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Abstract
Large machine learning (ML) models with improved predictions have become widely available in
the chemical sciences. Unfortunately, these models do not protect the privacy necessary within
commercial settings, prohibiting the use of potentially extremely valuable data by others.
Encrypting the prediction process can solve this problem by double-blind model evaluation and
prohibits the extraction of training or query data. However, contemporary ML models based on
fully homomorphic encryption or federated learning are either too expensive for practical use or
have to trade higher speed for weaker security. We have implemented secure and computationally
feasible encrypted ML models using oblivious transfer enabling and secure predictions of
molecular quantum properties across chemical compound space. However, we find that encrypted
predictions using kernel ridge regression models are a million times more expensive than without
encryption. This demonstrates a dire need for a compact ML model architecture, including
molecular representation and kernel matrix size, that minimizes model evaluation costs.

1. Introduction

The global amount of information has grown exponentially over time. Seagate, a large data storage company,
projects it to reach 181 zettabytes by 2025 [1]. Countless machine learning (ML) applications are based on
this wealth of data, as reflected in a rapidly growing number of ML publications [2]. Still, especially sensitive
data is not publicly accessible, preventing innovative ML innovations in these fields. The main issue is that the
evaluation of ML models is not double-blind: the user querying the ML model can gather information about
the training set and discloses all information about the query. The holder of the database can accumulate
huge amounts of querying user data posing a threat if the server is under attack from a third party. This is
especially relevant considering the fast-growing use of cloud computing [1] and number of cyber-attacks.
End-to-end encryption cannot solve this issue as data is usually processed in unencrypted form.

Decisions based on knowledge derived from protected data without revealing any data would warrant
immediate benefits: potentially relevant fields include modeling health data or sharing predictions evaluated
on protected databases. Furthermore, double-blind ML evaluation may reduce customers’ hesitations to
send sensitive medical data to the cloud, allowing, for instance, more personalized health
recommendations—without giving away private information. From the viewpoint of chemistry and medical
sciences, a potential application is commercial data from pharmaceutical companies, since a considerable
amount is invested in various screening approaches (in vivo and in vitro). While the collected data sets are
relevant for developing new pharmaceuticals, they are generally not published. Currently, nondisclosure
agreements are the only way for the chemical industry to provide academia with protected data. However,
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Figure 1. Bob the user B, working in health, industry or academic, or public sector, wants to predict properties of query
molecules: first Alice A, holder of a large database, and B agree on a molecular representation and the encrypted machine learning
(EML) protocol. Next A trains EML on her local node with unencrypted calculations. Subsequently, both parties jointly compute
the query prediction by exchanging encrypted information without disclosure. Finally, the prediction is revealed to B while A will
never see the query data. B Vice versa cannot extract any information about the hidden reference data owned by A. All protocol
steps are privacy-preserving and both parties effectively form an encrypted double-blind ML Oracle.

this comes with legal and economic risks as well as bureaucratic barriers. To give an idea of the value of
privacy: a ballpark estimate of post-approval R&D costs of a new drug ranges between $1.8 and $2.8 billion
where much of these costs are clinical trials [3–5]. In particular, toxicological assays are critical for the
development of drug candidates [6, 7], new nanomaterials [8], or pesticides, but can take many years and
millions of dollars [9, 10] to complete. These time and cost constraints are a substantial bottleneck for the
innovation of new substances.

An additional aspect is that the emergence of ML has made modern research more dependent on access
to high-quality datasets. Compiling new impactful datasets is only possible with the required funding to
perform lab experiments. Public data often originates from several sources, resulting in inconsistencies [11].
Access to predictions based on secret but single-origin high-quality measurements could help mitigate these
problems.

