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ABSTRACT 
 

During crane operation, the distribution of load mass may be nonuniform, which leads to the model 
uncertainty of the crane. Additionally, external disturbances such as wind and friction can cause 
oscillation of crane loads. A robust control strategy is proposed for an uncertain bridge crane 
system to address these issues. This strategy aims to accurately locate, quickly transport, and 
suppress its swing angle. The bridge crane is first modeled as the two degree-of-freedom system to 
study the control problem, and the load mass and the track friction coefficients are taken as 
parameter uncertainties. The appropriate performance weight and input weight functions are then 
designed for the closed-loop system by a concluded procedure. The relationship between the 
weight-function parameters and the resulting performance is analyzed. According to these weight 
functions, a μ-synthesis robust controller is designed using the DK-iteration algorithm. The output 
disturbance is introduced to analyze the pendulum angle suppression and perturbation rejection 
abilities of the closed-loop system in a shorter period. Finally, the effectiveness of the designed 
control method is verified by a simulation example. 
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1. INTRODUCTION 
  
Overhead cranes are a type of lifting and loading 
transportation equipment that is capable of 
moving in three directions. They are commonly 
used in various settings, such as ports, 
workshops, and other industrial locations. The 
horizontal bridge of the crane is supported by two 
legs, giving it a gantry shape. The lifting trolley 
runs on the bridge horizontally and uses a steel 
wire rope to connect the load to the trolley [1]. 
However, without an anti-swing controller, the 
trolley may experience swinging due to factors 
such as cargo inertia, external wind, and device 
friction. This can greatly impact the performance 
of the crane, as well as pose a safety hazard. 
Therefore, to ensure the safe and effective 
operation of the crane, it is crucial to study the 
mechanism of crane cargo anti-swaying. This is 
a significant research direction in the field of 
crane engineering. 
 
A robust controller can keep the system stable in 
the case of uncertain parameters. Additionally, it 
regulates the system to minimize the impact      
of external disturbances and parameter 
perturbations. 
 
In crane operations, the load mass is not fixed 
and its distribution is nonuniform, resulting in a 
margin of error. This means that any changes in 
the load mass can affect the angle of the load 
swing. Furthermore, the operating environment 
of a crane is particular, and there may be some 
friction in the device when the lifting trolley is 
moving to its desired position. Therefore, it is 
important to design a robust controller for the 
bridge crane. A μ-synthesis controller based on 
the DK-iterative algorithm is developed, making 
the lifting trolley reach the desired position within 
the specified time and eliminate the load swing. 
This method ensures that the system can resist 
parameter changes and external disturbances, 
making it robust. 
 

2. LITERATURE REVIEW 
 
Several domestic and international researchers 
conduct theoretical research on this problem, 
resulting in a series of significant findings. In [2], 
a neural network sliding mode control method 
based on minimal parameter learning is 
proposed. This method utilizes the radial basis 
function neural network to approximate the 
uncertainty model of the system and a good 

result is obtained. For the crane control system, 
which is characterized by nonlinearity, strong 
coupling, and under-actuation, Deng [3] designs 
a linear Active Disturbance Rejection Controller 
(ADRC) and compares its performance with that 
of the LQR control. The results show that the 
ADRC outperformed the LQR regarding 
performance indices. Guo [4] constructs an 
alternative function based on the expression of 
the energy function, the control algorithm is 
designed using the Lyapunov direct method. In 
order to reduce the complexity of the algorithm 
and reduce the external parameters that the 
algorithm relies on, a coupling control signal is 
defined and the candidate function is 
reconstructed. Ultimately the position tracking 
controller and the speed tracking controller are 
designed. In [5], Model Predictive Control (MPC) 
is proposed for controlling the bridge crane. This 
approach not only considers energy efficiency 
and safety but also considers stability and 
robustness. To minimize load swing in cranes, 
the authors propose a Linear Quadratic 
Gaussian (LQG) optimal control in [6]. The 
algorithm integrates the second derivative of the 
state variables into the LQG Common Criteria 
performance metrics for control and estimation, 
this allows for the use of additional weight to 
reduce the swing angle. In [7], the authors use 
adaptive control for a bridge crane system, 
employing adaptive laws to estimate unknown 
system parameters, friction, and load mass. 
These estimates are then used to calculate the 
control force applied to the lifting trolley. This 
method enables precise positioning of the trolley 
and eliminates the residual swing angle of the 
load. Liu et al. [8] propose a Non-Singular 
Terminal Sliding Mode Controller (NTSMC) 
based on neural networks for a 3D bridge crane 
with a double-swing structure. The controller can 
achieve positioning and anti-sway control of the 
lifting trolley by tracking a planned smooth S-
shaped trajectory. 
 
