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1. Introduction

Rotating machinery is widely used in many industrial fields. 
Fault diagnosis in rotating machinery is of great importance 
for system maintenance and process automation. In practice, 
faulty bearings contribute to most of the failures in rotating 
machinery [1, 2]. It is reported that about 40–90% of failures 
are related to rolling element bearing damage in large and 
small machines [3]. In particular, inner-race or outer-race flaws 
dominate most bearing failures. Periodic sharp impulses char-
acterize these faults, and the characteristic frequencies can be 
computed theoretically. However, those impulses are of low 
power and are usually buried in noise [4, 5]. Moreover, these 
signals are also usually modulated by some high-frequency 

harmonic components, which results in a series of harmonics 
of characteristic frequencies [6]. The above characteristics 
have presented great challenges in performing fault diagnosis.

In order to realize bearing fault diagnosis, different 
approaches have been proposed in the time domain, frequency 
domain, and time–frequency domain over the past few years. 
In time-domain approaches the time-domain waveform is ana-
lyzed directly to extract statistical indices such as the root-
mean-square amplitude, skewness, and kurtosis [7]. Once a 
monitoring feature triggers its predefined damage threshold, 
the bearing can be considered damaged. However, it is difficult 
to determine the threshold value of the damage, in particular 
in different machines. Frequency-domain approaches are usu-
ally employed to find the fault’s characteristic frequencies via 
frequency analysis, such as the Fourier spectrum, cepstrum 
analysis, and the envelope spectrum [8–10]. This approach 
is characterized by its simplicity and intuitive nature for 
locating the components corresponding to shaft frequency in 
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the spectrum. Time–frequency-domain approaches including 
wavelet analysis, the fast Fourier transform (FFT), Wigner–
Ville distribution, and Hilbert–Huang transform, etc, which 
investigate waveform signals in both the time and frequency 
domain, and can provide more information about the fault sig-
nature [11–14]. However, these time–frequency methods are 
commonly more complicated than time- or frequency-domain 
methods in real applications.

In the process of mechanical fault diagnosis, demodulation 
or filtering techniques are often employed to extract bearing 
fault features [15, 16]. Spectral kurtosis is developed to iden-
tify the characteristic frequencies of the bearing, where a filter 
is designed to obtain the signal with the maximum kurtosis 
in the spectrum, and then the envelope analysis is usually 
applied to show the characteristic frequencies [11, 17]. The 
wavelet techniques are widely used to decompose the vibra-
tion signals in order to find the most useful filter for fault diag-
nosis [18–20]. Conventional band-pass filters are also applied, 
whose parameters are optimized through genetic algorithms 
or adaptive algorithms [21, 22]. The above-mentioned 
methods are relatively complex due to the complicated com-
putations involved. Indeed, spectral kurtosis based methods 
are to find the resonant frequency band of the vibration signals 
which contains a train of high-energy harmonics of charac-
teristic frequency, and then this resonant frequency band can 
be transformed into a low-frequency band through envelope 
analysis. It is suggested that the characteristic frequency could 
be identified by finding harmonics with high energies in the 
spectrum. It was also pointed out that the impulses of bearing 
faults could be detected when a series of harmonics of the 
characteristic frequency are identified in the spectrum [6].

This paper proposes a simple method to detect bearings 
faults by searching the harmonics in the spectrum generated 
with a FFT algorithm. As discussed above, the impulses gen-
erated by bearing faults are usually modulated, and harmonics 
of the bearing’s characteristic frequency exist in the spectrum 
of vibration signals. Hence we simply search the local peaks 
in the spectrum of vibration signals. Then the local peaks 
related to harmonics of a certain frequency are projected onto 
a predefined frequency grid, such that the so-called structural 
information of the spectrum (SIOS) is constructed. The SIOS 
includes two defined indices, which provide the information 
about the number and the power of harmonics of certain fre-
quency. The dominant and significant components in the SIOS 
simply correspond to the characteristic frequency of the bear-
ings and therefore the bearing faults can be diagnosed.

The rest of the paper is organized as follows. Section  2 
introduces the spectrum searching method and the SIOS. In 
section 3, this method is applied to diagnose a bearing with a 
simulated signal, and then this is compared with a benchmark 
study. The discussion and concluding remarks are provided in 
sections 4 and 5, respectively.

