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+e paper aims to investigate the processing execution of SS316 in manageable machining cooling ways such as dry, wet, and
cryogenic (LN2-liquid nitrogen). Furthermore, “one parametric approach” was utilized to study the influence and carry out the
comparative analysis of LN2 over dry and LN2 over wet machining conditions. Response surface methodology (RSM) is in-
corporated to build a relationship model among the considered independent variables (spindle speed: (S, rpm), feed rate (F, mm/
min), and depth of cut (doc) (D, mm)) and the dependent variable (surface roughness (Ra)). Since there is the involvement of
more than one independent variable, the generation of regression equation is “multiple linear regression.” Based on the attained
coefficient value of the independent variable, the respective impact on surface roughness is identified. +e results of comparative
analysis of LN2 over dry and LN2 over wet machining states revealed that LN2 machining yielded better surface finish with up to
64.9%, 54.9% over dry and wet machining, respectively, indicating the benefits of LN2 for achieving better Ra. +e benchmark
function of the proposed mode hybrid-bias (BNN-SVR) algorithm showcases the propensity to emerge out of the local minimum
and coincide with the optimal target value. +e performance of the (BNN-SVR) is a prevalent new ability to fetch the partially
trained weights from the BNN model into the SVR model, thus leading to the conversion of static learning capability to dynamic
capability. +e performances of the adopted prediction approaches are compared through a range of attained error deviation, i.e.,
(RA: 3.95%–8.43%), (BNN: 2.36%–5.88%), (SVR: 1.04%–3.61%), respectively. Hybrid-bias (BNN-SVR) is the best suitable
prediction model as it provides significant evidence by attaining less error in predicting Ra. However, SVR surpasses BNN and
RSM approaches because of the convergence factor and narrow margin error.

1. Introduction

SS316 stainless steel has arisen and plays a vital role in
manufacturing automotive, aerospace, valves, pipes, medi-
cal, coastal architectural fittings, marine, chemical indus-
tries, thermal power plants, mining industries, etc. +e
chemical structure of SS316 encloses an accumulation of
molybdenum, adding the enriched corrosion resistance
property. Despite their colossal application, during the
machining of SS316, numerous challenges arise in terms of
detrimental and achieving better surface integrity. Surface

integrity is utilized in assessing the nature of parts. It likewise
influences a few practical characteristics of parts w.r.t. to
friction between the tool and work samples, tool wear, heat
transmission, and the ability to distribute and hold a lu-
bricant, coating, etc. +us, surface quality expectation as-
sumes a huge part in the machining business for the
appropriate determination and control of machining
boundaries and enhancement of cutting conditions. +e
introduction section is illustrated in two subsections, first
towards the cryogenic machining and impact of cutting
fluids over response parameters and in the second section,
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involvement of prediction techniques and estimation of the
performance of these forecasting techniques.

Hegab et al. [1] proposed a calculation to assess main-
tainability towards machining methods. It incorporates each
of the 4 life cycle phases of machining (pre, producing, use,
and post) to assess sustainability. Later, Khanna et al. [2]
utilized this calculation to think about the supportability of
the LCO2 strategy with customary machining procedures.
Khanna et al. [3] (LCA of dry, flood, LN2, LCO2) utilized the
ReCiPe 2016 midpoint (H) strategy as far as biological effect
and energy utilization. +ey recognized LN2 as the best
cooling strategy when contrasted with dry, flood, and LCO2
strategies. Shah et al. [4] earmark LCA for Inconel 718
boring under LN2 and LCO2 conditions. +ey utilized
ReCiPe 2016 midpoint (H) strategy to examine the effects on
the assets, laborers’ wellbeing, environment, etc. Amelio-
rated machining execution with lower power utilization was
accounted for utilizing the LCO2 condition when contrasted
with the LN2 condition. Shape memory machining of FRC,
PMMC, and NiTi is illustrated. +e cutting of FRP com-
posites presents numerous difficulties, for example, fiber
tearing, delamination, fiber pullout, and dimensional errors
in machined parts [5]. It can be presumed that cryogenic
treatment effectively enacts 5083 alloy machinability and its
mechanical properties. +e performance of cryogenic
treatment on 5083 alloys is measured w.r.t. tensile prop-
erties, thrust force, tool wear, and surface topography [6].

+ere is a need to promote the use of sensible LN2 and
hybrid machining innovations in the assembly industry
worldwide, highlighting the advantages. +e outline of in-
house created LN2 and hybrid machining strategies is in-
troduced. Different difficulties and future necessities w.r.t. to
LN2 and hybrid machining methods are illustrated [7]. In
the study, the effect of LN2 on the surface quality, grain
structure and microhardness of AZ31C magnesium alloy
was investigated. A huge enhancement towards surface
quality was found in the cryogenic turned examples. With
cryogenic machining, greater microhardness was achieved,
i.e., 98.6 HV from 53.7 HV [8].

