Feature extracted, to represent the dataset of features; and
Normalized features extracted, to represent the dataset of normalized features. The
second stage of the classifier (hereafter referred to as the classification stage) can be
based on either SVMs or IDNNE.

Classification stage

The SVM classifies each sequence of 0.3 s individually. For each sequence,
the SVM outputs a positive indicator (1), which identifies prey handling
activity, or a negative indicator (-1), identifying swimming activity. We
consider three different kernels for the SVM: Linear, Third-Degree
Polynomial and RBF. For each kernel, we consider each possible configura-
tion of the filter stage.

The IDNN uses a fully connected network consisting of one input layer,
one hidden layer and one output layer, and each neuron of a given layer is
connected to all neurons in the previous layer. The number of neurons in the
input layer depends on the configuration of the filter stage, and in particular
on the number of outputs of this stage. Table 1 shows the number of input
neurons for each configuration of the filter stage.
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Table 1. The number of neurons that compose an input sequence in each
dataset configuration.

Dataset #Input neurons
Raw (R) 30
Down-sampled (D) 15
Standard deviation (S) 3
Features extracted (F) 22
Normalized Features extracted (FN) 22

We set the number of neurons in the hidden layer at five. This number
was selected following an initial analysis of the performance of the IDNN, as
described in Section 4.

The output layer is composed of one neuron that classifies each sequence
with a number in the range [-1,1], where a positive number means prey
handling and a negative number means swimming.

Both the hidden layer and the output layer are implemented with the
sigmoidal activation function (Haykin 2009). Figure 2 shows a schema of the
IDNN with the raw sequence input.

Validation scheme

The two methods for automatic classification were validated by way of the
raw dataset and the filter configurations. Following the procedure described
in Section 2.3, the sequences were split randomly by ratio of 70/30, i.e. 3670
training sequences and 1574 testing sequences. The model selection over the
two methods was performed with a 10-fold CV approach (Haykin 2009). For
each configuration of the filter stage, the model selection phase identifies the
best model for each kernel and each learning algorithm. The SVM model is
chosen from among the three kernels considered and the value of the C
hyper-parameter. The C hyper-parameter was evaluated from the set {0.5, 1,
10, 100}. The IDNN model selection identifies the values for the eta hyper-
parameter (n), the alpha hyper-parameter (a) and the lambda hyper-para-
meter (A). The n was evaluated from the set {0.1, 0.01, 0.001, 0.0001}. The a

and A are selected from the set {0.0, 0.0001, 0.001, 0.01, 0.1,}.

1

1

Figure 2. The IDNN with the raw sequence input of 30 data points. The hidden layer is
composed of five neurons and the output layer is composed of one classification neuron.
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The maximum number of epochs used for the training phase was identified
as the number needed to stabilize the mean squared error (mean squared
error) of the IDNN in this phase, resulting in 1000 epochs for the RP learning
algorithm and 5000 epochs for the LM and GDM learning algorithms.

Hereafter, best-SVM-X’ refers to the SVM with RBF, Linear, or Polynomial
that reaches the best average classification accuracy for each configuration of the
filter stage. Similarly, best-IDNN-x’ refers to the IDNN model trained with RP,
LM, or GDM that provides the best average accuracy on an individual config-
uration filter stage, where X is the name of the configuration of the filter stage.

The final accuracy of best-SVM-X" and best-IDNN-X’ is obtained by
calculating the average accuracy across the generated random splits, retrain-
ing and then testing the accuracy of the model five times on each configura-
tion of the dataset.

Experimental results

The experimental results detailed in this paper outline the differences in
outcomes between the two models. The different configurations of the
models demonstrate the trade-offs between accuracy, memory requested
and the need to embed. The experimentation began by selecting the number
of hidden neurons for the IDNN. In this analysis, we evaluated the perfor-
mance of the IDNN with [1-5], 10, 50 and 100 hidden neurons. With more
than five neurons, we did not observe meaningful variations in the perfor-
mance of the IDNN for all considered configurations and for this reason it is
apparent that the memory overhead required by more than five hidden
neurons is not justified. Table 2 shows the number of weights required by
each configuration of the filter stage with 5, 50 and 100 hidden neurons. For
the number of neurons within the range of [1-5], the accuracy on the test
dataset decreases linearly with the decrease in the number of neurons. We
therefore chose a model with five hidden neurons.

