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Abstract
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery
of novel mutations that improve the function of a known protein. We introduce a sampling
framework for evolving proteins in silico that supports mixing and matching a variety of
unsupervised models, such as protein language models, and supervised models that predict protein
function from sequence. By composing these models, we aim to improve our ability to evaluate
unseen mutations and constrain search to regions of sequence space likely to contain functional
proteins. Our framework achieves this without any model fine-tuning or re-training by
constructing a product of experts distribution directly in discrete protein space. Instead of
resorting to brute force search or random sampling, which is typical of classic directed evolution,
we introduce a fast Markov chain Monte Carlo sampler that uses gradients to propose promising
mutations. We conduct in silico directed evolution experiments on wide fitness landscapes and
across a range of different pre-trained unsupervised models, including a 650 M parameter protein
language model. Our results demonstrate an ability to efficiently discover variants with high
evolutionary likelihood as well as estimated activity multiple mutations away from a wild type
protein, suggesting our sampler provides a practical and effective new paradigm for
machine-learning-based protein engineering.

1. Introduction

Engineering proteins to improve their productivity or catalyze new reactions requires scientists to navigate
the complex landscape mapping a protein’s amino acid sequence to its structure and function (Li et al 2020).
Directed evolution is a classic approach inspired by natural evolution where random mutations to a protein’s
sequence are screened in a wet lab until higher-performing variants are found, at which point the process
repeats starting from these variants (Kuchner and Arnold 1997). However, this becomes impractical when
proteins cannot be assessed in a high-throughput fashion. The simplest approach, brute force search, is
limited in practice to variants with one or two mutations. For a protein with 400 amino acids, there are
∼1019 ways to make five single substitutions assuming the standard vocabulary of 20 amino acids. It is also
remarkably difficult to find proteins with improved function. Most of protein space is non-functional and
beneficial mutations are rare (Arnold 1998).

As supervised machine learning (ML) methods for protein function prediction from primary sequence
improve (Dallago et al 2021, Hsu et al 2022),machine-learning-based directed evolution has emerged, which
offers a way to judiciously propose candidates for screening that ultimately reduces time spent in the wet
lab (Yang et al 2019, Biswas et al 2021, Wu et al 2021). Our work is concerned with improving the variant
proposal step by increasing the chance of discovering a mutation that improves a target property of a known
‘wild type’ (WT) protein (figure 1(a)). We argue that the promising performance of recent unsupervised
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Figure 1. (a) Illustration of the machine-learning-based directed evolution pipeline. This paper proposes a plug and play sampler
for proposing variants of improved fitness near a wild-type (WT) protein for each design round. (b) We flexibly compose
unsupervised and supervised protein sequence models as a product of experts distribution and derive a fast gradient-based discrete
MCMC sampler to efficiently sample from this distribution. A product of experts places its probability mass at the intersection of
the expert distributions. The key idea of gradient-based discrete MCMC is to bias the mutation proposal distribution towards
promising mutations within a local neighborhood around the current variant. Then, to avoid enumerating all mutations in this
neighborhood, the proposal is approximated with a first-order Taylor series. An example MCMC trajectory of single point
mutations starting from the WT is shown.

sequence models at mutation effect prediction (Meier et al 2021, Hsu et al 2022, Weinstein et al 2022) has
motivated a reconsideration of simple black-box optimization algorithms for searching sequence space.
Black-box algorithms are appealing due to their simplicity, flexibility, compatibility with discrete spaces, and
use of interpretable mutation operators. They offer a way to mix and match unsupervised and supervised
models for proposing variants without requiring any model fine-tuning or re-training, i.e. in a ‘plug and
play’ manner. Combining both types of models is generally advantageous. While unsupervised models learn
information that can steer search away from adversarial inputs which fool supervised models due to
overestimation errors (Szegedy et al 2014), supervised models learn specific information about beneficial
mutations gleaned from assay-labeled data. However, black-box algorithms tend to be extremely inefficient
at searching for variants with improved fitness. A practical plug and play framework for searching protein
sequence space has remained elusive due to the difficulty of fast search in discrete, high-dimensional spaces.

This paper fills that gap by introducing plug and play directed evolution (PPDE), a practical plug and
play sampling framework for the efficient discovery of functional variants directly in discrete protein space.
PPDE flexibly combines unsupervised and supervised models with a product of experts distribution (Hinton
2002) p(x) =

∏
i pi(x). Combining both types of protein models in this manner encourages variants to have

both high sequence likelihood and high predicted function (e.g. activity). To sample efficiently from the
high-dimensional, discrete, and unnormalized distribution p(x), we derive a fast Markov chain Monte Carlo
(MCMC) sampler that uses gradients of p(x) to propose mutations. See figure 1(b) for a visual depiction the
sampler. PPDE nearly maintains all of the flexibility of black-box algorithms—it only has to additionally
assume that p(x) is differentiable at each discrete point of protein space. We theoretically characterize the
efficiency of this sampler and empirically show that our framework works with a variety of pre-trained
models without using continuous relaxations and without model retraining or fine-tuning. Although our
formulation can be applied to a broad class of biological sequence design tasks, we focus on proteins due to
the current widespread availability of pre-trained models.
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A summary of our contributions:

• We introduce a plug and play sampling framework that enables mixing and matching various unsupervised
and supervised protein models without model re-training or fine-tuning.

• Wedemonstrate a novel application of gradient-based discreteMCMC for conducting search with a product
of experts distribution.

• We conduct rigorous in silico directed evolution experiments on three target proteins with partially charac-
terized wide (⩾2 mutation) fitness landscapes. Our results provide strong evidence that our sampler offers
a practical and effective approach for ML-based directed evolution beyond brute force and random search.

2. Related work

Black-box approaches to directed evolution: A popular paradigm for ML-based directed evolution has been
to learn a surrogate for the sequence-to-function landscape from a small labeled dataset and then to use a
black-box optimizer or sampler such as an evolutionary algorithm or simulated annealing to search for
mutants (Hansen and Ostermeier 1996, Angermüller et al 2020, Sinai et al 2020, Biswas et al 2021).
Black-box approaches are plug and play in that they can easily combine unsupervised and supervised protein
models without any model fine-tuning or re-training. Navigating the high-dimensional discrete space is
approached by either using a random walk, which is highly inefficient, or by using gradient ascent via a
continuous relaxation of the space, which can bias the search process towards poor local optima. These are
the main baselines for our method and will be described in more detail in section 5. Reinforcement learning
(RL) has also been used as a black-box optimization framework for training autoregressive models to
generate high-fitness variants (Angermueller et al 2019). However, this approach has less flexibility than plug
and play methods, in that it does not support easy mixing of unsupervised pre-trained models with the
learned RL policy.
Protein design by generative modeling: An alternative to directed evolution is to cast protein design as

inference, i.e. fitting a conditional generative model to assay-labeled proteins showing high activity (Brookes
and Listgarten 2018, Gupta and Zou 2018, Brookes et al 2019, Fannjiang and Listgarten 2020, Jain et al 2022,
Zhang et al 2022a). Since high performing variants are rare, this task amounts to density estimation of a rare
event which is a difficult statistical inference problem in its own right. Another popular alternative is latent
space optimization, in which gradient ascent is performed on a surrogate function trained directly in the
latent space of a generative model. These generative models use regularization to shape their latent space
favorably so that optimization remains constrained to the manifold of viable proteins (Killoran et al 2017,
Gomez-Bombarelli et al 2018, Kumar and Levine 2020, Linder et al 2020, Chan et al 2021, Trabucco et al
2021, Castro et al 2022). The deep manifold sampler (Gligorijevic et al 2021) more explicitly constrains
optimization by alternating between steps of gradient ascent and re-projection of a noised version of the
sequence onto the latent space of a custom denoising autoencoder (DAE). Our plug and play approach works
with a variety of unsupervised models and can combine multiple such models if desired.

At the expense of trust in candidate proteins, unconditional generative models can also be used to
hallucinate proteins from distant, unexplored regions of protein space. For example, training a generative
model on sequences from a target protein family has been used to generate functional variants (Costello and
Martin 2019, Hawkins-Hooker et al 2021, Shin et al 2021). Unconditional sampling from protein language
models trained on unaligned (Madani et al 2020, Rives et al 2021, Ferruz et al 2022, Hesslow et al 2022, Lin
et al 2022, Nijkamp et al 2022, Yang et al 2022) and aligned (Rao et al 2021, Notin et al 2022) sequences has
recently been explored. While this is a promising new direction for protein engineering, our focus is on
directed evolution from known proteins.
Plug and play text generation: Controlled generation of text has similarly been approached by combining

pre-trained unsupervised models (e.g. large language models) and supervised models (e.g. sentiment
classifiers) as a discrete product of experts (Holtzman et al 2018, Dathathri et al 2020, Qin et al 2022). Unlike
controlled text generation, where the goal is to guide a sampling process to transform a sentence by altering
entire words and phrases, directed evolution seeks to accumulate a few precise changes to an initial sequence by
modifying a small number of amino acids (i.e. individual characters). Moreover, plug and play approaches for
controlled text generation intentionally avoid solving a combinatorial search problem by instead restricting
the class of suitable unsupervised experts to left-to-right autoregressive language models. This enables the
use of sequential sampling algorithms such as left-to-right beam search decoding. Our use of gradient-based
discrete MCMC for PPDE allows us to efficiently search the combinatorial space of mutations near the WT
protein and to use a more general class of unsupervised experts that includes orderless protein sequence
models which capture epistatic relationships between any pair of amino acids. The Metropolis-adjusted
Langevin algorithm (MALA) used for plug and play image generation (Nguyen et al 2017) is a simple
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gradient-based MCMC sampler for continuous spaces, and is closely related to locally-balanced discrete
MCMC (Sun et al 2022a, Zhang et al 2022b). Therefore, we use MALA with a hand-crafted continuous
relaxation as a baseline for plug and play sampling from discrete product of experts in our experiments.