Khanna et al. [9] examined machinability and sup-
portability of Nimonic 90 crossbreed turning when con-
trasted with LN2 turning. +ey revealed better execution
utilizing CUAT than LN2, turning as far as surface quality
and energy utilization. +e creators likewise announced
lesser fossil fuel byproducts on account of CUAT when
contrasted with the LN2 turning procedure. Patel et al. [10]
analyzed the execution of Nimonic 90 under wet and LCO2
conditions. A superior surface completion was acquired
utilizing wet turning. Additionally, force utilization was
escalated and developed chip fragility through the usage of
LCO2 when contrasted with wet conditions.

Zhao et al. [11] proposed a cryogenic framework that
empowers movable temperature scope of 20–196°C. +ey
blended compressed air in with LN2 to various extents to
attain the necessary temperature. LN2 was utilized at a
critical factor beneath 0.1MPa. +e creators uncovered a
critical impact of cutting conditions on chip morphology
and serrated attributes. Later Zhao et al. [12] investigated the
processing execution of Ti6Al4V through dry and LN2 states.

+e creators detailed higher miniature hardness and ex-
panded excess compressive pressure utilizing cryogenic
processing compared to dry processing. A detailed illus-
tration was apropos lessening apparatus wear, fossil fuel
byproducts, and surface quality under LN2 conditions as
assimilated to ordinary machining [13, 14].

An overview of the other introduction part (second
section) demonstrates a wide range of prediction method-
ologies used to predict surface finish. Gupta [15] studied tool
wear, surface roughness to calculate necessary power re-
quirements on cutting time, cutting speed, and feed rate.+e
achieved data was applied to develop models employing
response surface methodology (RSM), ANN, and support
vector regression (SVR) strategies. +e output emphasized
ANN and SVR models yielded higher accuracy compared to
the RSM model. RSM was used to study the impact of input
attributes on response attributes illustrated in [16–18].
Various analyses of techniques to predict the surface finish
in machining procedures are mentioned in [19]. Regression
analysis (RA), design of experiments (DOE), and neural
network models were used to solve the problem associated
with the prediction of surface quality in milling.

Meanwhile, for tool wear Bayesian SVM and Bayesian
multilayer perceptron’s method used [20] for tool fracture
findings, SVM methodology was implemented for moni-
toring the rising of tool fracture illustrated [21, 22]. It is also
reported in the literature that the Bayesian-SVR combina-
tion is also implemented in finding a better prediction ac-
curacy rate [23]. Asilturk, the coefficient of assurance (R2),
was determined for every method involved in the study, as
R2 plays a vital role and acts as a measure to carry out
forecast precision. A comparative study was made among
ANN and SVR in order to calculate prediction performance.

Backpropagation neural network method is used to
perform prediction accuracy in milling [24, 25]. +e pre-
diction model was developed using Bayesian neural network
(BNN) and support vector regression (SVR) techniques to
predict tool wear and tool fracture in face milling operation
[26]. In turning operations of non-corrosive steel, surface
quality andmachining temperature were estimated using the
ANFIS model [27]. ANN and SVRmodels were illustrated to
predict the cutting force and surface roughness in turning
4140 steel [28]. In a different study, surface quality and
cutting forces were estimated in slot milling of 7075-T6
aluminum alloy with ANN and SVR strategies [29]. Addi-
tionally, in the literature, very little work has been conducted
with face milling operation on AISI 316 incorporated with
cryogenic machining along with soft computing techniques
[30]. +e literature suggests that to achieve desired “Ra,” a
blend of spindle speed, feed rate, and the doc is the best
attribute combination [31–34].

+e shared data were proposed to assign the weights,
where outcome represents the forecast after effects superior
to results acquired by equivalent loads and standard pre-
disposition loads [26]. +e strategies referenced above are
broadly applied in weight assurance, and comparative cases
are acquired after closeness estimation. Be that as it may,
these techniques above still come up short on the versatile
capacity and cannot ensure the actual significance. Artificial
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neural network (ANN) manages the nonlinear issue effec-
tively; numerous works were centered around the ANN
model to discover the loads. Loads accepted using the ANN
technique, and the outcomes were palatable in a funda-
mental oxygen heater (BOF) [35]. Relich [36] illustrated the
assurance of the weight utilization in ANN strategy through
a new item advancement measure (NPD). Further, ANNwas
prepared by gradient descent with a versatile ability to learn
rate calculation. +e outcomes exhibited that ANN helps
CBR to get more comparative cases contrasted regression
model (RA).

A few researchers presumed support vector regression
(SVRM) strategy to build up a case reuse model in the
expectation of a fundamental oxygen heater (BOF) [26]. +e
outcomes represented wise execution than the traditional
way of reusing the model. Nonetheless, the neural organi-
zation has lackluster showing confronting few comparable
cases. Interim, the SVR model cannot manage information
with commotion well, so the method needs to be prepared
from the start utilizing comparative prototypes from which
learning calculation is expected to acquire the certified
model. With respect to state recovery and state reuse, it is
vital to track down a suitable learning calculation for
upgrading the recovery and reexamine models.