Driven by this vision, a growing number of institutions is considering using ML models that allow hiding
training data, as can be seen in recent projects such as themelloddy initiative [12]. Multiple computational
approaches for privacy-preserving ML have been developed; a popular example is federated learning [13–19]
where several data sets from different data holders are used to compute a local gradient for subsequent
updates of a global model. In particular, Zhu et al [20] have implemented federated learning for molecular
properties. Despite many advantages, if not properly addressed, federated learning can show several security
risks. This is particularly the case when participants are allowed to deviate from the predefined ML protocol
(in amalicious adversary setting). When training a federated learning model, each potentiallymalicious
participant can send false data on purpose [21] to prevent learning of the global model [22–24].
Furthermore, in an iterative procedure, any participant could compare the last global model with the
previous state. This may allow probing where the update of other data holders had the greatest impact to
detect points that likely exist in the other data sets. In certain scenarios federated learning models allow
unnoticed extraction of training data [25].

In this study we achieve double-blind ML prediction of molecular quantum properties by competitive
cooperation, a.k.a. coopetition: two competitive parties that do not trust each other cooperate in exchanging
encrypted pieces of information to evaluate the ML model as illustrated in figure 1.

The encrypted ML (EML) protocol ensures that the data holder maintains access control to the model at
all times. More specifically, we considered a two-party setting with Alice A the data holder and Bob B the
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user querying the ML model. We will keep this color highlighting consistently throughout the following.
Neither A nor B reveal private data when querying the oracle.

The encryption algorithm MASCOT [26] used in this work is safe against a dishonest majority of
attackers and based on a so-called oblivious transfer protocol. Oblivious transfer achieves privacy by
transferring an oblivious amount of information between parties which makes it impossible to recover the
original secret information. Specifically, as a solution to the double-blind evaluation we have implemented
an oblivious transfer ML oracle based on kernel ridge regression [27, 28] a supervised learning method. Each
query consists of a vector with input features and results in a single encrypted prediction of a scalar value.

To summarize the key properties and the threat model of the algorithm: no central server is needed since
oblivious transfer removes the need for a central entity as required in federated learning. Only the party that
owns the data has access to model weights.

The ML oracle can only be trained and evaluated using a single training set split: before training the
model we split the data once into test and training data and train only on this training set resulting in a single
ML model and a single encrypted prediction for each query. Using multiple training data splits is not
possible since any information on the model variance will also leak information about the proximity of
training points. To be more accurate predictions for molecules close to the training points will have a much
smaller statistical variance than those far from any training point. As a result, including variance of the
predictions would provide a systematic attack strategy. The same argument holds for all models that provide
a statistical estimate for the uncertainty [29–31] as entry points for model inversion attacks.

The amount of data that can be recovered from a single prediction depends on what an adversary already
knows about the individual whose privacy is at risk.

The use of additional publicly known reference data and repeated queries of the encrypted model could
enable the attacker to quantify the bias encoded in the encrypted data (see the example given in section 3.2).
Reconstruction attacks on training data have had limited success and researchers have focused mainly on
membership inference [32], which can be used as a basis for reconstruction attacks. It is also possible to
extract memorized private information from deployed language models [33]. Regarding our approach, we
assume that there is a secure communication channel between the two parties. Given the security of the
oblivious transfer protocol, the data owner cannot learn anything about the query. While we have not found
an example of such an attack in the literature the querying party, might send designed queries in an attempt
to reconstruct the decision boundary of the kernel-ridge regression algorithm based only on the predicted
values. However, we cannot rule out that it is possible to construct an attack in this manner.

Testing encrypted predictions for molecular properties reveals that the results of unencrypted
calculations are exactly reproduced. We find compact ML representations superior in terms of cost per
prediction and show higher numerical stability.

2. Methods

2.1. Oblivious transfer versus fully homomorphic encryption
Ideas of encrypted calculations of arbitrary functions were first hypothesized in the late 70s [38]. The
archetypal problem solved in this context was Yao’s Millionaires’ problem: two wealthy individuals with
money amount x1 and x2 want to know if x1 > x2 is true or false without revealing exact amounts [34, 35] x1
and x2.