Next, we analyze the results from two points of view. For the first, we
focus our attention on the performance obtained with each combination of

Table 2. The quantity of weights for each dataset configuration combined with the different
number of hidden neurons is computed by multiplying the number of input neurons in Table 1
with the number of hidden neurons, each weight is eight bytes. For example, an IDNN with a raw
data sequence (30 input neurons) and five hidden neurons needs five lots of 30 weights for the

hidden layer.

Dataset 5 hidden neurons 50 hidden neurons 100 hidden neurons
R 150 1500 3000

D 75 750 1500

S 15 150 300

F 110 1100 2200

FN 110 1100 2200
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configuration of dataset and models. For the latter, we analyze the same
performances but with attention to the configurations.

In accordance with the validation scheme presented in 3.2, we selected a
model for each configuration of the first stage. We analyzed the results
obtained with the selected model, from the lowest accuracy to the highest.
The analysis below is in reference to the results shown in Figure 3. More
details and results obtained with the test dataset of each configuration are
listed in Table 3.

In our experimental results, we found an optimal accordance among the
results obtained with the training, validation and test datasets. The difference
between the three is respectively about 0.9*107%, 1.1*107%, and between
0.1*107* and 0.5*107%, for the five different configurations of the dataset
This is indicative of a good reliability providing a proof of the consistency
of the learning phases. Table 3 shows the results obtained over the test
dataset.

The accuracy of the different configurations was broadly similar among all
IDNN models (on the RP, LM and GDM). A more noticeable difference can
be seen between the SVM in the Linear kernel and the Raw dataset, as well as
the Polynomial kernel and Features extracted dataset. In these cases, the
accuracy decreases by up to 10%, depending upon which model is selected.
We selected and presented the best model for each configuration.

For the standard deviation dataset, the best-SVM-S model is the SVM with
RBF kernel with C = 1 and the best-IDNN-S is selected as an IDNN trained
with RP with n = 0.001 and A = 0.0001. Both models selected provide a

100

80

60

40

Accuracy Test

20

R. D. 5 F- F.N.

Figure 3. This figure shows the accuracy achieved with the selected model for SVM and IDNN for
each configuration of the first stage. The horizontal axis denotes the acronyms referring to each
given configuration: Raw (R), Down-sampled (D), Standard deviation (S), Features extracted (F)
and Normalized Features extracted (F.N.). The vertical axis displays the accuracy. Light green
represents the accuracy of best-IDNN-'x’, and dark green the accuracy of best-SVYM-'x'.
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Table 3. Shown here is the memory required for each best-SVM-x and best-IDNN-x configuration
as well as their corresponding accuracy. The second column lists the memory required by the
SVM for each selected model, and the same applies for the IDNN in the third column. The
memory is in kilobytes. The fourth column gives the accuracy provided by the selected models of
SVM and the fifth by the selected models of IDNN.

SVM memory IDNN memory SVM SVM IDNN IDNN
Dataset requirement (kB) requirement (kB) accuracy  Flscore  accuracy  Flscore
R 1169 1 81.7% 81.1% 79.2% 79.5%
(£ 0. 003) (+0.0028) (£ 0.008) (+ 0.008)
D 403 0.6 79.8% 80.5% 78.1% 78.5%
(£ 0.005) (+0.0020) (+ 0.004) (+0.0064)
S 40 0.1 75.7% 86.2% 76.5% 85.9%
(+ 0.018) (£0.0000) (+ 0.004) (+0.0036)
F 214 0.85 84.5% 90.1% 85.2% 90.5%
(£ 0.006) (+0.0007) (+ 0.005) (£0.0036)
FN 222 0.8 84.9% 90.4% 84.5% 90.1%

(£ 0.005) (+0.0005) (£ 0.004) (£0.0037)

similar accuracy, but the accuracy obtained with best-IDNN-S was slightly
higher (by 1%) than the best-SVM-S.