Mathew et al. [27] discussed the comparative prediction
analysis among ANN and ANFIS in tempered welding of
steel. A comparative study illustrated that the ANFIS ap-
proach was prevalent compared to ANN due to its ability to
achieve local interpolation. Ghosh et al. [37] illustrated the
utilization of the ANN model to carry out a surface quality
prediction in milling. +e prepared ANN model forecast
execution is best compared to the statistical prediction
approach RSM. Natarajan et al. [38] acknowledged surface
quality forecast evaluating through ANFIS strategy in
milling. +e outcomes showcased that the ANFIS procedure
attains better forecast results as analyzed to the ANNmodel.

However, the prediction of response attribute Ra was not
derived concentrating on “bias” specific parameters in their
works as it is difficult for conventional modeling methods to
take bias-Ra into interpretation. But Ra plays a vital role in
identifying several functional attributes of parts. To fulfil the
criteria, a suitable intelligent model based on “hybrid-bias”
derival of weights is significant to predict surface roughness
(Ra) in various machining environments.

Moreover, based on topology prediction of engineering
processes, substantial research is reported on various pre-
diction strategies. ANN is used to monitor and predict
surface finish associated with Ra value, with trial or random
assignment of weights, thus leading to falling into “pit or
local optimum.” However, none of those neural networks
were tried to overcome the said flaw through “hybrid-bias”
derival of wights and assigning it to other approaches to
predict the Ra as an output. +us, the concern is to find the
role of independent variables on dependent variables
through hybrid-bias derivation of BNN into SVR to other
commonly used predictions.

Interim, SVRmodel was unable tomanage the noisy data
well, and so the model should be well trained prior to
comparable cases as to acquire the certified model.

Concerning case recovery and case reuse, it is essential to
track down a suitable learning calculation for enhancing the
recovery and modify models. So there is a need for a hybrid-
bias (BNN-SVR) model. +e results attained showcase that
the BNN-SVR model predicts surface roughness with rea-
sonably high accuracy compared to other similar studies
described in the literature due to its ability to achieve better
convergence and global optimum.

In brief, the present research explains the balance of
process variables that simultaneously minimize the ma-
chining characteristics. ANN and machine learning (hybrid
bias: BNN-SVR) models are proposed for the best selection of
machining parameters and optimization of cutting condi-
tions. Figure 1 represents the research methodology used in
the current study to understand the flow of work better.

In this work, an improved prediction technique hybrid-
bias (BNN-SVR) method was proposed to assess surface
roughness.+e innovations exposed are as follows: firstly the
BNN model to determine the relation logic of each de-
pendent and independent attribute, second, assurance of
local interpolation (exponential term value in a stable state),
so that these weights can be transferred to SVR, and the last
innovation was to foster hybrid-bias (BNN-SVR)model.+e
proposed model performs an accurate prediction of surface
roughness, and it even avoids falling into local minima.

+e remnant of this paper is organized as follows:
Section 1 describes one-factor approach (OFA) for ex-
perimental illustration w.r.t. to the usage of different
mediums in machining, Section 2 describes RSM approach
to study the impact of the dependent variable on inde-
pendent variable using multiple regression equation. Sec-
tion 3 describes the implications of evolutionary prediction
technique BNN and implementation of hybrid-bias (BNN-
SVR) method and its methodology to achieve better
convergence and global optimum. In Section 4, perfor-
mance verification of the proposed hybrid-bias (BNN-
SVR) method is performed through comparative study.
Section 5 concludes this study.

2. Materials and Methods

Stainless Steel SS316 (AISI 316) was used as a sample
workpiece with the size 100mm× 40mm× 10mm. +e face
milling operation was conducted on CNC vertical Spark
DTC milling machine [39, 40], utilizing cutter diameter
50mm WIDIA M690 with PVD coated inserts TiAlN-
SDMT1204PDR-MH-PA120. +e experiments were carried
for three machining conditions: conventional wet, dry, and
LN2 (cryogenic).

It is observed from the literature that the coated inserts
perform better in comparison with uncoated inserts. +e
coating of TiAlN is in the range of 1–3 μm and can be up to
4 μm. +e coated insert not only increases the tool life up to
10 times but also develops an ability to withstand higher
cutting temperatures and avoid oxidation. LN2 as a cutting
fluid will control the excess heat developed in the machining
zone [39]. TiAlN and AlTiN are widely used inserts to
machine stainless steel to avoid tool wear and oxidation-
related issues [40].
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+e experiments with “S” in rpm, “F” in mm/min, and
“D” in mm ranges are selected based on the tool insert
working range specifications as specified by the tool insert
manufacturer. +e operating range (upper and lower range)
was confirmed by carrying out a set of preliminary ma-
chining experiments with a low and high working range of
tool inserts for S, F, and D. +e operating range needs to be
taken care of by looking into associated problems, such as
vibration during machining, chatter effect, increased cutting
temperature and tool wear, tool breakage, and deteriorating
Ra. Based on these limitations, the assumption has been
made within the tool insert working range specification, and
further on, DOE was decided for the study.