The first algorithm for a fully homomorphic encryption [39] scheme was presented in 2009 allowing
fully encrypted addition and multiplication and evaluation of any real function f. To explain what is meant
by computation on encrypted data, we illustrate the addition of numbers x3 = x1+ x2. The addition is
performed with encrypted E representations or ciphertexts c1 and c2 of numbers with a public key pk. The
first ciphertext is c1 = E(pk,x1) and the second c2 = E(pk,x2). The decryption D of the addition using the
secret key sk results in the correct number as follows,

x3 = D(sk, c3) = D(sk, c1+ c2) (1)

= D(sk, c1)+D(sk, c2) = x1+ x2 . (2)

Such encrypted calculations are called fully homomorphic encryption, fully because any function can be
evaluated, and homomorphic meaning same shape because fully homomorphic encryption conserves
relations between numbers in the encrypted space. A benefit of fully homomorphic encryption is it does not
require communication between parties that own the private data instead encryption computations are
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Figure 2. Parties Alice and Bob with private data A and B respectively compute the value of a publicly known function f that
depends on their private inputs. Two scenarios are considered, (a) Alice and Bob submit all their data to a trusted third party
Carol C who subsequently performs the required calculations. In the second case (b), two-party computation [34, 35] allows
removing C. Instead, Alice and Bob exchange encrypted E information packages via oblivious transfer [36] to evaluate the
function f. (c): Illustration of the originally proposed oblivious transfer protocol [37] for exchanging private information. The
oblivious transfer protocol allows transmitting messagesmb to a receiver without asking the sender for the selected message (top).
This is equivalent to the receiver obtainingmb without interacting with the sender (bottom).

performed offline. This may also be viewed as a disadvantage since parties cannot query discovery-based
requests where ad hoc access to results is necessary. A downside of fully homomorphic encryption is that
computations are quite expensive. Furthermore, a central server is needed to perform the calculations only
after receiving all encrypted information at once.

An alternative method for privacy-preserving function evaluation is multi-party computation [34, 35,
40] via oblivious transfer [36, 37]. In case of two parties, multi-party computation reduces to two-party
computation (s. figure 2(b)) with one sender A and a receiver B. While the details of the MASCOT protocol
are described elsewhere [26] we motivate the simplest possible oblivious transfer operation to build an
understanding of more complex protocols for addition, multiplication, and eventually evaluation of real
functions f. To perform an encrypted calculation of the public function f parties (B) and (A) exchange
chunks of data without disclosing their private inputs. The most elemental oblivious transfer protocol that
allows such a process is explained in figure 2(c): the sender A with a pair of private message bitsm0 andm1

sends an oblivious amount of information packages {m0,m1} to the receiver. The receiver B has a private
input selection bit b of either 0 or 1 determining the message received that ismb. If the choice of B was b= 0
thenm0, is received and vice versa. The sender does not know which bit of information was obtained by the
receiver. The receiver does not learn anything about messagem1−b even if the experiment is repeated
multiple times—no additional information is retrieved by performing the protocol. The sender only knows
that one of the two transferred oblivious messages was received.

This is for instance achieved by Rivest–Shamir–Adleman (RSA) encryption [41]:

1. In addition to the two messages, A generates an RSA key pair consisting of the modulus N and public
and private exponents e and d, respectively.

2. Furthermore, A generates two random numbers, x0 and x1, and sends them along with e and N to B.
3. B then selects b and a random number xb.
4. B generates another random number k and computes v = (xb + ke). This value is sent back to A.
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Figure 3. Three-stage process of encrypted machine learning (EML) predictions for two parties, the data holder A providing
training data and B the user submitting the query: preparation (1), training (2) and evaluation (3). The dashed arrow indicates
the encrypted exchange via oblivious transfer for evaluation of f on the private inputs.

5. Using v, A computes two possible keys as k0 = (v − x0)d mod N and k1 = (v − x1)d mod N. Since A
did not know which key was the correct one, both secret messages are combined with both keys (m′

0 =
m0 + k0 andm′

1 =m1 + k1) and sent to B.
6. Upon receiving these messages, B computesmb =m′

b − k, where b was the bit initially selected. Since B
did not know the private exponent d he is unable to compute k1−b = (v − x1−b)d mod N or to
determinem1−b.