2. Spectrum searching method

As illustrated in [6], the faults of rolling element bearings gen-
erate impulses and excite frequency resonances of the whole 

structure between the bearing and the transducer. The low har-
monics of the bearing characteristic frequencies are usually 
masked by other vibration components. The harmonics can 
be found more easily in a higher frequency range, but higher 
harmonics may smear over one another. In the case of heavy 
noise the harmonic series can usually not be directly recog-
nized in the spectrum. The harmonics do exist in the spectrum, 
but it is not possible to determine the bearing’s characteristic 
frequencies by measuring the spacing of the harmonic series. 
Hence we propose a spectrum searching method to identify 
the bearing’s characteristic frequencies. The main steps are 
as follows:

 • find the local peaks with locally larger amplitudes in the 
spectrum by searching over the whole frequency range; 

 • construct the SIOS on a predefined frequency grid by 
projecting components of the spectrum with local peaks 
onto components of the frequency grid; and

 • identify the dominant or significant components on the 
frequency grid according to the SIOS.

In this section we will describe the first two steps. For con-
venience in the rest of the paper, P(k) is defined as the single-
sided power amplitude of the kth frequency component in 
the spectrum; F(k) is defined as the frequency in hertz corre-
sponding to the kth frequency component; and I(k) is defined 
to indicate whether the kth frequency component has a local 
peak or not. The resolution of the spectrum is denoted as ∆s. 
The sampling rate of the vibration signal is denoted as Fs.

2.1. Find the peaks in the spectrum

The spectrum consists of the power amplitude of each fre-
quency component. In order to construct the SIOS, we define 
the local peaks of the spectrum as follows.

Definition of local peaks. Given three frequency comp-
onents of the spectrum, i.e. F(k − 1), F(k), and F(k + 1), P(k) 
is called a local peak if

P(k) > P(k − 1) and P(k) > P(k + 1). (1)

By searching the spectrum, all frequency components satis-
fying inequality (1) can be found. Figure 1 gives an example 
of local peaks.

Such a definition may lead to a large number of local peaks. 
Obviously we are not interested in the frequency components 
with small amplitudes which may be related to noise. The 

P(k−1)

P(k)

P(k+1)

Figure 1. An example of local peaks.
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harmonics of bearing characteristic frequencies usually have 
relatively larger amplitudes. Hence a threshold is proposed to 
suppress the influence of noise to some extent as follows:

Jth(k) =
1

2l + 1

k+l∑
i=k−l

P(i) + δ, (2)

where l and δ are nonnegative constants. If P(k) satisfies 
inequality (1) and

P(k) > Jth(k), (3)

then I(k) = 1, and otherwise I(k) = 0. The threshold in 
 equation (2) varies in terms of k. The first part of the threshold 
is the moving average of the power amplitudes, and the second 
part, i.e. δ, is used to control the total number of identified local 
peaks.

2.2. Constructing the SIOS

Assume the bearing characteristic frequencies are within the 
range from Fl to Fh in hertz (Fl and Fh are both frequency 
comp onents of the spectrum), and the frequency grid is 
defined as

G = [Fl, Fl +∆G, Fl + 2∆G, Fl + 3∆G, · · · , Fh], (4)

where ∆G is a selectable positive constant. Therefore the 
number of frequency components of G is (Fh − Fl)/∆G + 1. 
We use G(i) to represent the ith frequency component of G. 
∆G is the interval between two adjacent components of the 
frequency grid, and it is suggested to be the resolution of the 
spectrum or its demultiplier, and we denote it as

∆G =
∆s

θ
, θ is a positive integer and θ � 1.

If a local peak is found on the kth frequency component of 
the spectrum, then it is projected onto the ith component of G if

c(k, i) = F(k)/G(i) (5)

is an integer with i = 1, 2, · · · , (Fh − Fl)/∆G + 1. In other 
word, we try to project all frequency components of the spec-
trum onto a frequency grid according to equation (5). Figure 2 
illustrates the relation between the spectrum and the frequency 
grid.

Based on the frequency grid, we define two indexes 
to represent the SIOS. The first is the number of local 
peaks projected onto the ith component of G, i.e. 
N(i), i = 1, 2, · · · , (Fh − Fl)/∆G + 1, and

N(i) =
∑

I(k), where G(i) and F(k) satisfy equation (5).

If F(k) is projected onto a component of G according to equa-
tion (5), then the harmonics of F(k) will also be projected onto 
the same component of G.

The second index is the total power of local peaks pro-
jected onto the ith component of G, i.e. E(i), i = 1, 2, · · · , 
(Fh − Fl)/∆G + 1, and

E(i) =
∑

P(k), where G(i) and F(k) satisfy equation (5).

This index is used to distinguish the useful signal from the 
noise. If G(i) corresponds to a characteristic frequency of 
bearing, E(i) should be relatively large.