For the down-sampled dataset, we observed a small difference in the
results of the two models selected for SVM and IDNN. The validation
procedure identifies the best-SVM-D to be an SVM with a Polynomial kernel
with C = 1, and for the same procedure, the best-IDNN-D is identified as the
IDNN trained with the LM algorithm. The best-SVM-D provides a slightly
higher accuracy (79%) compared with the accuracy obtained with best-
IDNN-D (78%).

The SVM performed better than the IDNN with the original raw dataset.
In particular, the SVM with the RBF kernel (best-SVM-R) with C = 1 was
accurate at a rate of 81.7%, whereas the IDNN trained with the RP with
n =0.01 and A = 0.001 (best-IDNN-R) was accurate at the rate of 79%. In this
case, the difference of accuracy is 2%. However, this level of difference does
not have a significant impact on the final results of the program. For the
dataset with the features extracted, as well as with normalized features
extracted, both the SVM and the IDNN achieved a rate of accuracy of
approximately 84.9%. The best-SVM-F is an SVM with a polynomial kernel
and C = 100, achieving an accuracy of 84.9% - the result presented in the
previous study using this dataset (Carroll 2014). The model selected for best-
IDNN-F is IDNN trained, with RP, and with n = 0.1 and A = 0.01. This
model provides a higher accuracy than best-SVM-F by 0.1% (85%), but this
difference is not of statistical significance for this analysis. A similar result is
obtained for the model selected with the normalized features. In this case,
best-SVM-EN, selected as an SVM with a Linear kernel and C = 100, achieves
85% accuracy, and the IDNN with RP, and with n = 0.1 and A = 0.01 (best-
IDNN-FN), achieves 84.5% accuracy.
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We observed that the performances obtained for the best-SVM-x and the
best-IDNN-x models were almost identical for each configuration of the filter
stage. This observation is confirmed primarily when taking into considera-
tion the flscore (Table 3). The results obtained for this measurement were in
accordance with the corresponding accuracy performance.

In Table 3, the standard deviation computed for each configuration was
lower than the difference between the SVM model and the IDNN model. The
standard deviation was therefore not used as an important factor influencing
our comparison between models based on either overall accuracy or flscore.

The key advantage of using the IDNN, over the SVM, is the low quantity of
memory required for the model to operate. The trained IDNN model requires
memory for the input sequence as well as for the weights. For each IDNN
configuration, the number of weights is computed as the length of the input
sequence multiplied by the number of neurons in the hidden layer. The
number of samples for the input sequence (represented in the input vector)
varies according to the configuration of the filter stage (Table 1). The number
of neurons for the hidden layer is fixed at five neurons (as explained in
Section 5.2).

The trained SVM model requires memory to store the support vectors.
The dimension of each support vector is related to the dimension of the
input sequence. The number of support vectors is computed during the
training phase. Table 4 shows the number of support vectors and their
dimension for each best-SVM-x identified during the validation procedure.
Given the number of support vectors and their dimension, we compute the
memory required for each selected model.

The support vectors and weights consist of vectors of double numbers (8
Bytes per number).

Given that the IDNN model uses so much less memory than the SVMs,
while achieving almost identical levels of accuracy, the preferred choice for
the identification of prey handling activities in this situation is the IDNN.

Table 3 shows a summary of the memory requirement (in kilobytes), as well
as the accuracy achieved for each configuration of the filter stage for each model.

In Figure 3, we observe that the accuracy obtained with both best-SVM-x
and best-IDNN-x is similar with each configuration of the first stage. Despite
this, the memory requirements for the IDNN model are significantly lower

Table 4. The table lists the number of support vectors identified for each selected model of SVM.
The first column is the selected model. The second column is the number of support vectors
identified for the current model. The third column lists the dimension for each SV.