About robust control strategy, in [9], the control 
problems of the single-control-input and double-
control-input systems for a double-pendulum 
structure overhead crane are investigated, and 
an optimal robust controller is designed using μ-
synthesis. By utilizing dual control inputs, the 
controller can achieve positioning and pendulum 
angle suppression with remarkable speed. In 
[10], Mohammad and coworkers modeled the 
bridge crane as a five degree-of-freedom system. 
They take the equivalent mass in three different 
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directions of the trolley, the bridge frame, and the 
load as uncertain parameters to design a 𝜇-
optimal robust controller. The proposed controller 
is applied to the original nonlinear system and 
simulation results demonstrate that this controller 
satisfies the control objectives well and has 
robust performance. 
 
Some scholars propose synthesizing two 
intelligent control strategies to improve the crane 
control system's robustness. In [11], the author 
combines fuzzy sliding mode control with 
variable theory domain adaptive fuzzy control 
design. In [12], a researcher synthesizes fuzzy 
control and artificial neural network control to 
enhance the system's robustness and overcome 
the subjectivity of the selection of fuzzy rules and 
membership functions of a single fuzzy 
controller. 
 
In this paper, a μ-synthesis robust controller is 
designed to address performance issues caused 
by an uncertain model. The load mass of the 
bridge crane and the friction coefficients of the 
steel rail are taken as the parameter 
uncertainties, and the uncertain model of the 
system is established. The appropriate 
performance weight and input weight functions 
are then designed for the closed-loop system by 
a concluded procedure. The relationship 
between the weight-function parameters and the 
resulting performance is analyzed. The DK-
iteration algorithm is applied to solve for the μ-
synthesis controller. Simulation verification is 
conducted to plot the response curves of the 
closed-loop control system and obtain analytical 
conclusions for the trolley position and load 
swing angle. To test the robustness of the 
system, a series of simulations is performed 
using different perturbation parameters. The 
results show that these curves are consistent 

with the curves of the nominal model, and meet 
the system's performance requirements. 
 

3. MATERIALS AND METHODS 
 

3.1 Bridge Crane Model    
 
A bridge crane is primarily made up of a metal 
three-dimensional(3D) frame, a bridge, a lifting 
trolley, electrical control equipment, steel rope, 
and a load suspended from the trolley. The 
linearized model of a 3D bridge crane from [13] is 
quoted in equation (1). This is a simplified 
experimental equipment based on the actual 
mechanical structure of the 3D crane, as shown 
in Fig. 1. 
 

 
 

Fig. 1. Experimental equipment of the 3D 
bridge crane 

 

      (1) 
 
The symbol denotation for the bridge crane is presented in Table 1. 
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The mass of the steel rope is negligible and the length of the steel rope is constant, represented by 

. The linear model in the XY two-dimensional direction is obtained from equation (1) as 

follows: 

        (2) 
 

The state variables are defined as 
 

       (3) 
 

The input quantity  and output quantity  are 
 

       (4) 
 

Then its state space equation can be derived from equation (2) 
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The nominal transfer function matrix  between  and  is 

 

   (7) 
 

Table 1. Symbol denotation 
 

Symbol Meaning 

 The displacement of the lifting trolley in the X direction 

 The displacement of the lifting trolley in the Y direction 

 
The equivalent mass of the lifting trolley in the X direction 

 
The equivalent mass of the lifting trolley in the Y direction 

 The length of the steel rope 

 The mass of the load 

 
The force on the trolley along the X direction  

 
The force on the trolley along the Y direction 

 
The load gravity in the Z direction 

 
The damping coefficient in the X direction 

 
The damping coefficient in the Y direction 

 
The damping coefficient in the Z direction 

 
The angle between the steel rope and the XZ plane 

 
The angle between the projection of the steel rope in the XZ plane and the 
negative direction of the Z-axis 

 

3.2 Parameter Uncertainty 
 

In conjunction with the linear model described above, the load mass , the damping coefficient  

and  are considered to be perturbation parameters. These parameters are bounded and 

stochastic. The uncertain parameters can be expressed in standard form as  
 

         (8) 
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The perturbation parameters are separated to form a diagonal uncertainty matrix, designated as 

, it is subsequently feedback-connected to the nominal system . This is 

known as the upper LFT form of  and , referred to as the uncertain model , 

as shown in Fig. 2. Where  is stable and indeterminate, but it satisfies the norm condition  
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          (12) 
 

 
 

Fig. 2. Upper LFT of the bridge crane system 

 
3.3 Closed-Loop Control System of Bridge Crane 
 
Fig. 3 illustrates the closed-loop structure of the bridge crane control system, which includes the 
necessary weight functions for the design. The closed-loop transfer functions both from output 

disturbance  to output , and from reference input  to tracking error  are sensitivity functions 