In the case that the characteristic frequency of the bearing 
and its harmonics are multipliers of the ith frequency comp-
onent of G, all of them will be projected onto the ith comp-
onent of G. Then the corresponding N(i) and E(i) could be a 
dominant component in the SIOS. Nevertheless ∆G and ∆s 
cannot be infinitely small. Hence the characteristic frequency 
of the bearing and its harmonics may not be the frequency 
components of the spectrum, and they may also not be pro-
jected onto the component of G according to equation  (5). 
For instance, a given frequency, i.e. fm, within the range of G 
described by

fm = αG(i)∆G + bG, 0 � bG < ∆G,

Fl � αG(i)∆G = G(i) � Fh (6)

cannot be projected onto G when bG �= 0, where αG(i) is a pos-
itive integer and the term αG(i)∆G is the ith component of G.  
The jth harmonic of fm denoted by βjfm, may also not be pro-
jected onto G, where βj = j .

In order to overcome this problem, we reformulate equa-
tion (5) as

βjfm/G(i)− �βjfm/G(i)� < σ(i, j), (7)

Figure 2. The relation between the spectrum and the frequency grid.
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where σ(i, j) > 0 and �•� is the flooring operator. When 
inequality (7) is satisfied, we say the jth harmonic of fm is pro-
jected onto the ith component of G.

Now the key question is how to select σ(i, j). Without loss 
of generality, fm can be assumed as F(k) � fm < F(k + 1) or 
F(k − 1) � fm < F(k).

We would like to find σ(i, j) in inequality (7), such that fm 
and its harmonics are all projected onto the ith component of 
G when inequalities (1) and (7) are satisfied.

Considering the limitation of interval of G, we have

βjfm
αG(i)∆G

=
βj(αG(i)∆G + bG)

αG(i)∆G
= βj +

βjbG

αG(i)∆G
.

Since 0 � bG < ∆G, we have

βjfm
αG(i)∆G

= βj +
βjbG

αG(i)∆G
< βj +

βj

αG(i)
. (8)

Assume βj is smaller than αG(i) (assumption 1), then 
0 < (βj/αG(i)) < 1. By setting

σ(i, j) =
βj

αG(i)
, (9)

we have

βjfm
αG(i)∆G

− �
βjfm

αG(i)∆G
� < σ(i, j)

according to inequality (8). Clearly fm and its harmonics can be 
projected onto the same component on G(i) when inequality 
(7) and equation (9) are satisfied.

Next, we will shown that assumption 1 made on βj and 
αG(i) can generally be satisfied. According to inequality (6), 
αG(i) becomes larger when θ is larger, as

Fl

∆G
=

θFl

∆s
� αG(i) �

θFh

∆s
=

Fh

∆G
. (10)

Since Fl � fm � Fh, βj in equation (9) is constrained by

βjFl � βjfm �
Fs

2
where Fs/2 is the maximum frequency of the spectrum. Then 
we have

βj �
Fs

2Fl
. (11)

We could take a sufficient large sampling length of the vibra-
tion signal to obtain a fine spectrum resolution, such that

∆s < min
j

Fl

βj
=

2FlFl

Fs
. (12)

Then based on inequality (10) and inequality (12), we have

αG(i) �
θFl

∆s
>

βj

Fl
θFl = βjθ

and consequently βjθ/αG(i) < 1. This means that assumption 
1 can be fulfilled if inequality (12) is satisfied.

With a defined Fl, inequality (12) can always be satisfied 
with a sufficient large sampling length of vibration signals. 
Hence assumption 1 can generally be satisfied.

For instance, we are interested in the characteristic fre-
quency in the range from 100 Hz to 200 Hz, and therefore the 
frequency grid is defined by Fl = 100 Hz and Fh = 200 Hz. 
The sampling rate is 12 kHz. According to in inequality (12), 
assumption 1 can be satisfied when

∆s <
2FlFl

Fs
=

20 000
12 000

= 1.667.

We take 215 as the sampling length, and then ∆s = 0.3662 
which satisfies inequality (12). According to inequalities (10) 
and (11), we have

max
i,j

βjθ

αG(i)
=

Fs∆s

2FlFl
=

12 000 × 0.3662
2 × 100 × 100

= 0.2197 < 1,

and therefore maxi,j(βj/αG(i)) < 1, which means that assump-
tion 1 is satisfied.

The SIOS, i.e. N and E on G, gives the information about 
the harmonics on the frequency components of G. Index N(i) 
represents the number of harmonics of G(i) found in the spec-
trum and index E(i) represents the total power of the har-
monics of G(i). In fact the spectrum is interpreted in terms of 
G(i), N(i), and E(i).

The frequency component in SIOS is treated as a dominant 
component, when it is significant in N and E at the same time. 
If E(i) is relatively large and N(i) is small, then G(i) is very 
likely to be a discrete component of the spectrum without har-
monics. If N(i) is relatively large and E(i) is small, then G(i) 
is likely to correspond to noise.