Without this protocol, the receiver could have just asked for a specific bit but that would reveal
information. During the oblivious transfer evaluation the roles of the receiver and sender are frequently
interchanged, but at no point has any party enough information to reconstruct intermediate results.
Remarkably, this rather unintuitive way of exchanging information allows privacy-preserving evaluation of
any real function [42].

The key advantage of two-party computation via oblivious transfer and in particular of the protocol
called malicious arithmetic secure computation with oblivious transfer [26] (MASCOT) is the small
computational cost compared to fully homomorphic encryption and other implementations of multi-party
computation. MASCOT provides security against a dishonest majority of attackers withmalicious intent. As
for all multi-party computation algorithms, continuous communication between all involved parties is
needed, so the transfer of data is the main computing bottleneck. In MASCOT, floating-point numbers are
translated into a finite integer representation. To avoid overflow errors the numerical precision P (s. detailed
explanation of P in SI. section C) can be increased to allow representing larger numbers with better
resolution.

2.2. EncryptedML of molecular properties
2.2.1. Encrypted kernel ridge regression
Alice A holds secret training data and collaborates with Bob B the user by providing EML predictions for
queries. B should not be able to learn anything about the training set, A should not learn anything about the
query of B. Only the prediction is sent to B while the calculations cannot be inspected or manipulated by
either party. We address this problem by encrypting the ML predictions using the MASCOT protocol
discussed in the previous section. All following mathematical expressions are colored according to access to
the respective data before, during, or after the encrypted prediction.

Setting up the ML oracle can be separated into three steps shown in figure 3: first, both parties agree on
the same mathematical form to represent the data. In the case of movie preferences, this could be a vector
containing location and age. For cloud-based services, it could be private data such as heart pressure, blood
sugar, or pulse. For secret new drug-like molecules, we use molecular representation vectors such as the
Coulomb matrix [43] (CM), or the FCHL19 [44, 45] that require three-dimensional nuclear coordinates and
charges. Note that FCHL19 is a local representation that allows comparing atomic environments between
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different molecules with each other. However for demonstration purposes and because it allows direct timing
benchmark comparisons we will treat FCHL19 as a flattened global representation vector like the CM.

Secondly, both parties agree on an ML protocol f, here kernel ridge regression [27, 28]. Kernel ridge
regression is a supervised learning method in which for each prediction the features of the query instance are
compared against all training instances and weighted by regression coefficients. Next, A trains a hidden ML
model on a local machine. A locally computes the input representation vectors Xi that can correspond to any
set of labels that show good correlation with the quantity of interest y. The kernel ridge regression weights α
are obtained by solving a system of equations,

α= [K+λ · I]−1 y. (3)

All quantities in the upper equation are known to A notably the values y of hidden data. The elements of the
training kernel matrix K are computed with Gaussian functions,

(K)i,j = exp

[
−
||Xi −Xj||22
2σ2

]
, (4)

where the elements i, j are contained in the hidden training set and ||.||2 denotes the Euclidean norm.
The hyperparameter λ is kept private. The protocol could be adapted such that only A has access to σ. In

this case, σ would be part of the private input of A to the MASCOT protocol. Here σ is considered part of the
kernel function to be shared before the protocol begins. This does not reveal information about the training
points since σ is only an indicator of the chemical diversity of the training set. For instance, for the Gaussian
kernel, an empirical estimate for the kernel width is σ = dmax/

√
2 log2 where dmax is the largest distance

matrix element of the training data. However, there are numerous ways of selecting training sets with the
same optimized σ and distinct training molecules, since many molecules can have the same distance dmax in
chemical space.

Note that models with Laplacian kernel functions reach a higher accuracy for atomization energies
[46]—at no additional costs. Here, the deliberate choice of the Gaussian kernel function was motivated by
the high computational costs of the Laplacian kernel when using the encryption protocol in comparison to
Gaussian kernels. Within the specific encryption implementation, Gaussian kernel functions benefit from
optimized dot products procedures resulting in seven times acceleration compared to the Laplacian kernel.
For completeness, we have added the code for the encrypted Laplacian kernel to the repository
(supplementary data).

