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Abstract
Let wr be a given integer sequence in arithmetic progression with a common difference d. The study of
diophantine equations, which are polynomial equations seeking integer solutions, has been a very interesting
journey in the field of number theory. Historically, these equations have attracted the attention of many
mathematicians due to their intrinsic challenges and their significance in understanding the properties of
integers. In this current study, we examine a diophantine equation relating the sum of squared integers from
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specific sequences to a variable d. In particular, the diophantine equation
∑n

r=1 w
2
r + n

3
d2 =

3(nd2

3
+

∑n
3
r=1 w

2
3r−1) is introduced and partially characterized. The objective is to determine the

conditions under which integer solutions for (wr, d) exist within this diophantine equation.The methodology
of solving this problem entails, decomposing polynomials, factorizing polynomials, and exploring the solution
set of the given equation.
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1 Introduction
Diophantine equations, tracing their roots back to the era of the ancient Greek mathematician Diophantus,
continue to be a captivating challenge within number theory. These equations, seeking integer solutions, hold
significant importance due to their real-life applications. Despite the extensive exploration of various Diophantine
equations, including renowned challenges like Fermat’s Last Theorem, Ramanujan Nagell equation, and Lebesgue
Nagell equation, as well as studies focusing on polynomials of degree less than 5, the specific examination of
the diophantine equation

∑n
r=1 w

2
r + n
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d2 = 3(nd2

3
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∑n
3
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2
3r−1) remains largely uncharted. Recent research

has delved into the intricacies of polynomials with degrees less than 5, as referenced in [1, 2,3,4,5,6]. For a
comprehensive understanding of studies related to Fermat’s Last Theorem and Ramanujan Nagell equations,
readers are encouraged to explore[7,8,9,10,11,12,13,14,15,16].Within the existing body of work, the literature
concerning the diophantine equation
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study aims to contribute to this knowledge gap by introducing and developing the formula
∑n
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2
3r−1), seeking to enhance our comprehension of this specific diophantine equation within the

broader landscape of mathematical exploration.

2 Main Results
In the following sections, we begin by articulating our observations as a conjecture, and subsequently, we proceed
to obtain solutions for particular instances of the aforementioned diophantine equation. For any integer n
divisible by 3, the diophantine equation.
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3r−1) · · · (1)

admits solutions in integers if wn − wn−1 = wn−1 − wn−2 = · · · = w2 − w1 = d

In the subsequent sections, the focus of this investigation revolves around identifying the values of the variables
(n,w1, w2, · · · , wn, d) that fulfill the conditions of equation (1). Consequently, distinct cases have been established.

Theorem 2.1. Consider equation (1) satisfying the condition (n,w1, w2, w3, d) = (3, w1, w2, w3, d) Then, the
diophantine equation.

w2
1 + w2

2 + w2
3 + d2 = 3(d2 + w2

2)

has solution in integers if w3 − w2 = w2 − w1 = d.
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Proof. Assume that w2 = w1 + d,w3 = w1 + 2d,w3 = w1 + 2d and Consider the equation w2
1 +w2

2 +w2
3 + d2 =

3(d2 + w2
2) · · · (2.1). The, left hand side of equation (2.1) expressed as

w2
1 + w2

2 + w2
3 + d2 = w2

1 + (w1 + d)2 + (w1 + 2d)2 + d2

simplifies to
3w2

1 + 6w1d+ 6d2 = 3(w2
1 + 2w1d+ 2d2) · · · (2.1.1).

Decomposing equation (2.1.1) into thrice sums of two squares, we obtain,

3w2
1 + 6w1d+ 6d2 = 3(w2

1 + 2w1d+ 2d2)

= 3((w2
1 + 2w1d+ d2) + d2) = 3(d2 + (w1 + d)2) = 3(d2 + w2

2).

This complete the proof.

Theorem 2.2. Consider equation (1) satisfying the condition (n,w1, w2, · · · , w6, 2d) = (6, w1, w2, · · · , w6, 2d).
Then, the diophantine equation

w2
1 + w2

2 + w2
3 + w2

4 + w2
5 + w2

6 + 2d2 = 3(2d2 + w2
2 + w2

5)

has solution in integers if w6 − w5 = w5 − w4 = w4 − w3 = w3 − w2 = w2 − w1 = d.

Proof. Let w2 = w1 + d,w3 = w1 + 2d,w3 = w1 + 2d,w4 = w1 + 3d,w5 = w1 + 4d,w6 = w1 + 5d and Consider
the equation w2

1 + w2
2 + w2

3 + w2
4 + w2

5 + w2
6 + 2d2 = 3(2d2 + w2

2 + w2
5) · · · (2.2). The, left hand side written as

w2
1 + (w1 + d)2 + (w1 + 2d)2 + (w1 + 3d)2 + (w1 + 4d)2 + (w1 + 5d)2 + (w1 + 6d)2 + 2d2

reduces to

6w2
1 + 30w1d+ 57d2 = 3(w2

1 + 10w1d+ 19d2) = 3(2d2 + w2
1 + 10w1d+ 17d2) · · · (2.2.1).

Breaking equation (2.2.1) into thrice sums of sums of four squares, we get,

3(2d2 + w2
1 + 10w1d+ 17d2) = 3(2d2 + (w2

1 + 2w1d+ d2) + (w2
1 + 8w1d+ 16d2))

= 3(2d2 + (w1 + d)2 + (w1 + 4d)2) = 3(2d2 + w2
2 + w2

5)

This concludes the proof.