A flowchart for constructing the SIOS is given in figure 3.
Moreover, let us suppose that the sampling frequency of a 

discrete time series x(i), i = 1, 2, . . . , n, satisfies the limiting 
condition in inequality (12), then the pseudo-code of the SIOS 
algorithm for x(i) is given in table 1. Once N and E are derived, 
they can be applied to perform bearing fault diagnosis. Next, a 
simulation and two experimental studies are used to describe 
how to realize bearing diagnosis using the SIOS.

3. Detection of characteristic frequencies of faulty 
bearings by identifying the dominant frequency

3.1. Simulation analysis

In order to demonstrate the proposed method, we use the sim-
ilar simulated bearing fault signals according to the vibration 
model in [23]:

x(t) =
M∑

i=1

Aisi(t − iTa − τi)

︸ ︷︷ ︸
xbear(t)

+

M1∑
j=1

Djmj(t − jTd)

︸ ︷︷ ︸
xext(t)

+

M2∑
k=1

Pkhk(t)

︸ ︷︷ ︸
xhar(t)

+n(t).

 (13)
As described in equation (13), xbear(t) is used to simulate 

the impulsive signals excited by a fault bearing, where Ta is 
the time interval between two adjacent impulses, and τi is a 
random variable to simulate the bearing slip. xext(t) represents 
random impulses caused by external knocks on the bearing 
seat. xhar(t) is applied to simulate the harmonic interferences 
coming from shaft imbalance, electrical components, etc, and 
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n(t) is the white Gaussian noise to simulate the background 
disturbance.

Considered one resonant frequency, the bearing fault signal 
is simulated similarly according to that presented in [19] as 
follows:

xbear(k) = 0.1 ×
∑

r

exp−β×(k−r×Fs/fm−τr)/Fs

× sin(2πf × (k − r × Fs/fm − τr)/Fs),
 

(14)

where β is equal to 900, fm is the fault characteristic frequency 
( fm = 74 Hz), Fs is the sampling frequency (Fs = 12 000 Hz), 
τr  is a uniformly distributed random number which is used 
to simulate the randomness caused by the slip, and f is the 
resonant frequency ( f = 3900 Hz). k − r × Fs/fm − τr � 0 is 
used to ensure the causality of the exponential function. It is 
known that slipping of the bearing could cause smearing of 
harmonics. In this case the power amplitudes of the harmonics 
will be distributed to adjacent components. Such effects will 
certainly influence the diagnosis results, and therefore we 
consider τr ∈ [−0.1, 0.1].

Furthermore, the interferences from shaft imbalance and 
electrical component are considered in this simulation anal-
ysis, and xhar(t) is expressed as:

xhar(t) = 0.01 × sin(2πfrt + β1) + 0.005 × sin(2πfet + β2),
 (15)
where fr represents the rotating frequency of the shaft 
( fr = 15 Hz), fe is the power supply frequency ( fe = 50 Hz), 
and the phases of these two interferences are set as zero, i.e. 
β1 = 0,β2 = 0.

The simulated bearing fault signal, the harmonics of the 
shaft and electrical component, the random impulse signal, 
the noise with −10 dB, and the mixed signal are shown in 
figure 4, where only samples of 0.3 s are displayed. The aver-
aged spectrum of the mixed signal is given in figure 5.

The SIOS is given in figures  6 and 7, where l = 6000, 
δ = 0.0002, and the frequency grid is selected as [10Hz, 170Hz) 
with ∆G = 0.1∆s. The power amplitudes of the harmonics are 
significantly reduced due to smearing, as shown in figure 5. 
However, the proposed method is still effective as shown in 
figures 6 and 7, where fm is clearly identified. The main reason 
is that the SIOS can provide abundant information about har-
monics even with small amplitudes through the proposed 
algorithm.

In addition, five kinds of frequency grids are employed 
to demonstrate the computational efficiency of the proposed 
method, where experiments were performed on an Intel 
Core i3-4130 desktop computer with a 3.40 GHz CPU and 
4 GB RAM running Matlab R2014a. As shown in table  2, 
the second column is the average time (50 trials) spent in the 
SIOS, excluding the time spent in the FFT algorithm. It can 
be seen that the time consumed increases with the range of the 
frequency grid. Fortunately, our approach can be of high effi-
ciency when the range of the predefined frequency grid is not 
large (e.g. the time consumed is 0.03577 s when the frequency 
grid is [10 Hz, 170 Hz)). However, the frequency grid can be 
selected in a narrow range because the characteristic frequen-
cies of the bearing can be estimated in advance. Therefore, 
the proposed approach seems to be a promising tool for fault 
diagnosis in bearings from the point of effectiveness and effi-
ciency. Next, two kinds of bearing data are applied to further 
validate its performance.