Next, B calculates the representation vector XQ of the query entities on another local machine. Afterward,
the training weights E(α), input representation vectors E(Xi) and the query representations E(XQ) are
encrypted (recall that E is encryption and D decryption). This process takes place during a prepossess phase
after establishing a secure communication channel between the two parties. In practice, we perform all
calculations using a virtual network on a single machine.

Subsequently, the following expression for encrypted kernel ridge regression prediction is evaluated,

f = D(E(y)[E(XQ)]

= D

(
N∑
i

E(αi) E(k)[E(Xi),E(XQ);σ]

)
. (5)

It is essential that the kernel values E(k)[E(Xi),E(XQ)] are not known to either party. Otherwise, participants
could probe kernel elements k by repeatedly querying the oracle to obtain the compound space spanned by
the training molecules. For the same reason, the distances diQ = ||Xi −XQ||22 between the training set and the
query molecule [47] are never disclosed. Next Bmay evaluate a few encrypted samples to validate the
consistency of the hidden predictions. If found to be necessary, A can increase the training set size or data
diversity in hope of improving the accuracy of the model. In the prediction phase, f is evaluated via oblivious
transfer without disclosing E(αi),E(Xi),E(XQ). Finally, the decrypted plaintext predictions are send to B
while A could obtain a reward in form of a payment for the prediction provided. Effectively, both parties
form an ML oracle with a true black-box character.

We use learning curves to quantify the error of the predictions w.r.t. the reference values measured as the
mean absolute error (MAE) as a function of the size of the training set N. Learning curves are helpful to
understand the efficiency of ML models and are generally found [27] to be linear on a log–log scale,

log

(
MAE

unit

)
≈ I− S · log(N) , (6)
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where I is the initial error and S is the slope indicating the improvement of the model given more training
data.

3. Results and discussion

3.1. Encrypted Kernel predictions:malicious security for computational chemistry
Now, we demonstrate encrypted ML predictions for fictitiously confidential chemical data. Predicting the
stability of molecules is a key problem in computational chemistry and is well described by solving the
Schrödinger equation and atomization energies, the energy contained in all bonds of a molecule. However,
solving the Schrödinger equation comes at high computational costs: for instance, costs for solutions of a
density functional theory calculation scale to the cubed power with the number of atoms. To give a very
rough estimate, computing a molecular dataset with∼ 20000 molecules of the size of aspirin with coupled
cluster singles and doubles [48] scaling with the seventh power of system size would consume 20 000 CPU
hours [49]—even for a relatively small basis set such as def2-SVP [50].

Such high computational costs underline the value of high-level computational data. As a potential
scenario, we consider company A providing encrypted ML predictions and an industrial customer B with
interest in 20 secret molecules but without time, experience or access to software to perform calculations. We
have computed learning curves of atomization energies using encrypted predictions with the QM9 database
[51] of organic molecules with up to N = 8192 compounds. The resulting learning curves using the CM [43]
and FCHL19 [44, 45] representations are shown in figure 4. The deviation from the unencrypted case
amounts to numerical noise and cannot be identified visually in the learning curves. Hence, we find that
EML accurately reproduces unencrypted predictions.

As expected, time t, as well as data traffic D per prediction, increases linearly with the number of training
pointsN (s. figure 5). Furthermore, there is a striking difference between the FCHL19 [44, 45] representation
with L= 18720 entries that takes more than twice as long (1 hour at N = 128) for a single prediction than the
CM [43] (L= 351).

Coincidentally, we find that the costs for the CM for P = 42 are almost identical to the costs of the same
prediction when using the FCHL19 representation at P = 15 which highlights the importance of selecting a
compact representation.

Contrary to FCHL19 the CM representation contains no information about angles or local environments
resulting in a larger MAE. Overall, data transfer D between parties is the main computational bottleneck for
prediction [26] explaining the near-perfect correlation between D and t (s. figure 5).