3. Background

Before presenting our sampler, we define our search problem, briefly review Metropolis–Hastings (MH)
MCMC, and introduce gradient-based discrete MCMC, a class of MH samplers able to efficiently explore
high-dimensional discrete distributions.
Problem definition: The variant proposal step of directed evolution involves searching for mutations

that improve one or more target properties of a given WT protein. This search problem is formally defined
over discrete protein sequences x := {x0, . . . ,xL−1}, x ∈ X, of length L with each xi taking on a value in a
vocab of size V (typically V = 20 for the 20 standard amino acids). We assume that each xi is one-hot
encoded. The search is initialized at the WT protein xWT and terminates when a predefined condition is met
(e.g. a maximum allowable number of search steps is reached).
MH: The MH algorithm (Metropolis et al 1953, Hastings 1970) defines the following algorithm for

drawing samples from a distribution over protein variants p(x). Let f (x) be the unnormalized log probability
of x such that logp(x) = f(x)− logZ where Z=

∑
x∈X exp( f(x)) is a normalizing constant. Given the current

state x, draw a candidate next state x
′
from proposal distribution q(x ′ | x). Accept the proposed state with

probability

min

{
1,exp(f(x′)− f(x))

q(x|x′)
q(x′|x)

}
,

otherwise reject the transition and stay at x. This probabilistic acceptance/rejection criterion is desirable
since it provides MH samplers with theoretical convergence guarantees and does not contain any
hyperparameters, simplifying the implementation of MH in practice.
Gradient-based discrete MCMC: Uninformed MH proposals such as the uniform distribution are often

inefficient for sampling from high-dimensional discrete distributions since candidate states x
′
are proposed

‘blindly’. In general, the efficiency of MH is highly dependent on the choice of proposal distribution. MH
with locally-balanced informed proposals (Zanella 2020) use distributions of the form

q(x ′|x)∝ exp( f(x ′)− f(x))
1
2 1(x ′ ∈N (x)), (1)

where 1(x ′ ∈N (x)) is an indicator function. The key idea is to bias the proposal distribution towards local
state transitions within a neighborhoodN (x) that incur an increase in likelihood. We take the square root of
the exponential in this proposal as the choice of local balancing function w(t) = tw(1/t),∀t> 0. This
function ‘balances’ the acceptance and rejection probabilities in the local neighborhoodN (x) to achieve a
high acceptance rate. The square root w(t) =

√
t was empirically validated as a good default option in Zanella

(2020). Since enumerating all local moves inN (x) in a discrete high-dimensional spaces is infeasible, an
efficient alternative is available for functions f (x) whose gradient can be evaluated at the discrete state
x (Grathwohl et al 2021). A gradient-based locally-balanced informed proposal is the first-order Taylor-series
approximation of equation (1) around x:

q̃(x ′|x)∝ exp

(
1

2
∇xf(x)

T(x ′ − x)

)
1(x ′ ∈N (x)). (2)

WhenN (x) is the 1-Hamming ball, this proposal amounts to a tempered softmax over single changes to one
dimension of x. One forward pass and one backwards pass is required to compute the forward q̃(x ′|x) and
reverse q̃(x|x ′) approximate proposals.

A concern with this sampler is that it is susceptible to getting trapped in poor local optima since it cannot
perform large jumps across the search space at each step of MCMC (Sun et al 2022b). One way to address
this is to increase the Hamming window size, U, to U > 1. While this enables the sampler to propose changes
to multiple dimensions of x simultaneously, it also incurs a large increase in computation sinceN (x) now
contains O((LV)U) states to evaluate. Alternatively, a path proposal sequentially samples R∼Unif(1,U) single
changes to apply to the current state x (Sun et al 2022b). For example, if x is the sequence ‘AAA’, then a
sampled path of length 3 could look like ‘AAA’→ ‘AAB’→ ‘AAC’→ ‘ABC’.

The approximate path proposal distribution starting at x0 := x is

q̃R(x
′|x) =

R∏
r=1

q̃
(
xr|xr−1

)
∝

R∏
r=1

exp

(
1

2
∇x0 f(x

0)T(xr − xr−1)

)
1(xr ∈N (xr−1)). (3)
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The rth path state xr is sampled from q̃
(
xr|xr−1

)
. The sampler decides whether to accept or reject the

terminal path state x ′ := xR (e.g. ‘ABC’), i.e. the accumulation of all R changes applied to x. The reverse
proposal q̃R(x|x ′) is computed using the gradient at the terminal state∇x ′ f(x ′) and the reversed sequence of
states (xR,xR−1, . . . ,x0). The number of forward and backwards passes required to compute the forward and
reverse path proposals is still two. In the next section, we will introduce and characterize a gradient-based
path proposal for product of experts distributions.

4. PPDE

Our approach for proposing mutations that improve a target property of the WT protein is to sample from a
distribution constructed by combining unsupervised and supervised sequence models without using any
continuous relaxations, model re-training, or fine-tuning. This distribution places its probability mass on
proteins that have both high evolutionary density f (x) (i.e. high likelihood of being a naturally occurring
protein) and high predicted function g(x) (e.g. activity or stability) by taking the product of multiple
pre-trained ‘expert’ distributions:

logp(x) =
∑
i

fi(x)+λ
∑
j

gj(x)− logZ. (4)

Each fi(x) is an unsupervised model, each gj(x) is a supervised model, and

Z=
∑
x∈X

exp

∑
i

fi(x)+λ
∑
j

gj(x)


is the unknown normalizing constant. Typically, fi(x) has been trained to do density estimation on unlabeled
yet aligned sequences (e.g. a collection of evolutionarily related sequences provided by a multiple sequence
alignment (MSA)) or unaligned sequences. While in this work we assume the gj(x) are an ensemble of
nonlinear models trained to regress activity from a labeled dataset of mutants, this formulation can easily be
extended to the multi-objective case where, for e.g. g1 predicts activity and g2 predicts stability.

The unsupervised experts pf(x)∝
∏

i exp( fi(x)) act as a soft constraint that keeps the sampler near
regions of high evolutionary density and away from, e.g. adversarial local optima of the supervised models.
Examples of unsupervised models that provide an evolutionary density score include the EVmutation Potts
model (Hopf et al 2017), the ESM protein masked language models (Rives et al 2021, Lin et al 2022), DAEs,
energy based models (EBMs), autoregressive protein language models (e.g. ProGen2 (Nijkamp et al 2022)),
and normalizing flows (non-exhaustive list). The supervised expert pg(x) acts as a soft constraint that guides
sampling towards proteins that have high activity, where pg(x)∝

∏
j exp(λ gj(x)) assigns high probability to

sequences with high activity. The hyperparameter λ⩾ 0 allows us to balance the contribution of the
unsupervised and supervised experts; for example, we can emphasize the ‘realism’ of the protein (the
evolutionary density) by setting λ to 0. However, recent evidence indicates that evolutionary density scores
also positively correlate with protein fitness in a ‘zero-shot’ manner (i.e. without using any labels) (Meier
et al 2021, Hsu et al 2022, Weinstein et al 2022).

4.1. Product of experts gradient-based discrete MCMC
Sampling from the product of experts (equation (4)) is difficult since the normalization constant Z is
assumed unknown and is intractable to compute in practice. Although we have a good initialization for an
MCMC sampler—xWT, the WT protein of verified viability—traditional MCMC based on random walk
exploration is too inefficient to discover variants with high predicted activity in reasonable time.

Our solution is to use fast gradient-based discrete MCMC. We need only additionally assume that each
expert is a continuous function that is differentiable at each discrete x ∈ X (e.g. as is the case when the
experts are neural networks). In detail, assume we haveM continuously differentiable unsupervised experts
and N continuously differentiable supervised experts. During each step of MCMC, we use the gradients of
theM+N experts to approximate the change in product of experts likelihood due to making R point
mutations to the current protein variant. This allows us to bias the proposal distribution towards the most
promising Rmutations. The gradient-based Taylor approximation of our MCMC proposal for logp(x) with
path length R∼ Unif(1,U) is q̃R(x ′|x) =

∏R
r=1 q̃

(
xr|xr−1

)
, where

q̃
(
xr|xr−1

)
∝ exp

(
1

2

M∑
i=1

∇x0 fi(x
0)T(xr − xr−1)+

λ

2

N∑
j=1

∇x0gj(x
0)T(xr − xr−1)

)
1(xr ∈N (xr−1)). (5)

5
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We use this path proposal to sample R single amino acid substitutions, which we apply to the current variant
x0 := x at each step of MCMC. The terminal state of the path xR := x ′ is the variant that results from the
accumulation of the R substitutions. To avoid computing extra forward and backwards passes through the
product of experts for the intermediate path proposals q̃(xr|xr−1), following Sun et al (2022b) we re-use the
gradient taken with respect to the path origin x0 instead of recomputing gradients at intermediate states. The
same is done for the reverse path proposals q̃(xr−1|xr) with respect to the terminal state xR. In the next
section, we characterize the efficiency of our sampler to understand how composing Taylor approximations
for multiple experts affects the theoretical convergence rate.