3.2. Bearing fault signals

3.2.1. Case 1: a bearing outer-race fault signal obtained from a 
run-to-failure test. The vibration signal from a run-to-failure 
test is used to demonstrate the proposed method. The test rig 
hosts four test bearings on one shaft driven by an AC motor. 
The rotation speed is 2000 rpm. A radial load of 6000 lbs is 

Define the frequency grid G by selecting Fl and Fh in Eq. (4). (See
section 4.2 for the determination of the frequency grid.)

Determine the required sampling length according to inequality (12)
and perform FFT.

Select δ and find the peaks according to Eq. (2) and inequality (3).
(See section 4.1 for the selection of ).

Project the components of the spectrum onto the frequency grid
according to inequality (7) where is determined via Eq. (9).

Compute N(i) and E(i) of the SIOS.

Figure 3. A flowchart for constructing the SIOS.
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added to the shaft and bearing. Four Rexnord ZA-2115 double 
row bearings were installed on one shaft. An accelerometer 
was mounted on the housing of each bearing. Vibration data of 
the bearings were collected every 10 min. The data sampling 
rate is 20 kHz. For more detailed information about this exper-
iment, please refer to [24], and the data can be downloaded 
from Prognostics Center Excellence (PCoE) through the prog-
nostic data repository contributed by Intelligent Maintenance 
System (IMS), University of Cincinnati.

The data set collected from 12 February 2004 10:32:39 
to 19 February 2004 06:22:39 is used for further analysis. At 
the end of the test-to-failure experiment, outer-race failure 
occurred in bearing 1. Here we take record 510, which is from 
15 February 2004 23:22:39, i.e. the very early stage of the 
fault. Figures 8 and 9 show the waveform and the spectrum 
of record 510.

The frequency grid is selected as [200 Hz, 300 Hz), and 
∆G = 0.1∆s. Figures 10 and 11 depict the SIOS of record 
510 with the outer-race fault. Although 246 Hz is domi-
nant in figure 11, the number of peaks found around 246 Hz 
is quite small as shown in figure 10. Hence 246 Hz is not 
treated as the dominant component on the frequency grid. 
The situation is similar for 272.5 Hz, which has a smaller 
power than 230.4 Hz. Only 230.4 Hz is significant in both 
figures, and therefore it is identified as the dominant comp-
onent on the frequency grid. It clearly corresponds to the 
outer-race fault [25].

As demonstrated by the results, the outer-race fault is 
detected after around 3.54 running days. We also apply a spec-
tral kurtosis based method to find the characteristic frequency, 
and the envelope spectrum of the filtered signal is shown in 
figure  12, in which no evident characteristic frequency can 
be observed. The proposed method also detects the fault ear-
lier than the method in [25], where the fault is detected after 
around 3.8 running days.

3.2.2. Case 2: a rolling element bearing benchmark.  
The vibration data from the Case Western Reserve Univer-
sity (CRWU) Bearing Data Center [26] are analyzed and 
compared with the published benchmark results in [27]. The 
test stand consists of a 2 hp motor (left), a torque transducer/
encoder (center), a dynamometer (right), and control electron-
ics. The test bearings support the motor shaft. With the help 
of electrostatic discharge machining, inner-race and outer-
race faults of different sizes are made. The vibration data are 
collected using accelerometers attached to the housing with 
magn etic bases. In this study, the driver end (DE) data, with 
the sampling frequency 12 000 Hz, are analyzed. The charac-
teristic frequencies of bearings, i.e. the ball-pass frequency of 
the outer-race (BPFO), the ball-pass frequency of the inner-
race (BPFI), the fundamental train frequency (FTF), and the 
ball spin frequency (BSF), are shown in table 3. And we use fr 
to denote the rotating frequency.

The frequency grid is selected as [100 Hz, 180 Hz). 
∆G = 0.1∆s, and l = 10 000 are chosen for all records. δ is 
set as 0.0002 for most records, where δ is set as 0.002 for 
records 3005–3008.

We firstly take records 105, 130, and 118 as examples to 
demonstrate the results, which demonstrate a inner-race fault, 
outer-race fault, and ball fault, respectively.

Figures 13 and 14 depict the SIOS of record 105 with 
the inner-race fault. The dominant component can easily 
be identified on the frequency grid, and is 161.68 Hz. This 
clearly corresponds to the inner-race fault (1× BPFI). 
Figures 15 and 16 depict the SIOS of record 130 with the 
outer-race fault. The dominant component can also be 
easily identified on the frequency grid, and is 107.65 Hz. 
This clearly corresponds to the outer-race fault (1× BPFO).