 

         (13) 
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Fig. 3. Closed-loop structure of bridge crane control system 
 

To ensure that the closed-loop system meets the required performance standards, a weight function 

 is introduced at . Additionally,  serves as an upper bound for the value of  [14], the 

performance requirement becomes 
 

        (15) 
  

          (16) 
  

          (17) 
 

In order to limit the model input values  and , which is equivalent to constrain , an 

input weight function  is introduced. The upper bound of the amplitude of  is set to . The 

robust performance of the closed-loop system can be clearly described as the peak value of the 
closed-loop transfer function being less than 1 for the uncertain model  in all frequency ranges with 
the following constraint 
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is equal to . If increased, the steady state tracking error of the output response curve will 
also increase. If  increased, the maximum peak of the response curve will also increase. At 

frequency , the asymptote crosses 1, which is approximately the required bandwidth and is related 

to the time response speed. Increasing  will result in a faster response speed for the trolley 

displacement and load swing angle. 
 

At the high-frequency band, the input weight function has a small gain to reduce the controller's gain 

and avoid input saturation. For precise control in the low-frequency band,  is best used in the 

following form 
 

         (20) 
 

where  is approximately equal to the closed-loop bandwidth. The smaller the , the smaller the 

input force, and the large oscillation of the load swing angle. If  is too large, the nominal 

performance will be affected. The robustness performance cannot meet the requirements if  is too 

small.  
 

The performance requirements for the designed system include a maximum overshoot of 10% 
displacement, a stabilization time of 5 seconds or less, a maximum tracking error of 5%, and a 
maximum input force of 20N. The values are taken through repeated debugging as follows 
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        (22) 
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structure in Fig. 4 to obtain the generalized object . The block diagram for the synthesized controller 
is shown in Fig. 4. 
 

 
 

Fig. 4. Block diagram for the synthesized controller 
With 
 

 
 

Fig. 5 illustrates the structure of  for robustness analysis, with the nominal system  being the 

lower LFT of  and  
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                   (27) 

 
 

Fig. 5. -Structure Block Diagram 
 

 
 

Fig. 6. -Structure Block Diagram 
 

3.6 μ-Synthesis and DK-iteration 
 

The definition of structured singular value is 
provided in [16]. For a given controller, μ is used 
to analyze RP effectively. μ-synthesis problem 
refers to finding the controller that minimizes the 
μ. According to the structure shown in Fig. 6, the 

appropriate controller is found by minimizing  

norm from  to , i.e.,  in (25), which is 

usually solved by the DK-iteration [16]. 
 

The upper bound  on the 

structured singular value is solved using the DK-
iteration method, which minimizes 

 by alternately changing  and 

, where  is the scale transformation matrix, 
as follows: 
 

i) K step:  remain unchanged, the controller 

 is obtained by solving . 

ii) D step: Find  such that  is 

minimized at each frequency when  is 
unaltered. 
iii) Fit the amplitude of each element in  so 

that  is a stable minimum phase transfer 
function and return to the K step. Next, iterate 

alternately until  or  norm is no 

longer decreasing. 
 
The generalized control object is obtained using 
the connect command for the controlled object 

 and all the weight functions. Then, the 

musyn function in the MATLAB robust control 
toolbox is utilized to solve the controller. 
 

4. RESULTS AND DISCUSSION 
 
The experimental bridge crane trajectory tracking 
control is simulated with the following 

parameters: , , ,

, , , ,

, . After five iterations, the 

closed-loop maximum structured singular value 
of 0.904 is obtained for the μ-synthesis controller 

. This indicates that the closed-loop system 
can tolerate a maximum uncertainty error of 
1/0.904 times the specified uncertainty. The 
controller can achieve RP of the closed-loop 
system in all parameter uncertainty ranges. The 
maximum singular value curves of the closed-
loop system under nominal condition and the 
worst peak gain case are shown in Fig. 7. 
 

Through the simulation experiment, the 
displacement curve of the lifting trolley and the 
swing angle amplitude curve of the load are 
obtained in the X and Y directions, and 
compared with the LQR controller. 
 

The input tracking response curves of the 
uncertain system at the designated position 

 and  of the trolley, and the 

desired swing angles  and  of the 

load are shown in Fig. 8. The tracking curves in 
the X direction are illustrated in Fig. 8(a), and the 
trolley displacement with the μ-synthesis 
controller arrives at the specified position in 3.3s, 
with the maximal swing angle within 6°, and 
converges to about 0° in 3s. The trolley 
displacement with the LQR controller is tracked 
more slowly, reaching about 1m in 8s, but the 
amplitude of the pendulum angle of the load 
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varies little, and the maximal pendulum angle is 
only 2.93°, which also converges to the 
designated pendulum angle in 3s.  
 