Figure 2 exhibits the flow of the article. +e SS316
composition is represented in Table 1. +e machining
variables and range are represented in Table 2, depending on
tool insert specifications by the manufacturer. Figures 3(a)
and 3(b) represent scanning electron microscope (SEM)
image and element composition weight (%) of workpiece
SS316, respectively. Figures 3(c) and 3(d) represent the
energy dispersive X-ray spectroscopic (EDS) images of
SS316 using scanning electron microscope (SEM) with color
and black and white scale, respectively.

In this study, the one-factor approach (OFA), also
known as the one factor at a time method (OFAT), is utilized
to design the experiments, in which out of three input
parameters (cooling type (CT) excluded) one input pa-
rameter is varied. Table 2 represents different levels (range)
and input parameters. In this study, the experiments were
conducted with three different cases, such as case (i) con-
stant spindle speed maintained at 2000 rpm and feed rate
and doc varied from low to high operating levels, case (ii)
constant doc of 1mm preserved and spindle speed and feed
rate altered among the low and high operating range, and
case (iii) constant feed rate of 450mm/min retained and
spindle speed and doc changed between low to high ma-
chining levels.

Table 3 represents 9 test cases with output response as a
surface roughness (Ra), resulting in comparison between
different machining conditions such as dry, wet, and LN2
and also shows the advantage in percentage reduction of the
LN2 method of machining when compared to dry and wet
machining individually. +e same results are indicated using
Figures 4 and 5, respectively.

Figure 4 exhibits the surface roughness (Ra) values
attained through experimental work using three different

Influencing input parameters in the experimental work

Identifying operating range

Design of experiments and experimental matrix

Experimental setup

Conduct experiments with 3 different types of machining method [dry, wet, and cryogenic (LN2)]

Experimental result obtain with Ra as a output parameter for individual machining method

Compare actual experimental results using prediction techniques

Compare relative error between RSM, BNN, and SVR

Compare the prediction value with actual experimental results

Validation tests using 9 test cases (one factor approach method)

Conclude the best prediction model

Machine learning method
SVR

Conventional method
RSM

ANN method
BNN

Figure 1: Research methodology.
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machining methods such as conventional dry, wet, and LN2
(cryogenic). Similarly, Figure 5 comments on the graph,
highlighting the dominance of LN2, i.e., cryogenic method
on conventional wet and dry machining methods in per-
centage deviation with 9 test cases.

Figure 6(a) shows the schematic representation of the
experimental setup with different parts involved in the
cryogenic machining technique. Figure 6(b) illustrates the
proposed hybrid-bias (BNN-SVR) method. Figure 6(b)
shows that the BNN-SVR performance is the prevalent

new ability to fetch the partially trained weights from the
BNN model into the SVR model, thus in the conversion of
static learning capability to dynamic capability. +e per-
formance of hybrid-bias (BNN-SVR) surpasses the perfor-
mance of BNN and RSM by achieving greater convergence
and minor deviation error, whereas Figure 7 represents the
authentic experimental images with different instances of the
experimental work such as (a) full cryogenic experimental
setup used with different components, (b) experimentally
used milling cutter and tool inserts with specifications, (c)
nozzle positioning setup to the tool and workpiece (ma-
chining zone) interface before the experiments, and (d) LN2
sprayed to the machining zone during the experiments.

2.1. Surface Roughness. +e “MITUTOYO SURFTEST SJ-
301” surface roughness tester is utilized to measure the
surface roughness, as shown in Figures 8 and 8(b).

+e “Ra” is the assessment factor used for surface
roughness, also known as arithmetic average (AA) in mi-
crometers (mm) equation [41]:

Ra �
1
l

􏽚
l

0
|y(x)|dx. (1)

Based on the extraction of data digitally, the trapezoidal
rule replaces an integral part, and “Ra” could be approxi-
mated based on the following equation [3, 38–40]:

Ra ≈
1
n

􏽘

n

i�1
yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (2)

where “Ra” is the AA deviation from the mean line (in mm),
y is the ordinate of the profile curve, and l is the sampling
length. In measuring the surface roughness, the measure-
ment has taken in three various localities, and the mean
value was considered the output response value. +e spec-
ifications of the surface roughness tester are as follows.

Tip radius of the stylus is 2 μm, force applied by the stylus
is 0.75mN, and stylus speed is 0.25mm/s.