It is interesting that, all significant components in fig-
ures  13 and 15 seem to be harmonics of 0.2 × fr . Similar 
observations have been found in [27], where some records 
with a ball fault were analyzed with the envelope spectrum. 
As stated in [27], it is quite likely that the amount of mean 
slip in the bearing has adjusted itself to lock onto an exact 
subharmonic of a dominant frequency such as shaft speed. In 

Table 1. The pseudo-code of the SIOS algorithm.

Inputs: Fl, Fh, P, F, Fs, θ, δ, l
Outputs: N, E

1 LF ← length(F), ∆G ← ∆s/θ;
2 ∆s ← Fs/LF , LG ← (Fh − Fl)/∆G, 

I( j) ← 0, j = 1, 2, . . . , LF;
3 G(k) ← (Fl + k ×∆G), N(k) ← 0 and 

E(k) ← 0, k = 1, 2, . . . , LG;
Search local peaks:

4 for k = (l + 1) to (LF − l)
5       Jth ← 1

2l+1

∑k+l
i=k−l P(i) + δ;

6       if P(k) > P(k − 1) and P(k) > P(k + 1) and  
    P(k) > Jth then

7             P(k) is a local peak: I(k) ← 1;
8       end
9 end
10 FI ← (the frequency component of I whose element equals 1);

Construct the SIOS:
11 for i = 1 to length(FI)
12       Fc ← FI(i), M ← (every element of FI)/Fc,  

    IN ← floor(Fc/G);
13       G(IG) ← solve inequality {min|Fc − IN(k)G(k)| < ∆G} 

        |k=1 to LG ;
14       α ← G(IG)

∆G
, βmax ← floor( Fs

2×Fc
);

15       for j = 1 to βmax
16             σ(i, j) ← j/α;
17       end
18       M1 ← (the index of M, whose element is integer);
19       for k = 1 to length(M1)
20             Im ← M1(k), F′

c ← FI(Im), β ← M(Im);
21             if F′

c
G(IG)

− floor( F′
c

G(IG)
) < σ(i,β) then

22                   N(IG) ← N(IG) + 1;
23                   E(IG) ← E(IG) + P(Im);
24             end
25       end
26 end
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this case BPFI seems to lock onto 5.4 × fr  and BPFO seems 
to lock onto 3.6 × fr , which are both multiples of 0.2 × fr . 
This is also confirmed by most of the records with an inner-
race fault or outer-race fault, whose harmonics of 0.2 × fr  are 
significant on the SIOS and the component corresponding to 
5.4 × fr  or 3.6 × fr  is the dominant one in N(i) and E(i) of 
the SIOS.

Figures 17 and 18 depict the SIOS of record 118 with the 
ball fault. An interesting feature is that the ball fault records 
often present evidence of outer- and inner-race faults, which 
was also discussed in [27]. Most of the marked components in 
figure 17 are harmonics of 0.2 × fr , among which 107.68 Hz is 
related to 3.6 × fr  (1× BPFO), 143.57 Hz is related to 2.4 × fr  
(1× BSF), and 119.65 is related to 0.4 × fr  (1× FTF). However, 
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Figure 4. The simulated signal: (a) periodic impulse signal; (b) harmonics of the shaft and electrical component; (c) random impulses;  
(d) noise; and (e) mixed signal.

0 1000 2000 3000 4000 5000 6000
0

0.005

0.01

0.015

Frequency (Hz)

A
m

p
lit

u
d

e

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012
f
r

f
e

Figure 5. The spectrum of the simulated signal.

Meas. Sci. Technol. 28 (2017) 095008



W Li et al

8

the components with 162.23 Hz and 108.16 Hz are harmonics 
of 0.2006 × fr , rather than 0.2 × fr . The component with 162.23 
Hz is related to 5.416 × fr  and the component with 108.16 is 
related to 3.611 × fr . It is still difficult to explain why the har-
monics of 0.2006 × fr  and 0.2 × fr  exist at the same time.

It is worth mentioning that the ball fault pattern (BFP) com-
posed of 3.6 × fr , 3.611 × fr , 5.4 × fr , and 5.416 × fr  (like 
107.68 Hz, 108.16 Hz, 161.64 Hz and 162.23 Hz in figure 17) 
exists in records 118–121, 185–188, and 222–225.

Based on the above analysis, the bearings are diagnosed 
based on the SIOS according to the following rules:

 • inner-race fault: the dominant component in SIOS is 
BPFI; 

 • outer-race fault: the dominant component in SIOS is 
BPFO; and

 • ball fault: the BFP, 2× BSF, and at least one harmonic of 
FTF are significant in SIOS; or 2× BSF is dominant in 
SIOS.

If one of the above rules is fully satisfied, the diagnosis result 
is marked by Y; and if one of the above rules is partly satisfied, 
the diagnosis result is marked by P. If no rules are satisfied, the 
diagnosis result is marked by N.