Selected model for configuration #support vectors (SV) Dimension of SV
Best-SVM-R 4991 30
Best-SVM-D 3441 15
Best-SVM-S 1731 3
Best-SVM-F 1248 22

Best-SVM-FN 1292 22
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than the corresponding SVM configuration. Note that the best-SVM-x has an
inherent memory requirement due to its need to keep memory for the
selected support vectors. In the following paragraph, we discuss the ratio
between accuracy achieved and memory required.

For the raw dataset, the memory usage of best-IDNN-R was 1 kB, which is
more than 1000% less than the memory required by the best-SVM-R. The
IDNN allows us to reduce the memory usage to 1 kB, but incurs a reduction
in accuracy of 2% (from 81% to 79%).

A similar advantage is observed with the down-sampling configuration.
The IDNN selected model requires only 0.5 kB instead of 403 kB, with a
mere 1% penalty in accuracy.

For the raw and down-sampled dataset, the advantage of using IDNN in
terms of memory usage is self-evident. Despite the marginal accuracy dis-
advantage, the low memory usage of the IDNN model makes it ideal for
embedding on a device. A smaller difference in memory requirement is
observed for the standard deviation, feature extracted and normalized feature
extracted configurations.

For the standard deviation configuration, we observed an accuracy
increase of only 1% in the best-IDNN-s, while the memory usage for this
model is only 0.11 kB. This space requirement is more than fifty times less
than the memory required by the best-SVM-s. For both plain and normalized
features extracted configurations, the SVM model requires 214 kB. The
IDNN model, however, only requires 0.8 kB. As before, the percentage of
accuracy lost with the IDNN is not significant enough, especially when
considering how much memory is saved by using the IDNN.

The memory requirement for the SVM, regardless of the configuration,
can be anywhere from 40 to 1169 kB. It influences how to choose the model
for the embedded design. The IDNN, on the other hand, requires less than 1
kB of data for any given configuration.

Concerning the dataset configurations, with both the IDNN and SVM
models, we observe a significant difference in performance depending on the
specific dataset in use. This difference is highlighted in Figure 4. Specifically,
Figure 4a shows the performance versus the normalized memory occupation
of the IDNN model applied to the five datasets. From the figure, it is seen
that the best performance with high memory occupation is achieved on the
feature extracted dataset, as proposed in Carroll (2014). On the other hand,
this configuration requires the selection and computation of features over
each sequence. This affects the flexibility of the approach, since the selection
of the features is an ad hoc process that should be repeated whenever this
solution is applied to another use case (e.g. if this solution is applied to a
dataset obtained from different species of penguin). A similar consideration
holds in the case of IDNN with normalized feature extracted dataset.
Concerning the IDNN applied to the raw dataset, we observe that this
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Figure 4. Normalized memory occupation versus accuracy for the different datasets and models.
Figure 4a refers to the IDNN model applied to the different datasets, and the memory occupation
is normalized assuming 1 to be 1 kB. Figure 4b refers to the SVM model applied to the different
datasets, and the memory occupation is normalized assuming 1 be 1 mB.

solution achieves an average performance (with only a 3% penalty in accu-
racy with respect to IDNN with the feature dataset) and the highest, but still
very low (1 kB), memory occupation. On the other hand, this solution is the
most flexible since it does not require any ad hoc adaptation to determine the
best features if applied to other use cases. The down-sampled and standard
deviation datasets offer a compromise between the two extreme cases of
IDNN with raw and IDNN with features extracted cases. Considering how-
ever that the penalty in memory occupation is always very low (at most 1 kB)
for all the cases, the choice of the most appropriate solution for a specific use
case is determined by the trade-off between performance/flexibility.