3. Modeling Methods

3.1. Regression Analysis (RA). +e present study had in-
vestigated the RSM- (regression analysis-) based design of
experiments for the possible arrangement of ranges for “S” in
rpm (Spindle speed), “F” in mm/min (Feed-rate), and “D”
in mm (Depth of cut) and CT (coolant type). To attain
maximization/minimization of the output, the association
between outputs processes with input judgment variables is
mapped [42, 43]. From the first-order model’s equation (3),
the second-order model is derived [44, 45].

􏽣y2 � y − ε � b0x0 + b1x1 + b2x2 + b3x3 + b4x4

+ b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4 + b12x1x2

+ b23x2x3 + b13x1x3 + b14x1x4,

(3)

where 􏽣y2 is the estimated response, y is the dummy factor in
logarithmic scale x measured as x0 �1, ε is the experimental
error, and b0–b4 are the factor values estimated from the β

Material selection–SS316
Tool selection-milling cutter: WIDIA M690, 23969540, diameter 50mm

Tool insert: SDMT 1204 PDR MH–PA120 (PVD)

Machine-vertical CNC
Operation-face milling

Experimental condition L31 (orthogonal array), 15 (testing), 9 (validation)

Machining conditions

Wet

Comparison: LN2 over dry and
LN2 over wet

Prediction techniques

Machine learning method
SVR

Compare relative error among RSM, BNN, and SVR

Performance (accuracy, deviation)

Best model identification

Dry
Cryogenic

(LN2)

Statistical method
RSM

Neural network method
BNN

Figure 2: Structure of the article.

Table 1: Composition ranges of elements in SS316 grade.

Grade C Mn Si P S Cr Mo Ni N
316 0.08 2.0 0.75 0.045 0.03 18.0 3.00 14.0 0.1

Table 2: +e machining variables and level.

Machining parameters
Levels

High Middle Low
CT 1 (LN2) 0 (Wet) −1 (Dry)
F (mm/min) 550 450 350
D (mm) 1.5 1 0.5
S (rpm) 3000 2000 1000

Advances in Materials Science and Engineering 5



parameters to be appraised for spindle speed (S in rpm), feed
rate (F in mm/min), doc (D in mm), and coolant type (CT),
respectively. Similarly b11–b44 are the interaction among
terms. x1 is the spindle speed (S), x2 feed rate (F), x3 doc (D),
and x4 coolant type (CT) in the linear logarithmic con-
version. x2

1–x2
4 are the quadratic factors, x1x2, x2x3,x1x3,

and x1x4 are the interaction between two terms. +e re-
gression coefficients were obtained by the application of RA
on the experimental-based data.

3.2. Bayesian Neural Network (BNN). +e classification of
BNN came under a feed-forward neural network and is used
as a modeling tool for complex nonlinear problems. In the
present research, the BNN model comprises three layers,
such as input, hidden, and an output layer with 4, 6, and 1
neurons, respectively [46, 47]. It is essential to identify the
objective function based on the submitted dataset. Usually,
the dataset contains x and y, where x is input and y is the
target vector.+e unknown function is determined based on

Quantitative results
Element composition weight

1mm Electron Image1

(a)
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40

W
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t (

%
)
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0

C Si P S 0
Full scale 1095 cts cursar 11.081 (4 cts) keV keVFull scale 1085 cts cursar 11.142 (4 cts)

2 4 6 8 10 0 2 4 6 8 10Cr Mn Fe Ni Mo

Ni

Ni
Fe

Cr
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S
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P
Si

C

Cr

Mn

Ni
Cr

Fe
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Fe

Ni

Ni
Fe

Cr

Mn

S

Mo

P

Si

C

Cr

Mn

Ni
Cr

Fe

Spectrum 1 Spectrum 1

Mn

Fe

80

Atomic weight %
In color In black and white scale
scale

(b) (c) (d)
Figure 3: SEM image of the EDS spectra of SS316. (a) SEM image of workpiece SS316. (b) Element composition weight (%) of workpiece
SS316 using EDS. (c) SEM image of the EDS spectra of SS316 in color scale. (d) SEM image of the EDS spectra of SS316 in black and white
scale.

Table 3: Experimental dataset: one-factor approach.

Sl. no
Experimental Surface roughness (μm) % reduction

S (rpm) F (mm/min) D (mm) Dry Wet LN2 LN2 over dry LN2 over wet
1 1000 350 1 3.55 2.42 1.36 61.7 43.8
2 1000 450 1 4.32 2.79 1.77 59.0 36.6
3 1000 550 1 4.57 3.20 1.93 57.8 39.7
4 2000 350 1 3.19 2.09 1.12 64.9 46.4
5 2000 450 1 3.66 2.58 1.40 61.7 45.7
6 2000 550 1 4.02 2.96 1.67 58.5 43.6
7 3000 350 1 2.84 1.84 0.83 70.8 54.9
8 3000 450 1 3.29 2.43 1.26 61.7 48.1
9 3000 550 1 3.87 2.77 1.38 64.3 50.2
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parameters vector w., which intern takes to nonlinear
function that is y (x, w). By identifying the variable w in-
directly, the y (x, w) function can be concluded. Meanwhile,
this process is called a learning and training process. +e
error function is minimized by adjusting the parameter w,
which is called by name sum of squares error (SSE) [48].
Figure 9 represents the flow of steps carried in the ANN
model to validate the input and output machining variables.