Algorithm 1. Plug and Play Directed Evolution (PPDE).

input one-hot encoded wild-type protein xWT , unsupervised experts f i, supervised experts g j, scale λ, max path lengthU
output evolved protein x∗

while still searching do
define x := x0, x ′ := xR, π(x) :=

∑
i fi(x)+λ

∑
j gj(x)

// compute the forward path proposal distribution
sample path length R∼ Unif(1,U)
for r ∈ {1, . . . ,R}do
h̃(xr−1) =

∑
i ∇xfi(x)

T(xr − xr−1)+λ
∑

j∇xgj(x)
T(xr − xr−1)

q̃(xr|xr−1) = categorical

(
softmax

(
h̃(xr−1)

2

))
// sample a single amino acid substitution and apply it to xr−1

xr ∼ q̃(xr|xr−1)
end for
for r ∈ {R, . . . ,1} do

h̃(xr) =∇x ′
∑

i fi(x
′)T(xr−1 − xr)+λ∇x ′

∑
j gj(x

′)T(xr−1 − xr) q̃(xr−1|xr) = categorical

(
softmax

(
h̃(xr)
2

))
end for

// accept x
′

with probability

min

{
1,exp(π(x ′)−π(x))

∏1
r=R q̃(x

r−1|xr)∏
R
r=1 q̃(x

r|xr−1)

}
end while

Algorithm 1 shows pseudo-code for our fast MCMC sampler for plug and play directed evolution of
proteins. The sampler follows the basic structure of MHMCMC. At each sampler step, we first compute the
forward path proposal distribution q̃R(x ′|x) which we use to sample the proposed protein x

′
. Then, we

compute the reverse path proposal distribution q̃R(x|x ′). We use these distributions to compute an
acceptance criterion for determining whether to accept or reject x

′
, after which the process repeats until

termination (e.g. a predetermined number of MCMC steps is reached).

4.2. Sampler analysis
Since we are using a gradient-based approximation of the product of experts proposal distribution, a natural
question is whether this approximation reduces the sample efficiency of our sampler. It turns out that the
choice of unsupervised and supervised experts plays a key role in determining the theoretical sampler
efficiency. In particular, the following corollary to theorem 3 from Sun et al (2022b) relates the smoothness
of each expert’s gradient to our sampler’s ability to efficiently explore protein space.

Corollary 1. Assume λ= 1, each expert hi is differentiable,∇xhi(x) is Ki-Lipschitz, the max path length is U,
and a 1-Hamming ball neighborhoodN (x). Let QR(x,x ′) and Q̃R(x,x ′) be the Markov transition kernels
induced by our sampler with the product of experts proposal qR(x ′|x) and with its approximation q̃R(x ′|x),
respectively. These transition kernels are related by

Q̃R(x,x
′)⩾

(
M∏
i=1

e−Ki
U(U+1)

2

)
QR(x,x

′). (6)

See appendix B for the proof.

Remark. This result bounds the efficiency of the sampler by a product of exponential functions of each expert’s
gradient’s Lipschitz constantK i. Thismeans that if just one expert has a gradient with a large Lipschitz constant
(e.g. the unsupervised experts are highly nonlinear protein language models), it is possible that this expert
greatly reduces the overall efficiency of the sampler. For supervised experts (possibly an ensemble), which are

6
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typically shallow neural networks whose gradients have small Lipschitz constants, we can expect that the first-
order approximation will not greatly reduce the sampler’s efficiency. However, equation (6) is a fairly loose
bound. We will empirically compare how the sampler fares with different types of experts in practice (see
section 5.2.3).

5. Experiments

In this section, we present the results of multiple synthetic experiments. First, we validate that our proposed
sampler is able to discover a diverse set of good optima for product of experts distributions in
high-dimensional discrete spaces using a toy MNIST-based task. Then, with a realistic in silico directed
evolution experimental setup, we characterize advantages of combining unsupervised and supervised models
and compare our sampler with appropriate baseline plug and play algorithms. The baselines are:

• Simulated annealing: This is a simple random-mutation-based MCMC-style algorithm from Biswas et al
(2021) for sampling from the global optimumof a discrete Boltzmann distribution p= 1/Zexp(−y/T)with
temperature T and y=− logp(x). We apply this to sample from our product of experts (equation (4)). At
each sampling step, a new sequence is proposed by randomly sampling m∼ Poisson(µ− 1)+ 1 uniformly
sampled amino acid substitutions with rate µ∼ Uniform(1,2.5). Proposed variants are accepted with prob-
abilitymin(1,exp((ŷ− y)/T))withT annealed over time to encourage the sampler to becomemore exploit-
ative. Variants with higher logp(x) are always accepted whereas sequences that decrease logp(x) are accepted
with a probability proportional to the difference scaled by the temperature.

• Random sampling: We provide a simple baseline that does not use search but rather uniformly samples
variants around the WT protein, with aims of quantifying the advantage of using search to accumulate
multiple promising mutations. Given a budget ofN variants, we use the same mutation proposal algorithm
as simulated annealing to sample and apply a single mutation (which could consist of multiple amino
acid substitutions) to the WT. After sampling N such variants, we sort them by logp(x) and return the top
K.

• MALA-approx: This baseline employs a continuous relaxation of discrete protein space to use stochastic
gradient-based continuous optimization inspired by Nguyen et al (2017). During each step, MALA-approx
samples

x̃ ′ ∼N
(
x̃+

ϵ

2
∇x̃ logp(round(x̃)), ϵ2

)
, (7)

where ϵ is a step size and∇x̃ logp(round(x̃)) is a straight-through estimate of the gradient (Bengio et al 2013)
of the product of experts with respect to the current relaxed variant. The continuous relaxation is based on
a temperature-controlled relaxation of categorical variables to continuous vectors on the simplex (Jang et al
2016, Maddison et al 2016) with temperature τ . That is, we interpret each sequence position of protein x
to be a rounded sample from a relaxed categorical distribution. We run this sampler in ‘logit space’ of these
distributions since the support of logit space extends across the entire real line, whereas enforcing valid
probability distributions at each sequence position would require solving a difficult constrained optimiza-
tion problem. Given the one-hot WT protein xWT, the sampler is initialized at logit values given by a convex
combination of a uniform distribution over all amino acids and the WT: log((1− τ) · 1/|V|+ τ · xWT). To
round to discrete values for evaluating logp(round(x̃))), we sample from the relaxed categorical distribu-
tions with logits x̃ and then take the argmax at each sequence position.

• CMA-ES: The CMA-ES algorithm (Hansen and Ostermeier 1996) is a powerful evolutionary strategies
optimizer that accelerates search by maintaining an estimate of higher order relational statistics between
each dimension of the search space. This algorithm is designed for continuous spaces with tens or hundreds
of dimensions to eventually concentrate around the global optimum. It iteratively updates a Gaussian dis-
tribution (both mean and full covariance matrix) by sampling and evaluating a population of candidates.
Like MALA-approx, it requires using a continuous relaxation of protein space. Simply, we ‘flatten’ a one-hot
protein x into a vector of dimension LV which we then re-interpret as a continuous vector in RLV. To undo
this relaxation, we reshape the vector into a length L sequence and interpret the V entries at each sequence
position as scores, i.e. we take the argmax.

We use multiple metrics to compare samplers that measure not only activity but also whether designed
proteins are evolutionarily plausible. Our results provide strong evidence that combining unsupervised
evolutionary models with supervised models produces variants more likely to appear in nature and with
higher fitness, especially when using unsupervised models fit on aligned sequences. Moreover, we find that
composing multiple unsupervised models trained on aligned and unaligned sequences has the best
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Figure 2.MNIST-Sum: the objective is to evolve the wild type image (right) to maximize the sum of the two digits.

performance. We also verify that, by and large, our gradient-based discrete MCMC sampler for product of
experts achieves better sampling performance than the random-walk-based and
evolutionary-strategies-based baselines.

5.1. MNIST-Sum
Before we present results on ML-based directed evolution, we evaluate the samplers on a toy search problem
where optimized designs are easy to interpret.
Setup:We construct a binary MNIST task that emulates a typical ML-based directed evolution problem.

We are given two binary MNIST images x1 and x2 where x2 is the WT image. Each image is treated as a length
L= 784 one-hot sequence where V= {0,1}. The goal is to evolve x2, keeping x1 fixed, to maximize the sum
of the two digits (figure 2). Here, the equivalent of an amino acid substitution is flipping a binary pixel. This
task is difficult for methods that optimize in discrete space, since flipping most pixels causes the image to ‘fall
off ’ the underlying low dimensional manifold of MNIST digits. To obtain supervised experts pg(x) for a
product of experts logp(x) (equation (4)), we use a labeled dataset of 50 K pairs of binary MNIST digits with
sum⩽ 10 (the ‘assay-labeled proteins’) to train an ensemble of three shallow siamese ConvNets that regresses
the sum x1 + x2. We then use an unlabeled datasest of 50 K binary MNIST images (the ‘unlabeled protein
database’, such as UniRef) to train a deep EBM and to train a DAE for unsupervised experts pf(x) (see
appendix for model details).

PPDE is compared against simulated annealing, MALA-approx, and CMA-ES. All methods use a
single EBM unsupervised expert and an ensemble of three -convolutional neural networks (CNNs) as
supervised experts. To examine the importance of the unsupervised expert, we run PPDE with only
supervised experts (PPDE (None) or PPDE (supervised only)). We then highlight PPDE’s plug and play
ability by running it with an EBM expert (PPDE (EBM)) and then swapping it out for a DAE expert (PPDE
(DAE)) without performing any further fine-tuning or re-training. Key hyperparameters for each sampler are
tuned on the digit pair x1 = 1,x2 = 5 (which has maximum sum 10 since x2 is evolved while x1 is held fixed)
for 10K steps. We test each sampler on the out-of-distribution image pair x1 = 9,x2 = 1 with maximum
possible sum 18. In this case, ‘solving’ the task is equivalent to evolving the WT ‘1’ digit into a ‘9’. Each
method evolves a population of size 128 and each sample in the population is optimized for a budget of 20K
steps. To estimate ‘ground truth’ sums for optimized image pairs, we train an ensemble of three siamese
ConvNets to near perfect accuracy on pairs of digits whose sums are⩽ 18.
Results: The qualitative and quantitative results in figure 3 show that composing the supervised experts

with an unsupervised expert (the EBM or the DAE) is necessary to solve the task; otherwise, the PPDE
sampler is unable to avoid adversarial inputs and each run of the sampler converges to white noise images.
We also observe that PPDE samples a highly diverse population of digits with noticeable semantic
differences. We see that PPDE (DAE) outperforms PPDE (EBM), which we suspect could be caused by the
DAE’s gradients being more informative due to its denoising training objective. Simulated annealing and
MALA-approx fail in this high-dimensional space due to the difficulty of using random walks to find search
directions that increase the product of experts probability. CMA-ES is outperformed by PPDE despite its use
of covariance information to accelerate search in high-dimensional spaces. PPDE’s evolved images are
considerably more realistic than those produced by CMA-ES. We also observe that on this task, CMA-ES
produces images that show low semantic diversity (the images differ at the pixel-level but the by and large
look highly similar). We speculate that PPDE gains an advantage over CMA-ES by using gradients to select
which pixels to mutate instead of approximate high-order statistics.
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Figure 3.MNIST-Sum results: (a) random samples from the optimized digit populations. The samples from PPDE (DAE) have
the highest diversity and also closely resemble MNIST images of a ‘9’. PPDE (None) does not use an unsupervised expert which
causes sampler trajectories to become trapped in adversarial regions of the space where samples resemble white noise. The
random mutation proposals employed by simulated annealing and MALA-approx cause these samplers to fail due to the
high-dimensionality of the space. CMA-ES’s samples have low diversity yet converge onto a population of images that somewhat
resemble a ‘9’. (b) The supervised experts’ predicted sum (orange) vs. the oracle’s predicted sum (blue) for the sampler
trajectories. Each line plot is the 70th percentile sum with the shaded region showing the 50th and 90th percentiles. PPDE (DAE)
reliably maximizes the sum of the digits (‘18’) as measured by the oracle model.