The diagnosis results are compared with the benchmark 
study in [27], where envelope analysis, spectral kurtosis, 
and cepstrum techniques were applied. As listed in table B2 
given by [27], records 198, 199, and 200 with an outer-race 
fault cannot be diagnosed, or can only be partly diagnosed, 
through the benchmark method. We take records 198 and 
200 to illustrate the effectiveness of the proposed method, as 
shown in figures 19–22. It is clear that BPFO is the dominant 
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Figure 6. The SIOS of the simulated signal: N(i).
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Figure 7. The SIOS of the simulated signal: E(i).

Table 2. Computational time of SIOS with different frequency 
grids.

Frequency 
grid (Hz) [10, 170) [10, 300) [10, 500) [10, 1000) [10, 3000)

Time  
consumed 
(s)

0.035 77 0.049 06 0.066 88 0.117 63 0.282 98
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component in SIOS, and therefore the outer-race fault can be 
successfully diagnosed using the proposed method.

In addition, most records with a ball fault were marked by 
N1 in [27], because it was difficult to explain why some BSF 
components in the envelope spectrum were much stronger than 
the others. In fact the stronger BSF components in the envelop 
spectrum often coincide with the BPFI or BPFO comp onents. 
In other words, once the BSF component conforms with a 
BPFI or BPFO component, it could be a strong one. That is 
also the reason why we observe significant components corre-
sponding to BPFI and BPFO in the SIOS of records with 
ball faults (see figure 17). In this sense the diagnosis results 
of the records with ball faults can also be marked by Y or P 
according to the rules defined in [27]. We will not compare 
those records due to the ambiguous results of the benchmark.

Tables 4–6 give the full diagnosis results with the proposed 
method and a comparison with the benchmark. Records 121 
and 188 with a ball fault cannot be fully diagnosed by the 
proposed method, where the BFP can not be fully identi-
fied and 2× BSF is not dominant in the SIOS. With the pro-
posed method satisfactory results also cannot be obtained for 
records 3001–3004, and the reason is similar to that demon-
strated in [27].

4. Discussion

4.1. On the selection of l and δ in equation (2)

According to equation (2), the number of local peaks is deter-
mined by the selection of l and δ. Since the average power in 
different frequency bands may vary, we use l in equation (2) 
to build a frequency-dependent baseline in order to suppress 
frequency components with low power amplitudes. The selec-
tion of l is not strict, and it can be simply chosen such that 
2l + 1 components represent any desired frequency band-
width, e.g. 50 Hz, 100 Hz. Then the number of local peaks 
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Figure 12. The envelope spectrum of the filtered signal of record 510. The optimal band selected through the spectral kurtosis method is 
[2800, 5100].

Table 3. Bearing fault frequencies (multiple of running speed in Hz).

BPFO BPFI FTF BSF

3.585 ×fr 5.415 ×fr 0.3983 ×fr 2.357 ×fr

Meas. Sci. Technol. 28 (2017) 095008



W Li et al

11

100 110 120 130 140 150 160 170 180
0

50

100

150

200

250

300

350

Frequency Grid (Hz)

N
o

. o
f 

P
ea

ks

101.8
119.76

137.73 149.71

161.68

107.78

113.77

125.75

131.74

143.72
155.69

167.67

173.66
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Figure 19. SIOS–N(i) of record 198 (1772 rpm), outer-race fault.
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Figure 20. SIOS–E(i) of record 198 (1772 rpm), outer-race fault.
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Figure 21. SIOS–N(i) of record 200 (1730 rpm), outer-race fault.
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will be controlled through the selection of δ. If δ is too large, 
then only a few local peaks can be found and therefore some 
harmonics may be lost. If δ is too small, the number of local 
peaks could be large and the searching effort could be very 
high. Since the harmonics of bearing characteristic frequen-
cies usually have relatively larger amplitudes, in practice we 
suggest selecting δ such that 0.5% ∼ 3% of amplitudes are 
treated as local peaks.

In the benchmark study l is set as 10 000, such that the 
bandwidth of 114 Hz is used to compute the moving average. 
And δ is set as 0.0002 for most records except records  
3005–3008. Since the spectra of different loads and different 
faults (with different sizes) are quite different, 0.5% ∼ 2.1% 
of amplitudes are treated as local peaks in the SIOS of dif-
ferent spectra with the same l and δ. From this point of view, 
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Figure 22. SIOS–E(i) of record 200 (1730 rpm), outer-race fault.

Table 4. 12 K drive end bearing fault analysis results: inner-race 
fault. DE only. Y  =  successful, P  =  partially successful, N  =  not 
successful.