+e numerical equations utilized to develop mathe-
matical modeling of ANN are represented in Figure 9,
and similarly, the equations used to develop RSM
modeling are represented in equation (3). +e ANN and
RSM mathematical modeling is based on the preliminary
experiments, which are as per the manufacturer’s in-
structions on tool insert and workpiece machining range.
Also, the experiments with the input parameters S, F, D
below or above the mentioned range of specifications for
tool insert the result in deteriorating Ra and other ma-
chining issues like chatter, vibration, and excess cutting
temperature [49–52].

BNN is incorporated in the current study as it deter-
mines the probabilistic nature of the learning process of the
network. In BNN for weight adjustment, the regularization
is considered as the prior distribution. In this study,
Gaussian is used as a prior distribution while performing
BNN. BNN usually controls the complexity of the network
automatically, so the need for cross-validating the approach
can be eliminated.

3.3. Support Vector Machine (SVM). SVM is usually used to
carry out regression and classification tasks [15, 17, 29].
SVMs are referred to as kernel methods as they incorporate a
class of algorithms. +e highlighted properties of SVN are
few adjusting parameters and generalization ability. In this
study, the SVM concept was used to carry out a regression
problem. +us, it is said as support vector regression (SVR).
Estimating the SVM accuracy lies in capacity C, kernel
parameter, and insensitive region epsilon ε. +e regression
function was found with the help of many support vectors.

1 2 3 4 5 6 7 8 9
Dry 3.55 4.32 4.57 3.19 3.66 4.02 2.84 3.29 3.87
Wet 2.42 2.79 3.2 2.09 2.58 2.96 1.84 2.43 2.77
LN2 1.36 1.77 1.93 1.12 1.4 1.67 0.83 1.26 1.38
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Figure 4: Experimental results using OFA: dry, wet, and LN2 (Ra in μm).

Experimental results - LN2 over dry and LN2 over wet (Ra)

1 2 3 4 5 6 7 8 9
LN2 over dry 61.7 59 57.8 64.9 61.7 58.5 70.8 61.7 64.3
LN2 over wet 43.8 36.6 39.7 46.4 45.7 43.6 54.9 48.1 50.2
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Figure 5: Percentage deviation in experimental results using OFA: LN2 v/s dry and LN2 v/s wet (Ra).
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+ese support vectors are dependent on the value of epsilon
ε, and regression function smoothness is directly propor-
tional to increase epsilon ε. Similarly, the model complexity
and empirical error trade of cost are identified by the ca-
pacity (C). Four different kernel functions such as linear,
polynomial, radial, and sigmoidal were utilized in the
present study.

Since the radial-based kernel function provided
better results than the rest kernel functions, the radial
kernel function was chosen as the best kernel for this
study. C is the regularization parameter, and C identifies
the trade-off between maximizing the margin and
minimizing the training error. +e effective way to
identify the optimized parameter C and epsilon (ε) is to
utilize the K-fold cross-validation or grid search method.
In the current study, to identify the optimized parameter,
K-fold method is incorporated. +e parameters C and ε
were selected based on the objective to triggers the best
performance results. C � 8 and ε� 0.19 played a signifi-
cant role in achieving the required accurate predicted
values. +e leave-one-out (LOO) was incorporated to
determine the parameters epsilon (ε) and the kernel
parameter sigma (σ). Before starting the LOO procedure,
the parameters ε and C must be set constant as 0.19 and 8
for ε and C, respectively.

As per the above parameter value, the procedure LOO
was proceeded to find the kernel parameterσ, which de-
creases the mean square error (MSE). In the current study,
the minimal MSE attained at σ � 2.4. Later on, to reduce the
MSE, the same procedure was carried out to find epsilon ε by
setting σ � 2.4. From the attained graph, it is seen that
ε� 0.19 contributes to the minimum MSE value. +e result
attained for the kernel parameters σ and ε by the LOO
procedure is represented in Figures 10(a) and 10(b).

Hence, after finding σ and ε, the SVM model follows the
self-learning technique. +e accuracy of the SVM model
with prediction ability for the unseen data is depicted in
Figures 11(a) and 11(b), respectively. Based on the value of
R, the generalization ability and model capacity to learn can
be determined. +us, as R’s value is reaching 1, it indicates
the model is adequate, accurate, and well learned in training
and testing.