5.2. In silico directed evolution
Datasets:We use three benchmark proteins with partially characterized wide fitness landscapes and MSAs
from Hsu et al (2022) for in silico directed evolution experiments: the poly(A)-binding protein (PABP)
dataset of variants measuring binding activity (95 residues, each variant has⩽ 2 mutations), the
ubiquitination factor E4B (UBE4B) protein dataset measuring ligase activity (103 residues, each variant has
⩽ 6 mutations), and green fluorescent protein (GFP) dataset measuring fluorescence (238 residues, each
variant has⩽ 15 mutations). To emulate a realistic protein engineering setup with reasonable amounts of
data for training our supervised experts g(x), we use the ‘2-vs-rest’ mutation train/test split as suggested
in Dallago et al (2021)—that is, after splitting each dataset 80/20, we keep only sequences with two or fewer
mutations for training and subsample 10% of these. For PABP, both the train and test sets only have variants
with at most two mutations. This amounts to 3 K sequences for PABP, 2 K for UBE4B, and 1 K for GFP.
Metrics: Quantitative evaluation of optimized variants involves measuring the activity (log fitness), the

likelihood to appear in nature (evolutionary density), population diversity, and ability to explore the fitness
landscape around the WT (average number of mutations per variant). To compute log fitness, we take
inspiration from model-based optimization benchmarks (Trabucco et al 2022) and simulate an expensive
wet lab verification with a powerful ‘oracle’ model that we train with 80% of all variants (with all numbers of
mutations) for each protein. Log fitness is scored relative to WT with the Augmented EVmutation Potts
model from Hsu et al (2022) as the oracle. To compute an evolutionary density score relative to WT, we use a
different transformer, the MSA Transformer (Rao et al 2021), conditioned on 500 randomly subsampled
sequences from each MSA. For both log fitness and evolutionary density, positive values mean the variant
outscored the WT while negative values are worse than WT. We run each sampler 128 times for 10 K steps
each, initialized at the WT, and select the sample with the maximum logp(x) per run for the final population.
As plug and play baselines we again use simulated annealing, CMA-ES, and MALA-approx, as well as
random sampling.
Experts:We use the EVmutation Potts and ESM2 family of protein language models as pre-trained

unsupervised experts. All baselines use a single Potts expert and are directly compared with PPDE (Potts).
Unless stated otherwise, we use the 150 M parameter version of ESM2. We also run our sampler with both
Potts and ESM2 (i.e. we take the sum of the Potts and ESM2 evolutionary density scores) (PPDE
(Potts+ESM2)). For the supervised expert we use an ensemble of three shallow CNNs introduced as a
baseline in Dallago et al (2021) which regress activity directly from one-hot encoded proteins. See the
appendix for architecture details and details on how we implement the evolutionary density scoring for the
Potts and protein language model scoring functions.
Choosingλ:Multiplying the supervised experts with the hyperparameter λ⩾ 0 trades off how much the

unsupervised and supervised experts influence which variants are sampled from the product of experts
distribution. A larger value for λ inflates the supervised expert scores which causes the sampler to have more
confidence in variants with high predicted activity. We use a simple heuristic to select λ for the three
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Figure 4. In silico directed evolution 80th percentile results. Positive log fitness and evolutionary (evo.) density scores are better
than the WT while negative values are worse than WT. The red dashed lines intersect at WT performance (0,0). Each sampler is
colored by the average number of mutations per variant (higher is better). On PABP (left), PPDE (Potts+ESM2) and PPDE
(Potts only) (arrows) achieve the highest evo. density and log fitness—both better than WT—and with relatively high
numbers of mutations. On UBE4B (center), PPDE (Potts) and PPDE (Potts only) (arrows) appear to best trade off evo.
density, log fitness, and mutation count. PPDE (ESM2) achieves the best log fitness but with slightly worse evo. density scores. On
GFP (right), only PPDE (Potts) and PPDE (Potts+ESM2) (arrows) discover samples with log fitness better than WT. CMA-ES
is omitted for viewing clarity due to outlier results on UBE4B (log fitness: 2.54, evo. density:−94.76) and GFP (log fitness:−1.13,
evo. density:−22.85). Best viewed in color.

Table 1. Population diversity (% of variants that are unique).

Random
search

Simulated
annealing MALA-approx CMA-ES

PPDE
(Potts only)

PPDE
(Super.
only)

PPDE
(Potts)

PPDE
(ESM2)

PPDE
(Potts+ESM2)

PABP 32.8 28.9 28.9 0.8 85.2 60.2 65.6 63.1 85.2
UBE4B 7.0 4.7 6.2 3.1 12.5 18.8 18.8 36.5 31.3
GFP 9.4 3.9 9.4 92.2 8.6 59.4 22.7 92.9 21.9

benchmark proteins and for each of the Potts and ESM2 unsupervised experts. The heuristic roughly assigns
equal emphasis to the unsupervised and supervised expert scores. In detail, we estimate the {min, max, mean}
statistics of expert scores computed from a small representative sample of labeled protein variants and then
picks λ such that the statistics for the supervised expert scores are close to those of the unsupervised expert
scores. We sample 100 protein variants from the training set that have lower activity than WT and 100
proteins with higher activity higher than WT and then evaluate the {min, max, mean} of the unsupervised
expert scores and λ×{min, max, mean} of the supervised expert scores for λ ∈ {0.5,1,3,5,15}. When using
the Potts unsupervised expert we use λ= 5,0.5,15 and when using the ESM2 expert we use λ= 5,3,1 for
the PABP, UBE4B, and GFP proteins, respectively. Less manual approaches that tune λ over a grid of values
or learn λ over a held-out validation set of labeled variants could be used instead if desired (Holtzman et al
2018).

5.2.1. Main results
Figure 4 shows the 80th percentile metrics for each evolved population colored by the population’s average
number of mutations. The 50th and 100th percentile results for all samplers are provided in a table in the
appendix (table 2). Diversity scores are in table 1. We make the following observations.
Diversity: Across all three proteins, PPDE-based samplers achieve the best diversity (highest percentage

of unique variants), implying superior exploration of good optima around the WT protein.
Evolutionary density, log fitness, andmutation counts: Out of the samplers using the Potts

unsupervised expert, PPDE (Potts) discovers variants with higher log fitness and average number of
mutations than random search, simulated annealing, and MALA-approx. In terms of evolutionary
density, PPDE (Potts) achieves the highest scores on PABP, and on the more challenging UBE4B and GFP
proteins, we suspect that the slightly lower 80th percentile evolutionary density scores compared to the
baselines (except for CMA-ES, which scored poorly) are in part due to PPDE discovering variants with higher
average mutations (2− 4+mutations vs.∼1 mutation for the baselines) and higher log fitness. We found
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Figure 5. PPDE is most efficient at finding good optima of the high-dimensional product of experts. Cumulative maximum
product of experts log probability averaged across the population (higher is better). All samplers use the same product of experts
target distribution with Potts unsupervised expert (other unsupervised experts not shown for clarity of presentation). CMA-ES is
not visible in (c) because the optimization starts and remains around logp(x)≈−50.

that the CMA-ES sampler had inconsistent performance across the three proteins. Among samplers using the
Potts unsupervised expert, it achieves the highest fitness scores on two proteins (PABP and UBE4B), but does
so with diversity scores of 0.8% and 3.1% compared to 85.2% and 12.5% for PPDE (Potts) (table 1).
CMA-ES finds variants with high numbers of mutations (∼10− 17) but low evolutionary density scores
(50th percentile scores of 3.47 on PABP,−94.76 on UBE4B and−62.43 on GFP compared to 6.92,−4.79, and
−5.98 for PPDE; see table 2). It finds just one protein variant for PABP that is 17 mutations fromWT with an
evolutionary density score of 3.47, and it seems to have significant difficulty with the larger proteins UBE4B
and GFP; e.g. on GFP the average 50th percentile log fitness is−2.50 compared to−0.04 for PPDE. Figure 5
shows sampler trajectories, with which we see that across all three proteins, PPDE is the superior approach
for efficiently sampling from the high-dimensional discrete product of experts distributions. We see here
again that CMA-ES performs worse as the protein sequence length and fitness landscape complexity increases.
It appears that a major limitation of CMA-ES is its continuous relaxation, which projects each sequence in
the population to a variant far from the WT. For GFP, the population average product of experts probability
starts and stays around logp(x)≈−50. We conclude that CMA-ES can be recommended for use only when a
single protein variant is desired and the length of the protein is relatively small (e.g.⩽ 95 residues).
Swapping unsupervised experts:Without using an unsupervised expert, PPDE discovers variants with

worse evolutionary density scores than even random sampling, confirming our observations from the
previous MNIST-Sum experiment that supervised experts alone are susceptible to adversarial inputs. We also
examined PPDE without any supervised expert (PPDE (Potts only)) by setting λ= 0. The observation
that PPDE (Potts only) achieves a higher log fitness on PABP and only slightly worse log fitness on
UBE4B than PPDE (Potts) is not surprising, as recent evidence suggests unsupervised evolutionary density
scores are (at least moderately) predictive of mutation effects (Meier et al 2021, Hsu et al 2022, Weinstein
et al 2022). However, the sampler performance degrades significantly by all metrics on GFP. When using the
ESM2 unsupervised expert, PPDE discovers variants with lower evolutionary density scores than when using
the Potts. This is not altogether unexpected since the MSA Transformer, which is used to score the variants, is
conditioned on the same MSA as used to fit the Potts model. Although, this result also suggests that using
unsupervised experts fit to aligned sequences is more promising for ML-based directed evolution. We observe
a promising compositional effect from combining unsupervised experts trained on unaligned sequences
(ESM2) and aligned sequences (Potts); e.g. across all three proteins the PPDE (Potts+ESM2) sampler
achieves higher 100th percentile fitness and density scores than when using the Potts or ESM2 experts alone,
and increases the diversity and average number of mutations as well.