Concerning SVMs, Figure 4b shows the performance versus the normal-
ized memory occupation of the SVM model applied to the five datasets. In
this case, the best performance is achieved on the feature extracted and
normalized feature extracted dataset (both with a moderate memory occupa-
tion). Instead, the SVM with raw dataset achieves similar performances with
a significantly higher memory occupation. The down-sampled and standard
deviation datasets offer a compromise between memory occupation and
performance. When considered from the point of view of flexibility of the
solution, we observe that the cost for flexibility for SVM is in terms of a
penalty for both memory and performance. If flexibility is a strong require-
ment, but the solution of SVM with the raw dataset is not appropriate, then a
valid option is given by using an SVM with a down-sampled dataset. The
SVM applied to a standard deviation dataset is outperformed by all IDNN
approaches and configurations, and can thus be disregarded.
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Conclusion

Our study applied, evaluated and compared the SVM and IDNN models, in
order to optimize the trade-off among memory requirements, classification
accuracy and generality of the models for classifying activity from accelera-
tion data. For this purpose, we compared the settings for SVM and IDNN
classifiers at both the filter stage and the classification stage. We show that in
all cases, the IDNN models have lower memory requirements than the SVM
models, with similar classification accuracy. We further show that by adjust-
ing the settings, it is possible for researchers to choose between IDNN
models that focus either on high accuracy or on high generality depending
on the priorities of their research.

In some cases, achieving high classification accuracy is of the greatest
importance. In our experiments, this is achieved with a score of 85%
(flscore of 90%) by the ‘extracted features’ configuration IDNN. For this
approach, the filter stage configuration is the features extracted dataset. It is
necessary to select a set of features to represent patterns in the raw data as
well as to compensate for the potential loss of some information. The features
are selected ad hoc and the selection of these features should be optimized for
each new task. The extraction of features needs to be computed over each
sequence requiring additional memory and time. This result is mainly of
interest in cases where the autonomous classifier is applied to a specific
problem with wide limits in memory and time, and the generality of the
system to other cases is not expected.

In some cases, generalizability of the model to different scenarios is
important. In our study, we developed a more generalizable model that
achieved a moderate accuracy of 81%. In this case, it is not necessary to
perform an ad hoc selection of features. No filters are applied and the entire
data stream is used with the complete information of the signal. This allows a
model of the classification stage to be generalizable over other raw datasets.

The low memory requirements and high accuracy of the IDNN model
suggest that it is a promising method for classifying the activity of wild
animals from accelerometry data. Previously, the identification of prey hand-
ling events by little penguins using an SVM showed that the rate and spatial
location of feeding events could be accurately identified in this species from
patterns in their acceleration profile (Carroll 2014, Carroll et al. 2016). As
little penguins return reliably to the nest during the breeding season, the
ability to download logged data streams precluded the need for extensive data
compression and onboard processing in these earlier studies. However, not
all field studies have the option of retrieving the biologger. The advantage
identified in this study is that the IDNN models achieve similar accuracy to
the SVM, but are better suited for analyzing the behavior of animals that do
not return to shore regularly, or that are difficult to recapture (e.g. seabirds
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outside the breeding season, seals, dolphins and fish). In such cases, the data
must undergo some embedded processing before being uploaded to a server
for remote access.

Collection, storage and transmission of data are constrained by power and
memory requirements, which are in turn limited by the size of devices that
can be attached to the animals. Data transmitters therefore require significant
data compression to reduce both size and power requirements. For instance,
in the widely used ARGOS animal tracking service, uplinks may contain a
maximum of only 256 bits (32 bytes) per message in a rigid format (Fedak
2002). In this case, application of the IDNN provides a significant step
toward onboard processing, followed by the remote upload of time-coded
animal behavior labels from almost anywhere on the planet. With an IDNN
system directly installed on the onboard tag, it is possible to acquire infor-
mation about the animals and analyze them on-site, thus monitoring the
animal in real time.

The adoption of supervised machine learning approaches to use labeled
behavior data for learning is challenging for marine species that are not kept
in captivity, or cannot simultaneously have a camera and accelerometer
attached. However, for those species where this approach is feasible and
the accuracy of behavior classifications can be determined, the ability to
subsequently store and transmit reliable behavior labels provides a powerful
tool. The research in this paper indicates that the anticipated future devel-
opments of onboard processing algorithms and the associated tag hardware
will lead to an increasing adoption of accelerometers across a wide range of
fields of animal ecology.
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