4. Results and Discussions

Altogether 55 experiments were carried out, and out of
them, 45 datasets were utilized for training and 10 datasets
for testing for both BNN and SVM models. +e dataset is
divided into 2 categories: training (82%) and testing (18%)
[53]. To validate the developed model (RA, BNN, and SVM),
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Figure 6: (a) Cryogenic schematic machining setup. (b) Flowchart of the proposed method “hybrid-bias (BNN-SVR).
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(a)

Figure 7: Continued.
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(b)

(c)

Figure 7: Continued.
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(d)

Figure 7: Cryogenic experimental setup with a start to end experimental instances. (a) Full cryogenic experimental setup used with different
components, (b) experimentally used milling cutter and tool inserts with specifications, (c) nozzle positioned to the machining zone before
the cryogenic machining, and (d) LN2 sprayed to the machining zone during the cryogenic machining experiments.

Figure 8: Surface roughness tester (MITUTOYO SURFTEST SJ-301) setup. (a) Surface roughness tester measuring Ra of milled workpiece
SS316. (b) Expanded view of the probe with diamond tip stylus of surface roughness tester.
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additional 9 experiments were conducted. A similar com-
parative study with a prediction model has been made
between four different types of backpropagation algorithms
in ANN, and the results were compared with the statistical
prediction model of RSM.+e attained results of 9 test cases
for RA, BNN, and SVM model are depicted in Table 4, and

the data is associated with Figures 12 and 13 with percentage
error in Ra and deviation in Ra among prediction models
RSM, BNN, and SVR, respectively.

+e achieved RA (RSM) equation for surface roughness
(Ra) is represented as in equation (4) [39]; by the substi-
tution of values of Table 2, the training data is generated.

Ra � 1.23988 − 0.193944∗ S + 0.137611∗F + 0.0157778∗D − 0.585556∗CT − 0.0370733∗ S∗ S

− 0.0310733∗F∗F + 0.0104267∗D∗D + 0.191427∗CT∗CT − 0.00300000∗ S∗F + 0.00487500∗ S∗D

+ 0.112250∗ S∗CT − 0.00325000∗F∗D − 0.0498750∗F∗CT + 0.00400000∗D∗CT,

(4)

where S, F, D, and CT are the spindle speed, feed rate, doc,
and coolant type individual parameters, respectively, and

remaining parameter combinations are the interaction
among terms.

Experimental details:
Cutting condition parameters (input variables):

Speed in rpm (S),
Feed in mm/min (F),

Depth of cut in mm (D),
Coolant type (CT)

Machining Performance Parameters (output variables): surface roughness in μm (Ra)

Artificial neural network (ANN)

Addition of new experiment data
Artificial neural network details:

Input data XS, XF, XD, XCT
Target data: YRa

55 Total data
set sufficient

No

Yes

Feed forward BP
net_ hidden = ΣJ

j=1 Cj,k ij + θk
net_ output = ΣK

k=1 Dk,z hk + ϕz

Training testing data ratio (82%, 18% testing)
XTraining = 45
XTesting = 10

Network performance function: mean square error (MSE)
calculation of target (Ra) error value

Validation of model

Details of layers:
Input layer = 1 (S, F, D, CT)

Hidden layer = 1 (Hl)
Output layer = 1 (Ra)

ANN: number of nodes:
Il = 4.Hl = 6. Ol = l

Network structure: (Il -Hl-O1) = 4-6-1

Transfer function sigmoidal

hk = F (net_hidden) Ra = (net_output)

F = 1
(1 + e–net)

XS. XF. XD. XCT (input data normalization)

Training and learning function:

Figure 9: ANN model flow of work.
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+e attained hyperparameter value is alpha (α)� 2.65
and beta (β)� 21.35. +e attained R values for both the
training and testing are 0.98275 and 0.98083, respectively, as
shown in Figures 11(a) and 11(b).

+e authentication for the models RA, BNN, and SVM
approaches has been performed with testing dataset. In
order to decide the practical model, the relative errors
attained via RA, BNN, and SVM results are compared with
each other, and the best suitable model was identified. +e

result attained from Figure 12 infers that the SVM model
was more suitable for the current study, while the rest of the
two models RA and BNN were identical in terms of their
relative errors [22]. Later on, the simulation of the forecast
was carried out by a one-factor approach as represented by
keeping the one parameter constant and varying the rest two.
+e results obtained through all 3 models, i.e., RA, BNN, and
SVR, are represented in Figures 12 and 13. +e SVM model
results are represented in Figure 11(a) for training and in
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Figure 10: Effects of leave-one-out (LOO) technique in findings of kernel parameter σ (a) and parameter ε (b).
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Figure 11: Effects of SVR on training (a) and testing (b).
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Figure 11(b) for testing datasets. +e value of R is con-
strained with forced precision to have an accurate numerical
value, i.e., R� 0.98275 and R� 0.98083, as represented in
Figures 11(a) and 11(b), respectively. In the current study,
the response for surface roughness (Ra) is illustrated. +e
comparison of the experimental results obtained among
three different machining methods, such as conventional
dry, wet, and cryogenic (LN2), is depicted in Figure 4.+e Ra

results attained via a one-factor approach, i.e., the influence
of the cryogenic (LN2) method on conventional dry and wet
machining conditions, are represented in Figure 5.