5.2.2. Qualitative results
We provide a qualitative analysis of the mutations discovered by the supervised only, simulated
annealing, PPDE (Potts) and PPDE (Potts+ESM2) samplers in figure 6. Many of the variants found by
PPDE tend to have the same 1–3 ‘highly plausible’ mutations in addition to a few ‘rare’ mutations that show
up in variants at a much lower rate.

5.2.3. Comparing protein language model experts
Figure 7 highlights the ability of PPDE to successfully sample from the 35 M, 150 M, and 650 M parameter
ESM2 language models without any extra fine-tuning or re-training. This flexibility makes it easy to leverage
continued improvement in protein language models, or use language models fine-tuned for specific protein
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Figure 6. Visualization of mutation site frequency. Best viewed in color and zoomed in. The marginal frequency of a mutation site
is the fraction of protein variants in the population with a mutation at a particular sequence position. We visualize site frequencies
as a heatmap on the 3D structure of the WT protein. For example, nearly 100% of UBE4B variants discovered by PPDE
(Potts+ESM2) have a mutation at position 1145. We annotate only a few high frequency sequence positions per protein for
clarity; many sequence positions with a low frequency are not annotated.

Figure 7. Swapping in different protein language model experts. Full populations (128 variants) colored by log fitness with the
median evolutionary density annotated. We swap out different unsupervised experts for the in silico directed evolution of UBE4B
using the same supervised expert. This includes a 650 M parameter protein language model (ESM2-650 M). Combining
unsupervised experts trained on aligned and unaligned sequences (Potts+ESM2-150 M) discovers variants with highest density
and higher predicted fitness than WT (arrow).

families. As the number of ESM2 parameters increase, we observe a trend where variants with higher
predicted activity and marginally higher evolutionary density are discovered. A similar observation
in Nijkamp et al (2022) also suggests that model size positively correlates with zero-shot fitness prediction on
wide fitness landscapes. When directly comparing supervised only and PPDE (Potts), we can see a
large improvement in evolutionary density when the Potts expert is used. ESM2, which is trained on
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Figure 8.Wall clock run time comparisons using the Potts (a) and ESM2 (b) unsupervised experts. Run times are averaged over
seven trials using the PABP protein, 1 K sampler steps, and a population of size 16. (c) Comparing PPDE on UBE4B with various
max path lengths U= 2X− 1 where X ∈ {1,2,5,10}.

unaligned proteins, achieves lower evolutionary density scores than the Potts, suggesting it acts as a much
softer search constraint. Combining the Potts and ESM2 experts results in improving the top percentile of
discovered variants compared to those found by using the Potts or ESM2 experts alone.

5.2.4. Path length sensitivity analysis
PPDE’s proposal distribution samples a path of R∼Unif(1,U) single substitutions at each sampler step to
rapidly navigate through protein space. We conducted a sensitivity analysis on the maximum path length U,
where U= 2X− 1 and X ∈ {1,2,5,10} (figure 8(c)) on the UBE4B protein. In this experiment, we found
that path lengths longer than 3 did not significantly improve sampler efficiency. This is possibly because we
already have a good initialization for the sampler (the WT) and short path lengths are sufficient for
discovering high quality variants. It is also possible that, in our setting, the accumulation of errors from the
first order Taylor approximation along a long path leads to worse sampler efficiency despite better
exploration. Moreover, using a longer path length leads to discovering variants with a higher number of
mutations, whose activity could be inaccurately characterized by the supervised experts.

5.2.5. Run time comparison
We compare wall clock run times for PPDE and the baseline samplers under the Potts (figure 8(a)) and
ESM2 (figure 8(b)) experts using the PABP protein, 1 K sampler steps, and a population size of 16 variants.
Samplers are run on a single NVIDIA Tesla cloud GPU; see appendix for complete hardware details. CMA-ES
is significantly slower than the other samplers. When using the Potts expert, PPDE’s run time is relatively
comparable to simulated annealing and MALA-approx. The cost of computing the gradient of ESM2 is
much higher than for the Potts model, so in this setting simulated annealing (which does not use
gradients) has lower run time than MALA-approx and PPDE.

6. Limitations

In this section, we discuss limitations of the proposed sampling method related to computational costs and
handling insertion/deletion mutations.
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Each step of the PPDE sampler requires two backwards passes—one for computing the forward proposal
and one for the reverse proposal. When PPDE is used with a large protein language model whose backwards
pass has a large memory footprint, this becomes a bottleneck if sufficient computing resources are
unavailable. Fortunately, MCMC samplers are embarrassingly parallel. For example, with a budget of K
available GPUs, we can evolve a single protein per GPU in parallel.

The wall-clock time incurred by running PPDE depends on the ability to rapidly evaluate and
differentiate through the product of experts distribution. For certain classes of unsupervised experts, this is
difficult. For example, evaluating the log probability of a protein with a variational autoencoder (e.g.
DeepSequence (Riesselman et al 2018)) requires computing a large-sample Monte Carlo estimate of the
evidence lower bound, which is highly computationally expensive.

PPDE also does not currently support inserting and deleting amino acids (indels). We necessarily assume
the product of experts is locally smooth in a neighborhood around the current protein to compute our
proposal distribution for MCMC. This assumption would need to still hold despite proposing length changes
to the sequence. While we do not believe lack of support for indels is a fundamental limitation of the
sampler, supporting indel mutations appears to be nontrivial.

7. Conclusions

In this study, we have shown how to flexibly combine unsupervised models of evolutionary density,
including protein language models, and supervised models of protein function and how to efficiently sample
from the resulting distribution to discover proteins that maximize a desired function while avoiding poor
local optima. This strategy leverages the vast amounts of unlabeled data that are available for unsupervised
(or self-supervised) pre-training to improve designed sequences, even when relatively few labelled data are
available for training the fitness function. Our empirical results suggest our framework offers a practical and
effective new paradigm for machine-learning-based directed evolution. Although our framework can
potentially be applied to a broader range of biological sequence design tasks, we focused solely on proteins
due to the variety of available pre-trained models.

Based on our findings, we recommend constructing the product of experts distribution with
unsupervised experts that have been pre-trained on aligned protein sequences (e.g. MSAs) when available.
We found that these models more strongly constrain search to the evolutionarily plausible mutations than
unsupervised models pre-trained on unaligned protein sequences. However, combining unsupervised models
of both types produced designs superior to using one or the other alone.

One important capability that we did not demonstrate is the incorporation of additional hard
constraints, such as a maximum allowable number of mutations per variant or the preservation of particular
regions of the WT sequence. In our framework, we can easily accomplish this by forcing the mutation
proposal probabilities at the sequence positions in question to zero, which can be done by setting their logits
to negative infinity in the softmax in Algorithm 1. Future work may also extend this framework to larger
problems in biological design. For instance, the simultaneous engineering of several sequences in multimeric
enzyme complexes, or incorporating substrate structure in evaluating the likelihood of enzyme-substrate
complexes.
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Appendix A. Deriving the gradient-based approximate proposal

We provide a short derivation that illustrates how to obtain a gradient-based approximate locally-balanced
informed proposal (equation (2)) from the locally-balanced informed proposal of equation (1). The goal is
to avoid evaluating f(x ′) for all x ′ ∈N (x) when computing the proposal distribution
q(x ′|x)∝ exp( f(x ′)− f(x))

1
2 1(x ′ ∈N (x)). The basic idea from Grathwohl et al (2021) is to assume that f is a

continuously differentiable function, which allows us to approximate f(x ′)− f(x) with a first-order Taylor
series.

In detail, the first-order Taylor series of the function f (x) at the point a is

f(x)≈ f(a)+∇af(a)
⊺(x− a). (8)

By subtracting f (a) from both sides, we get

f(x)− f(a)≈∇af(a)
⊺(x− a). (9)

To arrive at the gradient-based proposal, suppose a is the current state of our MCMC sampler and let x be
any point in the neighborhood of a, x ∈N (a). When we plug in our first-order approximation,

q̃(x|a)∝ exp(∇af(a)
⊺(x− a))

1
2 1(x ∈N (a)). (10)

Appendix B. Proof of corollary 1

The basic idea of the proof is to use the triangle inequality to obtain a bound on the approximation error of a
sum of experts which assumes that each expert has sufficiently smooth gradients.

Definition. A function f : RN → R has K-Lipschitz continuous gradient when

∥∇x ′ f(x ′)−∇xf(x)∥⩽ L∥x ′ − x∥ (11)

for all x,x ′ ∈ RN.

For convenience, we reproduce a pertinent result here from Nesterov (1998) (Lemma 1.2.3).