Inner-race faults

Data set Diagnosis  
result

Benchmark result 
(M1, M2, M3)

105 Y Y, —, —
106 Y Y, —, —
107 Y Y, —, —
108 Y Y, —, —
169 Y Y, Y, Y
170 Y Y, Y, Y
171 Y Y, Y, Y
172 Y Y, Y, Y
209 Y Y, —, —
210 Y Y, —, —
211 Y Y, —, —
212 Y Y, —, —
3001 N N, N, N
3002 N N, N, N
3003 N N, N, N
3004 N N, N, N

Table 5. 12 K drive end bearing fault analysis results: outer-race 
fault. DE only. Y  =  successful, P  =  partially successful, N  =  not 
successful.

Outer-race faults

Data set
Diagnosis  
result

Benchmark result  
(M1, M2, M3)

130 Y Y, —, —
131 Y Y, —, —
132 Y Y, —, —
133 Y Y, —, —
197 Y N, N, Y
198 Y P, N, N
199 Y P, N, N
200 Y N, N, N
234 Y Y, —, —
235 Y Y, —, —
236 Y Y, —, —
237 Y Y, —, —

Table 6. 12 K drive end bearing fault analysis results: ball fault. DE 
only. Y  =  successful, P  =  partially successful, N  =  not successful.

Ball faults

Data set
Diagnosis  
result

Benchmark result  
(M1, M2, M3)

118 Y — ,—–, —
119 Y —, —–, —
120 Y —, —–, —
121 P —, —, Y
185 Y P, P, P
186 Y P, P, P
187 Y P, —, P
188 P P, P, P
222 Y P, Y, Y
223 Y Y, Y, Y
224 Y —, —, P
225 Y —, —, P
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the use of the same parameters for those different spectra have 
already demonstrated that l and δ are not sensitive to the con-
struction of the SIOS if they are within a reasonable range.

4.2. On the determination of the frequency grid

If the characteristic frequencies of a given type of bearing are 
roughly estimated according to the geometrical parameters, 
the frequency grid can be selected according to the range of 
estimated characteristic frequencies. If the characteristic fre-
quencies are completely unknown, the range of the frequency 
grid could be the same as that of the spectrum. In this way 
the harmonics of all components of the original spectrum are 
considered in the SISO.

Indeed there is no any restriction on the selection of G. The 
purpose of selecting Fl and Fh in equation (4) is to reduce the 
computation effort of the search.

4.3. On the influence of slip

Slip always exists in the running process of bearings, and the 
higher harmonics smear over one another with even a small 
amount of slip. However the harmonics of the characteristic 
frequency would present some peaks over the whole spec-
trum. Due to the slip and noise, some peaks of the spectrum 
are not related to the fault; and some harmonics of the charac-
teristic frequency may not present peaks.

With the proposed method the influence of the slip and noise 
is reduced, because local peaks of the whole spectrum are taken 
into consideration and the sample length of signals is sufficiently 
large. On one hand the peaks caused by noises can be distin-
guished by considering N(i) and E(i) together. On the other hand 
once part of the harmonics of the characteristic frequency present 
peaks, N(i) and E(i) could give information about the fault. The 
simulation and experimental results all demonstrate that the pro-
posed method can handle the slip and noise to some extend.

4.4. Advantages and limitations

The proposed method is based on a simple searching algo-
rithm, and it is effective in finding the harmonics of the fre-
quency range of interest. Even the harmonics with small 
amplitudes could be found and projected onto the frequency 
grid. Although noises and other random impulses may intro-
duce some local peaks unrelated to the faults, the significant 
components in the SIOS can still be clearly recognized and 
related to the characteristic frequencies of the bearings.

The proposed method is robust against noise and random 
impulses. Similar methods, e.g. cepstrum, usually could not 
find enough periodic components of the signal in the case of 
heavy noise and other interference. As illustrated in the bench-
mark study of bearings, the proposed method could provide 
more information about the harmonics of impulses than the 
envelope analysis and better diagnosis results can be achieved.

Limitations of the proposed method are as follows: (a) the 
SIOS can only provide qualitative information, where N(i) 
and E(i) are not the true values due to the finite spectrum 

resolution and noise; (b) the computational effort could be 
high when the range of the frequency grid or the number of 
local peaks is large; and (c) the method cannot work if the 
fault has no signatures made of peaks.

5. Conclusion

A simple and effective method for detecting bearing faults has 
been proposed based on a searching algorithm. The SIOS of 
the vibration signals is constructed such that the information 
of the train of harmonics is clearly represented with N(i) and 
E(i) on a defined frequency grid. The dominant or significant 
components of the SIOS correspond to the characteristic fre-
quencies of the bearing. Based on the SIOS the faults bearings 
are successfully diagnosed. Its effectiveness is verified with 
simulated and experimental bearing signals as well as bench-
mark results.
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