Consequently, compact representations such as the CM reduce the prediction time by reducing D. The
role of compact representations becomes more evident when studying QM9 learning curves (s. figure 4) for
lower numerical precision settings corresponding to faster predictions. For high numerical precision
(P = 42) there is hardly any visible difference between the EML and kernel ridge regression learning curves
(as in figure 4). At P = 15, we find that the FCHL19 EML learning curve shows a dramatic deterioration for
N⩾ 128 while the CM learning curve only begins to deviate at N > 2000. Although compact representations
include less chemical information, they allow for larger training set sizes, given the same target accuracy as
well as high numerical stability. If using representation vectors such as FCHL19 cannot be avoided because
predictions with high accuracy w.r.t. the test set is needed the numerical precision P can be increased to
avoid numerical instabilities.

Fortunately, there exists an optimal P with minimal computational cost and sufficient numerical
precision, since t increases only linearly with P , while the numerical deviation decays exponentially. We
show the scaling of the prediction time t with the numerical precision P in figure 6. All other parameters are
kept constant. It is encouraging to observe the exponential decay of average numerical noise∆ with
increasing fixed number representation precision P in figure 7. Increasing the precision will on the other
hand increase computational costs nearly linearly, cf figure 6. However, we observe a sudden increase in the
average prediction time for P values greater than 20 almost doubling the computational costs. This is due to
specific implementation details of the MASCOT protocol.

3.2. Limitations and attack scenarios
The user B could query the oracle with points for which reference values are known. A small error for the
predicted values would suggest that similar points exist in the hidden training set. This attack will probably
not be a threat, as it may require more points as contained in the hidden training set. On the other hand, this
procedure can reassure B that the hidden model provides reasonable predictions and that A has not
deliberately added incorrect training points.

In a hypothetical scenario where B suspects that A stole some reference data B could proceed with a
similar attack to confirm the suspicion: B can query the EML oracle with the data points in question. If the
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Figure 4. Prediction error for a random subset of QM9 [51] atomization energies as a function of training set size N: mean
absolute error (MAE) from encrypted machine learning (EML). Results are shown for two different molecular representations,
the Coulomb matrix [43] (CM) and FCHL19 [44, 45]. The numerical precision of fixed-point number representation of floating
point numbers is set to either P = 15 or 42. The dashed white lines superimposed with the P = 42 EML results, show the
learning curves computed with unencrypted python predictions for comparison.

Figure 5. Encrypted machine learning (EML) prediction times averaged per molecule (left) and transferred data D (right) for
Coulomb matrix [43] (CM) and FCHL19 [44, 45] representations. Results for two different numerical accuracy settings
P = 15,42 are shown. The costs for CM and FCHL19 nearly perfectly overlap for P = 42 and P = 15 respectively.

predictions consistently agree with the original data this will support the suspicion that A included data from
B. However, it is not conclusive evidence as Amight add random noise to the training data to decrease the
original bias of the reference values.

If B knew the scaling rule of the kernel ridge regression ML oracle and the time needed per prediction B
might be able to guess the number of hidden training molecules. To address this issue A could artificially
increase the training set by adding a random number of duplicate training points.

An inherent problem of neural networks trained with hidden data is that the loss function gradient
vanishes for training set points. In addition, generative adversarial networks are used to reverse engineer
points in the training set [25, 52, 53]. Although our approach guarantees safety, this comes with increased
computational costs compared to unencrypted calculations. In turn, we find that honest-but-curios neural
network predictions are orders of magnitude faster since the prediction speed does not depend on the
number of training points (s. supplementary data section IV). However, the neural network protocol we have
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Figure 6. Per molecule prediction time t for various numerical precision settings P using the Coulomb matrix [43] (CM) and the
FCHL19 [44, 45] representation at a training set size of N= 4097.