Lemma 1.2.3. Nesterov (1998) If f : RN → R has an L-Lipschitz gradient, then for any x,x ′ ∈ RN we have:

|f(x ′)− f(x)−⟨∇xf(x),x
′ − x⟩|⩽ L

2
∥x ′ − x∥2. (12)

Lemma B.1. For functions f and g with Kf-Lipschitz and Kg-Lipschitz gradients respectively, the
sum-composition h= f + g has (Kf +Kg)-Lipschitz gradient.

Proof. By the triangle inequality:

∥∇x ′h(x ′)−∇xh(x)∥= ∥∇x ′( f(x ′)+ g(x ′))−∇x( f(x)+ g(x))∥
= ∥∇x ′ f(x ′)+∇x ′g(x ′)−∇xf(x)−∇xg(x)∥
⩽ ∥∇x ′ f(x ′)−∇xf(x)∥+ ∥∇x ′g(x ′)−∇xg(x)∥
⩽ (Kf +Kg)∥x ′ − x∥. (13)

Lemma B.2. Suppose fi, i = 1, . . . ,M are functions with Ki-Lipschitz gradient. Then for any x,x ′ ∈ RN we have∣∣∣∣∣
M∑
i=1

(
fi(x

′)− fi(x)
)
−
〈 M∑

i=1

∇xfi(x),x
′ − x

〉∣∣∣∣∣⩽
∑M

i=1Ki

2
∥x ′ − x∥2. (14)

Proof. Let g=
∑M

i=1 fi where each f i, i = 1, . . . ,M has K i-Lipschitz gradient. By lemma B.1 we can see that

g has a
∑M

i=1Ki-Lipschitz gradient. Then lemma B.2 follows immediately by applying lemma 1.2.3 from
Nesterov (1998) to g.

15



Mach. Learn.: Sci. Technol. 4 (2023) 025014 P Emami et al

The proof of corollary 1 proceeds by bounding the approximation error between two consecutive states
xr−1 and x ′ ∈N (xr−1) in a path of length R∼ Unif(1,U). For simplicity we assumeN (x) is the 1-Hamming
ball, i.e. ∥xr − xr−1∥2 = 1.

For g=
∑M

i=1 fi which has K=
∑M

i=1Ki-Lipschitz gradient, lemma 2 gives us that

−K

2
⩽ g(x′)− g(xr−1)−⟨∇g(xr−1),x′ − xr−1⟩⩽ K

2
.

Then an upper bound for g(x ′)− g(xr−1) is

g(x′)− g(xr−1)⩽ ⟨∇g(xr−1),x′ − xr−1⟩+ K

2

= ⟨∇g(x0),x′ − xr−1⟩+ ⟨∇g(xr−1)−∇g(x0),x′ − xr−1⟩+ K

2

⩽ ⟨∇g(x0),x′ − xr−1⟩+Kr+
K

2

= ⟨∇g(x0),x′ − xr−1⟩+K

(
r− 1

2

)
.

Following similar steps, we also have

g(x′)− g(xr−1)⩾ ⟨∇g(x0),x′ − xr−1⟩+K

(
r+

1

2

)
.

The remainder of the proof for corollary 1 exactly follows equations 64–72 in the proof of theorem 3 in
Sun et al (2022b) with g(x) which has K-Lipschitz gradient.

Appendix C. Experiment details

C.1. Neural architectures
MNIST DAE: The encoder and decoder neural networks are constructed out of residual blocks, where a
single block has two 3× 3 2D Conv layers, each followed by a BatchNorm layer and Swish activation. The
first Conv layer in the block uses a stride of 2 and a 1× 1 shortcut Conv layer is added to its output. The
encoder consists of one 3× 3 2D Conv layer, followed by two blocks, then another 3× 3 2D Conv layer,
followed by a fully connected layer that projects the flattened output features into a 16-dimensional latent
space. The encoder and decoder are symmetric, and the decoder is implemented with transposed Conv layers
and the per-pixel output is interpreted as the logits of a Bernoulli distribution. All Conv layers use 64
channels. To train the DAE, we corrupt the input 28× 28 binary MNIST image by randomly flipping p% of
the pixels, where p∼Unif(0,15), and minimize the reconstruction error. We use the AdamW optimizer with a
learning rate of 1× 10−4 to train the model for 10 K steps using a mini-batch size of 100.
MNIST EBM: This model follows the residual EBM architecture from Grathwohl et al (2021) closely. The
model consists of one 3× 3 2D Conv layer, followed by two residual blocks (the same blocks used by the
DAE), and then an additional six residual blocks with all Conv layers using a stride of 1. The output features
are flattened with global average pooling and then mapped to a scalar with a fully connected layer.
See Grathwohl et al (2021) for details about the contrastive divergence training algorithm and training
hyperparameters.
Protein ConvNet:We use the ConvNet baseline from the FLIP benchmark (Dallago et al 2021) to regress
activity. This model takes in a mini-batch of one-hot encoded protein sequences of shape B× L×V, applies
a 1D Conv with kernel size 5 and ReLU activation to project V to dimension L, followed by a fully connected
layer to expand the feature dimension to 2 L. Then, max pooling is used to reduce the length of the sequence
to 1, and a linear layer projects the feature dimension from 2 L to 1. The model is trained with AdamW
optimizer with a learning rate of 1× 10−3 using a mini-batch size of 256.
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C.2. Unsupervised expert score functions
We provide details for computing

∑
i fi(x) with each type of unsupervised expert.

MNISTDAE: For a given image x, we define f (x) to be the sum of the binary cross entropy between the input
pixel and the predicted pixel logits over all pixel locations.
MNIST EBM:We use the scalar output as f (x), since it can be interpreted as an unnormalized log probability
for the input. This only requires a single forward pass to compute.
Protein EVmutation Potts:We use the difference in the Potts Hamiltonian between the protein variant x and
the WT such that f(x) =H(x)−HWT(x). The Hamiltonian for a one-hot protein x is defined as

H(x) =
L∑

i=1

hTi xi +
L∑

i,j=1

xTi Jijxj

where J ∈ RL×L×20×20 and h ∈ RL×20 are the Potts parameters.
Protein ESM2:We use the difference in the sum of the per-amino-acid log probabilities between the protein
variant x and the WT for f (x). For computational efficiency, we compute the score with a single forward pass
and therefore do not use any masking of input sequence positions. In detail, for a one-hot protein x let ϕ(x)
be the L×V matrix of logits computed by a single unmasked forward pass of ESM2. Then the score is

f(x) =
L∑

i=1

V∑
j=1

xijlog_softmax(ϕ(x)i)j −
L∑

i=1

V∑
j=1

xWT
ij log_softmax(ϕ(xWT)i)j.

C.3. Hardware details
We ran our experiments on the Summit supercomputer on a single NVIDIA V100 GPU. When running with
ESM2, we speed up the sampler by parallelizing the population of 128 proteins across multiple GPUs. For
example, we ran each of the 128 MCMC trajectories on a separate GPU in parallel when we used the 650 M
parameter ESM2 model. Wall clock run time measurements were taken after-the-fact using a single NVIDIA
Tesla T4 GPU available via the Google Colab free tier.

C.4. Aligning the amino acid vocabulary across models
Not all pre-trained protein sequence models order the amino acids in their vocabulary in the same way. Also,
some models, such as masked language models, have extra tokens such as<mask> beyond the standard 20
amino acids. To enable combining a diverse array of models, we first decide on a canonical ordering for the
standard amino acids. For any pre-trained model that uses a different ordering than the canonical one, we
pre-compute a permutation matrix that, when applied to the columns of the one-hot encoded protein x, will
put the amino acids in the order which the model expects. We also pad the permuted x with extra columns of
zeros if the pre-trained model has a vocabulary larger than 20.

17



Mach. Learn.: Sci. Technol. 4 (2023) 025014 P Emami et al

Ta
bl
e
2.
50
th

(1
00
th
)
p
er
ce
n
ti
le
sc
or
es
.P
op

u
la
ti
on

si
ze

is
12
8.
A
cr
os
s
al
lt
h
re
e
pr
ot
ei
n
s,

PP
DE

(P
ot

ts
)
an
d

PP
DE

(P
ot

ts
+

ES
M2

)
in

pa
rt
ic
u
la
r
di
sc
ov
er
va
ri
an
ts
w
it
h
h
ig
h
er
pr
ed
ic
te
d
fi
tn
es
s
an
d
av
er
ag
e
#
of

m
u
ta
ti
on

s
th
an

Ra
nd

om
se

ar
ch

,S
im

ul
at

ed
an

ne
al

in
g,
an
d

MA
LA

-a
pp

ro
x.
O
u
to

ft
h
e
sa
m
pl
er
s
u
si
n
g
th
e
Po

tt
s
ex
p
er
t,

PP
DE

(P
ot

ts
)
ac
h
ie
ve
s
th
e
h
ig
h
es
te
vo
lu
ti
on

ar
y
de
n
si
ty
sc
or
es
on

PA
B
P.
W
e
su
sp
ec
tt
h
at
th
e
sl
ig
h
tl
y
lo
w
er
50
th

p
er
ce
n
ti
le

ev
ol
u
ti
on

ar
y
de
n
si
ty
sc
or
es
co
m
pa
re
d
to

th
e
ba
se
lin

es
(e
xc
ep
t
CM

A-
ES

)
on

th
e
m
or
e
ch
al
le
n
gi
n
g
U
B
E
4B

an
d
G
FP

pr
ot
ei
n
s
ar
e
in

pa
rt
du

e
to

P
P
D
E
di
sc
ov
er
in
g
va
ri
an
ts
w
it
h
m
or
e
av
er
ag
e
m
u
ta
ti
on

s
(2

−
4+

m
u
ta
ti
on

s
vs
.∼

1
m
u
ta
ti
on

p
er
va
ri
an
t)
an
d
h
ig
h
er
fi
tn
es
s.
T
h
e
10
0t
h
p
er
ce
n
ti
le
p
er
fo
rm