Theorem 2.3. Consider equation (1) satisfying the condition

(n,w1, w2, w3, w4, w5, w6, w7, w8, w9, 3d) = (9, w1, w2, w3, w4, w5, w6, w7, w8, w9, 3d).

Then, the diophantine equation

w2
1 + w2

2 + w2
3 + w2

4 + w2
5 + w2

6 + w2
7 + w2

8 + w2
9 + 3d2 = 3(3d2 + w2

2 + w2
5 + w2

8)

has solution in integers if w9−w8 = w8−w7 = w7−w6 = w6−w5 = w5−w4 = w4−w3 = w3−w2 = w2−w1 = d.
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Proof. Consider the equation w2
1 + w2

2 + w2
3 + w2

4 + w2
5 + w2

6 + w2
7 + w2

8 + w2
9 + 3d2 = 3(3d2 + w2

2 + w2
5 + w2

8).
Assume that w2 = w1 + d,w3 = w1 + 2d,w3 = w1 + 2d,w4 = w1 + 3d,w5 = w1 + 4d,w6 = w1 + 5d,w7 =
w1 + 6d,w8 = w1 + 7d,w9 = w1 + 8d. The, left hand side expressed as,

w2
1 +(w1 + d)2 +(w1 +2d)2 +(w1 +3d)2 +(w1 +4d)2 +(w1 +5d)2 +(w1 +6d)2 +(w1 +7d)2 +(w1 +8d)2 +3d2

simplifies to

9w2
1 + 72w1d+ 207d2 = 3(3w2

1 + 24w1d+ 69d2) · · · (2.3).

Decomposing equation (2.3) into triple sums of squares, we obtain,

= 3(3d2 + (w2
1 + 2w1d+ d2) + (w2

1 + 8w1d+ 16d2) + (w2
1 + 14w1d+ 49d2))

= 3(3d2 + (w1 + d)2 + (w1 + 2d)2) + (w1 + 4d)2 + (w1 + 7d)2 = 3(3d2 + w2
2 + w2

5 + w2
8)

This complete the proof.

Theorem 2.4. Consider equation (1) satisfying the condition (n,w1, w2, · · · , w12, 4d) = (12, w1, w2, · · · , w12, 4d).
Then, the diophantine equation

w2
1 + w2

2 + w2
3 + w2

4 + w2
5 + w2

6 + w2
7 + w2

8 + w2
9 + w2

10 + w2
11 + w2

12 + 4d2 = 3(4d2 + w2
2 + w2

5 + w2
8 + w2

11)

has solution in integers if w12 − w11 = w11 − w10 = w10 − w9 = w9 − w8 = w8 − w7 = w7 − w6 = w6 − w5 =
w5 − w4 = w4 − w3 = w3 − w2 = w2 − w1 = d.

Proof. Consider the equation,

w2
1 + w2

2 + w2
3 + w2

4 + w2
5 + w2

6 + w2
7 + w2

8 + w2
9 + w2

10 + w2
11 + w2

12 + 4d2 = 3(4d2 + w2
2 + w2

5 + w2
8 + w2

11)

and Suppose that w2 = w1 + d,w3 = w1 + 2d,w3 = w1 + 2d,w4 = w1 + 3d,w5 = w1 + 4d,w6 = w1 + 5d,w7 =
w1 + 6d,w8 = w1 + 7d,w9 = w1 + 8d,w10 = w1 + 9d,w11 = w1 + 10d,w12 = w1 + 11d. The, left hand side
expressed as

w2
1 + (w1 + d)2 + (w1 + 2d)2 + (w1 + 3d)2 + (w1 + 4d)2 + (w1 + 5d)2 + (w1 + 6d)2 + (w1 + 7d)2 + (w1 + 8d)2 +

(w1 + 10d)2 + (w1 + 11d)2 + 4d2.
simplifies to

12w2
1 + 132w1d+ 510d2 = 3(4w2

1 + 44w1d+ 170d2) · · · (2.4).

Splitting equation (2.4) into thrice sums of squares, we obtain,

3(4d2 + (w2
1 + 2w1d+ d2) + (w2

1 + 8w1d+ 16d2) + (w2
1 + 14w1d+ 49d2) + (w2

1 + 18w1d+ 81d2) + (w2
1 + 20w1d+

100d2) + (w2
1 + 22w1d+ 121d2))

= 3(4d2 + (w1 + d)2 + (w1 + 4d)2 + (w1 + 7d)2 + (w1 + 10d)2)

= 3(4d2 + w2
2 + w2

5 + w2
8 + w2

11).

This complete the proof.
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3 Conclusion
In summary, the solution of the diophantine equation

∑n
r=1 w

2
r+

n
3
d2 = 3(nd2

3
+
∑n

3
r=1 w

2
3r−1) under the specified

conditions of a common difference d between consecutive terms wn, wn−1, · · · ,
w2, w1 where wn − wn−1 = wn−1 − wn−2 = · · · = w2 − w1 = d has been achieved for some cases. This solution
provides valuable insights into the relation among the sequence terms, enhancing our understanding of the
inherent patterns and structures within the equation. For future investigations, it is recommended to explore
extensions of this diophantine equation by proving conjecture (1).
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