Fig. 8(b) shows the tracking curves in the Y 
direction. The trolley displacement under the μ-
synthesis control reaches the appointed value in 
2.7s, and the pendulum angle converges to 
about 0° in 3s. In comparison, the displacement 
under the LQR control reaches the designated 
value in 8s, and the pendulum angle reaches the 
assigned value in 2.7s. In contrast, the response 
speed of the μ-synthesis control is faster. The 
lifting trolley can get the specified position 
accurately, and the swing angle of the load 
fluctuates a lot, but it is within the safety 
allowable range, significantly improving the 
tracking performance compared with that of the 
LQR controller. 
 

The variation of the input-force when using the μ-
synthesis control is shown in Fig. 9. The 
maximum input driving force of the lifting trolley 
in the X direction is 11.8N, the common input-
force of both the bridge and the trolley in the Y 
direction is 17.59N, the amplitude of which is 
within the permissible input-force requirement. 
The above results show that the tracking 
performance of the bridge crane using μ-
synthesis controller is better. 

Fig. 10 shows the simulation curves of the 
closed-loop system for output disturbance 
rejection. Considering the friction force of the 
device and wind force, the displacement of the 
trolley may deviate from the expected position, 
and the load will also be disturbed to produce the 
swing angle. Therefore, 0.1rad disturbance input 

is set for  and , and the displacement 

disturbance input of 0.2 m is set for  and . 

Corresponding to the closed-loop structure of 
Fig. 4, set  
 

. 
 

As can be seen from Fig. 10a and Fig. 10b, in 
the presence of output disturbance,        
regardless of the X, and Y direction, the curve of 
trolley displacement and the swing-angle curve 
of the load converge to 0 in about 3s by using μ-
synthesis controller, and the effect of         
eliminating the swing is better. In the LQR  
control process, trolley displacement and                 
swing angle changes are pronounced. 
Eliminating the pendulum can be realized in the 
time required, but the pendulum angle is             
large, beyond the safety requirement. The  
results demonstrate that μ-synthesis controller            
exhibits superior disturbance rejection 
performance. 
 

 

 
 

Fig. 7. Maximum singular value 
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Fig. 8a. Tracking performance in the X direction 

 

 
 

 
Fig. 8b. Tracking performance in the Y direction 
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Fig. 9. Input-forces during reference input tracking 
 

Fig. 11 shows the input-force variation of the 
trolley when the μ-synthesis controller realizes 
the disturbance rejection. In the event of output 
disturbance, the maximum value of the trolley 
input-force is between ±5N, and only lesser force 
is needed to maintain the stability of the load 
swing angle. 
 
The robust performance of the closed-loop 
control system is verified in the time domain. To 
demonstrate the response performance of the μ-

synthesis controller to the change of system 
parameters, the uncertainty parameter values 
are adjusted within the range of deviation values 
in (8). The load mass   is adopted with an 
accuracy of 0.2kg, and the damping               
coefficients and are both given with an           
accuracy of 1. The tracking curves of            
different parameter perturbations are obtained, 
as shown in Fig. 12, and the disturbance 
rejection curves of parameter perturbations are 
shown in Fig. 13. 

 
 

Fig. 10a. Disturbance rejection in the X direction 
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Fig. 10b. Disturbance rejection in the Y direction 
 
 

 
 

Fig. 11. Input-forces during disturbance rejection 
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Fig. 12. Tracking performance from perturbation parameters 

 
 

Fig. 13. Disturbance rejection from perturbation parameters 
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Compared to the control results under the 
nominal model simulated above, the curves after 
changing the parameters are similar to it, hence 
the better robustness of the designed μ-
synthesis controller is verified. 
 

5. CONCLUSION 
 
Based on the robust control theory, a μ-synthesis 
robust controller is designed for the control 
problem of a bridge crane system containing 
uncertainties including the model parameter 
perturbations, output disturbances, and input limit 
in amplitude. Considering the variation of load 
mass and the fluctuation of the damping 
coefficient of the lifting trolley during the moving 
process, the uncertainty bounds are given, and a 
reasonable closed-loop control structure of the 
bridge crane is composed. The relationship 
between the parameters of the weight function 
and the steady state error, response speed, and 
maximum peak value of the system is given, and 
the appropriate performance weight function and 
input weight function are selected. The 
simulation results show that the controller can 
realize the positioning control and rapid swing 
elimination of the bridge crane system with fixed 
rope length and two degrees-of-freedom. The 
three perturbation parameters take different 
values respectively, the closed-loop system is 
verified to be RS within the parameter 
perturbation range, and it has a better RP to the 
output disturbance. 
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