Figure 7. Average numerical error∆ between encrypted machine learning (EML) and plaintext python predictions for various
accuracy settings P at training set size of N= 4097. Results for two different molecular representations, the Coulomb Matrix [43]
(CM) and FCHL19 [44, 45] are shown.

considered in the supplementary data may not be safe against malicious attacks. Our MASCOT
implementation of kernel ridge regression was the exact opposite in these two regards: Evaluation is relatively
slow but secure. Overall, we find that encrypting ML predictions is a trade-off between security and
computational efficiency.

4. Conclusion

The main advantage of the protocol is its safety against attackers withmalicious intent, as it is impossible to
extract molecular information, either from training or query instances, solely by evaluating encrypted
predictions.

The protocol eliminates the need for a trusted third party or central server, as required by fully
homomorphic encryption. Instead, it requires only a secure communication channel between the two
parties. Since the protocol is online no transfer of all the encrypted data to a single server is needed, contrary
to fully homomorphic encryption. This also allows live predictions for new query molecules. The latter
aspect is important for Bayesian exploration of chemical space, e.g. in the context of self-driving laboratories
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[54] that would require ad hoc predictions. We demonstrated that encrypted predictions of molecular
properties based on EML are possible cf figure 4. EML can be adapted to various properties and chemistries
with negligible adaptation of the encrypted kernel ridge regression protocol. Since EML does not require
molecular representations as input, it may also be applied to pharmaceutical and private data from
healthcare or finance.

Our implementation was only possible thanks to recent developments in multi-party computation
protocols [26]. We note that added security comes at substantial additional computational costs with data
transfer being the main computational bottleneck. Consequently, the compactness of the ML model, in the
case of EML the kernel and the molecular representation play a crucial role. More specifically, we have
demonstrated that long molecular representation vectors such as FCHL19 [44, 45] allow for more accurate
predictions than the more compact CM [43].

As a result, users have to trade off the cost, accuracy, and security of the protocol. Our ball-park estimates
indicate that a single molecular EML prediction is a million times more expensive than kernel ridge
regression implemented in python code (s. figure 5). For instance, approximately 250GB of network traffic is
needed for a single prediction at a modest training set size of N = 512 using the extended-connectivity
fingerprint [55] often used in cheminformatics. We believe that one of the first use cases of the encryption
protocol could be very costly (in acquisition) and very valuable (highly confidential) data in the industry. For
example, data obtained from multi-year toxicology studies on humans with large control groups. Before
implementing the presented solution in day-to-day applications for cheaper data, however, the high
computational costs of the encryption have to be addressed. Since there is a growing interest in maintaining
privacy in ML we believe that the development of more compact ML models or the use of graphics
processing units might be beneficial.

A goal of encrypted predictions is to enable decisions based on hidden data as if the knowledge leading to
their actions was obtained by inspecting the secret data. However, since the prediction is encrypted, it is
impossible to explain the actions that are solely based on the predictions. This lack of transparency may be
problematic, as the model could have biases that cannot be explained by users unable to inspect the training
data. It is an open question how encrypted predictions can be rationalized without inspecting the training
set. One possible approach might be to understand the general behavior of the encrypted model without
access to the underlying data, providing insight into the factors influencing the system’s predictions.
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Dataset

Initially, we pick a random set of 30 000 QM9 [51] molecules. Of those, we pick twenty test molecules and
assign the rest to a training set. Hyperparameters were optimized with five-fold cross-validation for the
largest training set size (N = 8192) shown in the learning curves using unencrypted calculations and the
quantum machine learning code [56]. The small test set size is due to the high computational cost of the
encrypted predictions.

We predict the atomization energies, which measure the total energy necessary to dissociate a molecular
compound into individual atoms.

The encrypted oblivious transfer calculations were performed in a local network with Intel(R) Xeon(R)
E5-2650 v4 @ 2.20GHz CPUs. The number values for the reported timings may differ depending on the
hardware.

10

http://doi.org/10.5281/zenodo.7863192
http://doi.org/10.5281/zenodo.7863192


Mach. Learn.: Sci. Technol. 4 (2023) 025017 J Weinreich et al

Third party material

In figures 1–3 we included icons and modified them with permission under the license https://fontawesome.
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