an
ce

of
PP

DE
(P

ot
ts

+
ES

M2
)
sh
ow

s
im

pr
es
si
ve
ly
h
ig
h
lo
g
fi
tn
es
s
an
d
ev
ol
u
ti
on

ar
y
de
n
si
ty
,h
ow

ev
er
.C

MA
-E

S
sa
m
pl
er
h
ad

in
co
n
si
st
en
t
p
er
fo
rm

an
ce

ac
ro
ss
th
e

th
re
e
pr
ot
ei
n
s—

it
fi
n
ds

va
ri
an
ts
w
it
h
h
ig
h
n
u
m
be
rs
of

m
u
ta
ti
on

s
(1
0
−
17
)
bu

t
lo
w
ev
ol
u
ti
on

ar
y
de
n
si
ty
sc
or
es
(3
.4
7
on

PA
B
P,
−
94
.7
6
on

U
B
E
4B

an
d
−
62
.4
3
on

G
FP

co
m
pa
re
d
to

6.
92
,−

4.
79
,a
n
d
−
5.
98

fo
r

PP
DE

(P
ot

ts
))
.I
t

fi
n
ds

ju
st
on

e
pr
ot
ei
n
va
ri
an
t
fo
r
PA

B
P
th
at
is
17

m
u
ta
ti
on

s
fr
om

W
T
w
it
h
an

ev
ol
u
ti
on

ar
y
de
n
si
ty
sc
or
e
of

3.
47
,a
n
d
it
se
em

s
to

h
av
e
si
gn
if
ic
an
t
di
ff
ic
u
lt
y
w
it
h
th
e
la
rg
er
pr
ot
ei
n
s
U
B
E
4B

an
d
G
FP

;e
.g
.o
n
G
FP

th
e
av
er
ag
e
50
th

p
er
ce
n
ti
le
lo
g
fi
tn
es
s
is
−
2.
50

co
m
pa
re
d
to

−
0.
04

fo
r
P
P
D
E
.W

e
co
n
cl
u
de

th
at

CM
A-

ES
ca
n
be

re
co
m
m
en
de
d
fo
r
u
se
on

ly
w
h
en

a
si
n
gl
e
pr
ot
ei
n
va
ri
an
t
is
de
si
re
d
an
d
th
e
le
n
gt
h
of

th
e
pr
ot
ei
n
is
re
la
ti
ve
ly
sm

al
l(
e.
g.
⩽
95

re
si
du

es
).

Lo
g
fi
tn
es
s
↑
(A
u
gm

en
te
d
E
V
m
u
ta
ti
on

)
Ev
ol
u
ti
on

ar
y
de
n
si
ty
↑
(M

SA
Tr
an
sf
or
m
er
)

E
xp
lo
ra
ti
on

(m
ea
n
±
st
d
#
m
u
ts
)

Po
tt
s
ex
p
er
t

PA
B
P

U
B
E
4B

G
FP

PA
B
P

U
B
E
4B

G
FP

PA
B
P

U
B
E
4B

G
FP

P
P
D
E

0.
27
(0
.8
6)

0.
39
(1
.1
8)

−
0.
04
(0
.2
4)

6.
92
(1
3.
43
)

−
4.
79
(−

2.
14
)

−
5.
98
(−

0.
76
)

3.
5
±

0.
9

2.
7
±

0.
6

2.
0
±

0.
3

R
an
do

m
se
ar
ch

0.
09
(0
.8
2)

−
0.
19
(0
.3
4)

−
0.
04
(0
.0
4)

4.
26
(6
.8
7)

−
1.
09
(2
.4
6)

−
0.
11
(−

0.
11
)

1.
3
±

0.
5

1.
1
±

0.
3

1.
0
±

0.
2

Si
m
.a
n
n
ea
lin

g
0.
09
(0
.4
4)

−
0.
19
(0
.2
8)

−
0.
04
(0
.1
0)

3.
55
(8
.6
3)

−
0.
94
(2
.7
0)

−
5.
89
(−

0.
99
)

1.
3
±

0.
5

1.
0
±

0.
2

1.
0
±

0.
1

M
A
LA

−
ap
pr
ox

0.
09
(0
.5
6)

−
0.
19
(0
.5
8)

−
0.
04
(0
.1
0)

2.
25
(5
.1
4)

−
0.
89
(1
.5
4)

−
6.
74
(−

1.
88
)

1.
3
±

0.
5

1.
03

±
0.
2

1.
03

±
0.
2

C
M
A
−
E
S

1.
37
(1
.3
7)

2.
54
(2
.5
4)

−
2.
50
(−

0.
15
)

3.
47
(3
.4
7)

−
94
.7
6(
0.
0)

−
62
.4
3(
0.
0)

17
.0
±

0
15
.5
±

6.
2

10
.2
±

9.
4

U
n
su
p
er
vi
se
d
ex
p
er
t

Po
tt
s
on

ly
0.
70
(1
.4
7)

0.
12
(0
.9
9)

−
0.
18
(0
.2
1)

9.
17
(1
8.
54
)

−
4.
24
(−

2.
68
)

−
1.
88
(−

1.
59
)

4.
7
±

1.
2

2.
6
±

0.
5

1.
2
±

0.
4

Su
p
er
vi
se
d
on

ly
0.
14
(0
.4
4)

1.
66
(5
.2
6)

−
0.
23
(0
.1
4)

−
2.
56
(0
.4
8)

−
6.
83
(−

6.
29
)

−
9.
28
(−

2.
13
)

1.
9
±

0.
8

1.
3
±

0.
7

1.
7
±

0.
8

E
SM

2
0.
14
(0
.6
3)

1.
66
(5
.5
6)

−
5.
55
(0
.1
6)

−
2.
38
(5
.5
6)

−
6.
58
(−

3.
83
)

−
12
6.
82
(5
.9
0)

2.
9
±

1.
3

2.
2
±

2.
2

14
.9
±

12
.6

Po
tt
s+

E
SM

2
0.
44
(1
.4
8)

1.
30
(3
.3
3)

−
0.
04
(0
.3
3)

9.
12
(1
9.
34
)

−
13
.6
(1
.9
8)

−
7.
17
(8
.1
1)

5.
3
±

1.
8

4.
3
±

0.
7

2.
1
±

0.
3

18



Mach. Learn.: Sci. Technol. 4 (2023) 025014 P Emami et al

ORCID iDs

Patrick Emami  https://orcid.org/0000-0001-7846-5578
Peter St. John https://orcid.org/0000-0002-7928-3722

References

Angermueller C, Dohan D, Belanger D, Deshpande R, Murphy K and Colwell L 2019 Model-based reinforcement learning for biological
sequence design Int. Conf. on Learning Representations

Angermüller C, Belanger D, Gane A, Mariet Z, Dohan D, Murphy K, Colwell L and Sculley D 2020 Population-based black-box
optimization for biological sequence design Proc. 37th Int. Conf. on Machine Learning (Virtual Event, 13–18 July 2020) (ICML
2020) vol 119 (PMLR) pp 324–34

Arnold F H 1998 Design by directed evolution Acc. Chem. Res. 31 125–31
Bengio Y, Léonard N and Courville A 2013 Estimating or propagating gradients through stochastic neurons for conditional

computation (arXiv:1308.3432)
Biswas S, Khimulya G, Alley E C, Esvelt K M and Church G M 2021 Low-n protein engineering with data-efficient deep learning Nat.

Methods 18 389–96
Brookes D H and Listgarten J 2018 Design by adaptive sampling (arXiv:1810.03714)
Brookes D H, Park H and Listgarten J 2019 Conditioning by adaptive sampling for robust design Proc. 36th Int. Conf. on Machine

Learning (ICML 2019) (Long Beach, CA, USA, 9–15 June 2019) vol 97, ed K Chaudhuri and R Salakhutdinov (PMLR)
pp 773–82 (available at: http://proceedings.mlr.press/v97/brookes19a.html)

Castro E, Godavarthi A, Rubinfien J, Givechian K B, Bhaskar D and Krishnaswamy S 2022 ReLSO: a transformer-based model for latent
space optimization and generation of proteins (available at: https://arxiv.org/abs/2201.09948)

Chan A, Madani A, Krause B and Naik N 2021 Deep extrapolation for attribute-enhanced generation Adv. Neural Inf. Process. Syst.
34 14084–96

Costello Z and Garcia Martin H 2019 How to hallucinate functional proteins (arXiv:1903.00458)
Dallago C, Mou J, Johnston K E, Wittmann B J, Bhattacharya N, Goldman S, Madani A and Yang K K 2021 Flip: benchmark tasks in

fitness landscape inference for proteins bioRxiv Preprint (available at: https://doi.org/10.1101/2021.11.09.467890)
Dathathri S, Madotto A, Lan J, Hung J, Frank E, Molino P, Yosinski J and Liu R 2020 Plug and play language models: a simple approach

to controlled text generation 8th Int. Conf. on Learning Representations (ICLR 2020) (Addis Ababa, Ethiopia, 26–30 April 2020)
(OpenReview.net) (available at: https://openreview.net/forum?id=H1edEyBKDS)

Fannjiang C and Listgarten J 2020 Autofocused oracles for model-based design Advances in Neural Information Processing Systems 33:
Annual Conf. on Neural Information Processing Systems 2020 (Virtual, 6–12 December 2020) (NeurIPS 2020) ed H Larochelle,
M’A Ranzato, R Hadsell, M-F Balcan and H-T Lin (available at: https://proceedings.neurips.cc/paper/2020/hash/
972cda1e62b72640cb7ac702714a115f-Abstract.html)

Ferruz N, Schmidt S and Höcker B 2022 A deep unsupervised language model for protein design (available at: http://biorxiv.org/lookup/
doi/10.1101/2022.03.09.483666)

Gligorijevic V, Berenberg D, Stephen R, Watkins A, Kelow S, Cho K and Bonneau R 2021 Function-guided protein design by deep
manifold sampling (available at: http://biorxiv.org/lookup/doi/10.1101/2021.12.22.473759)

Gomez-Bombarelli R, Wei J N, Duvenaud D, Miguel Hernández-Lobato J, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J,
Hirzel T D, Adams R P and Aspuru-Guzik A 2018 Automatic chemical design using a data-driven continuous representation of
molecules ACS Cent. Sci. 4 268–76

Grathwohl W, Swersky K, Hashemi M, Duvenaud D and Maddison C J 2021 Oops I took a gradient: scalable sampling for discrete
distributions Proc. 38th Int. Conf. on Machine Learning (ICML 2021) (Virtual Event, 18–24 July 2021) vol 139, ed MMeila and
T Zhang (PMLR) pp 3831–41 (available at: http://proceedings.mlr.press/v139/grathwohl21a.html)

Gupta A and Zou J 2018 Feedback GAN (FBGAN) for DNA: a novel feedback-loop architecture for optimizing protein functions
(arXiv:1804.01694)

Hansen N and Ostermeier A 1996 Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix
adaptation Proc. IEEE International Conf. on Evolutionary Computation (IEEE) pp 312–7

Hastings W K 1970 Monte Carlo sampling methods using Markov chains and their applications Biometrika 57 97–109
Hawkins-Hooker A, Depardieu F, Baur S, Couairon G, Chen A, Bikard D and Orengo C A 2021 Generating functional protein variants

with variational autoencoders PLoS Comput. Biol. 17 e1008736
Hesslow D, Zanichelli No, Notin P, Poli I and Marks D RITA: a study on scaling up generative protein sequence models 2022

(arXiv:2205.05789)
Hinton G E 2002 Training products of experts by minimizing contrastive divergence Neural Comput. 14 1771–800
Holtzman A, Buys J, Forbes M, Bosselut A, Golub D and Choi Y 2018 Learning to write with cooperative discriminators (arXiv:1805.

06087)
Hopf T A, Ingraham J B, Poelwijk F J, Charlotta P I Sarfe, Springer M, Sander C and Marks D S 2017 Mutation effects predicted from

sequence co-variation Nat. Biotechnol. 35 128–35
Hsu C, Nisonoff H, Fannjiang C and Listgarten J 2022 Learning protein fitness models from evolutionary and assay-labeled data Nat.

Biotechnol. 40 1114–22
Jain M et al 2022 Biological sequence design with gflownets Int. Conf. on Machine Learning (PMLR) pp 9786–801
Jang E, Shixiang G and Poole B 2016 Categorical reparameterization with gumbel-softmax (arXiv:1611.01144)
Killoran N, Lee L J, Delong A, Duvenaud D and Frey B J 2017 Generating and designing DNA with deep generative models

(arXiv:1712.06148)
Kuchner O and Frances H A 1997 Directed evolution of enzyme catalysts Trends Biotechnol. 15 523–30
Kumar A and Levine S 2020 Model inversion networks for model-based optimization Advances in Neural Information Processing Systems

33: Annual Conf. on Neural Information Processing Systems 2020 (NeurIPS 2020) (Virtual, 6–12 December 2020) ed H Larochelle,
M’A Ranzato, R Hadsell, M-F Balcan and H-T Lin (available at: https://proceedings.neurips.cc/paper/2020/hash/
373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html)

Li C, Zhang R, Wang J, Marie Wilson L M and Yan Y 2020 Protein engineering for improving and diversifying natural product
biosynthesis Trends Biotechnol. 38 729–44

19

https://orcid.org/0000-0001-7846-5578
https://orcid.org/0000-0001-7846-5578
https://orcid.org/0000-0002-7928-3722
https://orcid.org/0000-0002-7928-3722
https://doi.org/10.1021/ar960017f
https://doi.org/10.1021/ar960017f
https://arxiv.org/abs/1308.3432
https://doi.org/10.1038/s41592-021-01100-y
https://doi.org/10.1038/s41592-021-01100-y
https://arxiv.org/abs/1810.03714
http://proceedings.mlr.press/v97/brookes19a.html
https://arxiv.org/abs/2201.09948
https://arxiv.org/abs/1903.00458
https://doi.org/10.1101/2021.11.09.467890
https://openreview.net/forum?id=H1edEyBKDS
https://proceedings.neurips.cc/paper/2020/hash/972cda1e62b72640cb7ac702714a115f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/972cda1e62b72640cb7ac702714a115f-Abstract.html
http://biorxiv.org/lookup/doi/10.1101/2022.03.09.483666
http://biorxiv.org/lookup/doi/10.1101/2022.03.09.483666
http://biorxiv.org/lookup/doi/10.1101/2021.12.22.473759
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
http://proceedings.mlr.press/v139/grathwohl21a.html
https://arxiv.org/abs/1804.01694
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1371/journal.pone.0090972
https://doi.org/10.1371/journal.pone.0090972
https://arxiv.org/abs/2205.05789
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://arxiv.org/abs/1805.06087
https://arxiv.org/abs/1805.06087
https://doi.org/10.1038/nbt.3769
https://doi.org/10.1038/nbt.3769
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1712.06148
https://doi.org/10.1016/S0167-7799(97)01138-4
https://doi.org/10.1016/S0167-7799(97)01138-4
https://proceedings.neurips.cc/paper/2020/hash/373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html
https://doi.org/10.1016/j.tibtech.2019.12.008
https://doi.org/10.1016/j.tibtech.2019.12.008


Mach. Learn.: Sci. Technol. 4 (2023) 025014 P Emami et al

Lin Z et al 2022 Language models of protein sequences at the scale of evolution enable accurate structure prediction bioRxiv Preprint
(available at: https://doi.org/10.1101/2022.07.20.500902)

Linder J, Bogard N, Rosenberg A B and Seelig G 2020 A generative neural network for maximizing fitness and diversity of synthetic DNA
and protein sequences Cell Syst. 11 49–62.e16

Madani A, McCann B, Naik N, Shirish Keskar N, Anand N, Eguchi R R, Huang P-S and Socher R 2020 ProGen: language modeling for
protein generation (arXiv:2004.03497)

Maddison C J, Mnih A and Whye Teh Y 2016 The concrete distribution: a continuous relaxation of discrete random variables
(arXiv:1611.00712)

Meier J, Rao R, Verkuil R, Liu J, Sercu T and Rives A 2021 Language models enable zero-shot prediction of the effects of mutations on
protein function (available at: http://biorxiv.org/lookup/doi/10.1101/2021.07.09.450648)

Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 Equation of state calculations by fast computing
machines J. Chem. Phys. 21 1087–92

Nesterov Y 1998 Introductory Lectures on Convex Programming Volume I: Basic course pp 1–212
Nguyen A, Clune J, Bengio Y, Dosovitskiy A and Yosinski J 2017 Plug & play generative networks: conditional iterative generation of

images in latent space 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2017) (Honolulu, HI, USA, 21–26 July
2017) (IEEE Computer Society) pp 3510–20 (available at: https://doi.org/10.1109/CVPR.2017.374)

Nijkamp E, Ruffolo J, Weinstein E N, Naik N and Madani A 2022 ProGen2: exploring the boundaries of protein language models
(available at: https://arxiv.org/abs/2206.13517)

Notin P, Dias M, Frazer J, Marchena-Hurtado J, Gomez A, Marks D S and Gal Y 2022 Tranception: protein fitness prediction with
autoregressive transformers and inference-time retrieval Int. Conf. on Machine Learning pp 16990–7017 (available at: https://
proceedings.mlr.press/v162/notin22a.html)

Qin L, Welleck S, Khashabi D and Choi Y 2022 COLD decoding: energy-based constrained text generation with langevin dynamics
(arXiv:2202.11705)

Rao R M, Liu J, Verkuil R, Meier J, Canny J, Abbeel P, Sercu T and Rives A 2021 MSA transformer Int. Conf. on Machine Learning
(PMLR) pp 8844–56

Riesselman A J, Ingraham J B and Marks D S 2018 Deep generative models of genetic variation capture the effects of mutations Nat.
Methods 15 816–22

Rives A et al 2021 Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences Proc.
Natl Acad. Sci. 118 e2016239118

Shin J-E, Riesselman A J, Kollasch A W, McMahon C, Simon E, Sander C, Manglik A, Kruse A C and Marks D S 2021 Protein design and
variant prediction using autoregressive generative models Nat. Commun. 12 2403

Sinai S, Wang R, Whatley A, Slocum S, Locane E and Kelsic E D 2020 AdaLead: a simple and robust adaptive greedy search algorithm for
sequence design (available at: https://arxiv.org/abs/2010.02141)

Sun H, Dai H, Dai B, Zhou H and Schuurmans D 2022a Discrete Langevin sampler via Wasserstein gradient flow (available at: https://
arxiv.org/abs/2206.14897)

Sun H, Dai H, Xia W and Ramamurthy A 2022b Path auxiliary proposal for mcmc in discrete space Int. Conf. on Learning Representations
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I J and Fergus R 2014 Intriguing properties of neural networks 2nd

Int. Conf. on Learning Representations (ICLR 2014) (Banff, AB, Canada, 14–16 April 2014) ed Y Bengio and Y LeCun (Conference
Track Proceedings) (available at: http://arxiv.org/abs/1312.6199)

Trabucco B, Geng X, Kumar A and Levine S 2022 Design-bench: benchmarks for data-driven offline model-based optimization
(available at: https://arxiv.org/abs/2202.08450)

Trabucco B, Kumar A, Geng X and Levine S 2021 Conservative objective models for effective offline model-based optimization Proc.
38th Int. Conf. on Machine Learning (ICML 2021) (Virtual Event, 18–24 July 2021) vol 139, ed MMeila and T Zhang (PMLR)
pp 10358–68 (available at: http://proceedings.mlr.press/v139/trabucco21a.html)

Weinstein E N, Amin A N, Frazer J and Marks D S 2022 Non-identifiability and the blessings of misspecification in models of molecular
fitness Advances in Neural Information Processing Systems vol 35 eds A H Oh, A Agarwal, D Belgrave and K Cho pp 5484–97
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