Figure 14 depicts the variation of Ra using one para-
metric approach (OFA), i.e., varying feed rate and doc and
by keeping constant spindle speed of 2000 rpm.+e feed rate
varied with low, medium, and high operating ranges, as
mentioned in Table 2, i.e., 350mm/min, 450mm/min, and

Table 4: Percentage error in Ra and deviation in Ra among prediction models RSM, BNN, and SVR compared to experimental results.

SL. no
Experimental +e percentage error in surface

roughness (Ra in μm)
Deviation in surface roughness

(Ra)
S (rpm) F (mm/min) D (mm) RSM BNN SVR RSM BNN SVR

1 1000 350 1 8.09 5.88 2.21 1.47 1.44 1.39
2 1000 450 1 3.95 2.26 1.13 1.84 1.81 1.79
3 1000 550 1 8.29 2.59 1.04 2.09 1.98 1.95
4 2000 350 1 7.14 4.46 1.79 1.2 1.17 1.14
5 2000 450 1 5.71 3.57 2.86 1.32 1.45 1.36
6 2000 550 1 5.39 2.99 2.4 1.76 1.62 1.71
7 3000 350 1 8.43 4.82 3.61 0.9 0.87 0.8
8 3000 450 1 7.14 3.97 1.59 1.35 1.31 1.28
9 3000 550 1 6.52 4.35 2.17 1.47 1.44 1.35

1 2 3 4 5 6 7 8 9

RSM 8.09 3.95 8.29 7.14 5.71 5.39 8.43 7.14 6.52

BNN 5.88 2.26 2.59 4.46 3.57 2.99 4.82 3.97 4.35

SVR 2.21 1.13 1.04 1.79 2.86 2.4 3.61 1.59 2.17
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Figure 12: +e predicted percentage of error for Ra among prediction models.
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550mm/min, respectively. Similarly, the doc is varied to
0.5mm, 1mm, and 1.5mm. It is illustrated from Figure 14
that both the parameters feed rate and doc have an impact on
Ra. But comparatively, the feed rate is more influential and
governing on Ra.

Figure 15 represents the impact of varying feed rate and
spindle speed by keeping doc constant as 1mm. In this case,
constant doc 1mm preserved and varied remaining input
parameters such as spindle speed 1000 rpm, 200 rpm, and
3000 rpm and feed rate 350mm/min, 450mm/min, and
550mm/min. From Figure 15, it can be analyzed that the
variation in response Ra is directly affected by feed rate and
indirectly affected by spindle speed, informing, the feed rate
plays an influential impact on response Ra than that of
spindle speed.

Figure 16 represents the variation of response Ra with
varying spindle speed and doc by keeping the constant feed
rate of 450mm/min. +e variable parameters, i.e., spindle
speed, altered between 1000 rpm, 2000 rpm, and 3000 rpm
and doc as 0.5mm, 1mm, and 1.5mm. From Figure 16, it
can be seen that Ra is indirectly and directly proportional to
spindle speed and doc, respectively.

Generally, the variation in Ra is indirectly propor-
tional to input parameters, and this is due to the type of
chip formation and BUE that occurred during the ma-
chining process. Usually, deteriorating Ra is achieved if
there is a formation of continuous chips during ma-
chining. +e continuous chips act as an obstacle to the
coolant to reach the machining zone. As a result, the
excess cutting temperature is developed in the case of wet
machining. But in the case of cryogenic machining, the
coolant LN2 absorbs the excess heat and makes the chips
brittle easy to break the chips in nature during ma-
chining. +e break-in chip process allows the coolant
LN2 to reach the machining zone and restrict the de-
velopment of excess cutting temperature [31, 40–42]. +e
chip color depends on the type of machining method
adopted, such as dry, wet, or cryogenic, and input pa-
rameter variations, and the cutting temperature devel-
oped during machining. Furthermore, as per research,
increasing the spindle speed, feed rate, and depth of cut

could cause tool wear by maintaining the deteriorating
value of Ra [7, 9].

+e feed rate acts as a vital parameter in association with
Ra. +e variation of Ra is directly proportional to the feed
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Figure 14: Influence of feed rate and doc on Ra for constant spindle speed of 2000 rpm.
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rate. +e selection of the range of feed-rate must be decided
accurately, as it has a more significant impact on Ra; an
increase in feed rate leads to an increase of output responses
such as cutting force, tool deflections, chipping, tool wear
[32]. But the doc has an indirect influence on Ra via the
formation of BUE, cutting temperature, chip deformation,
and cutting force [39, 44]. SVM, NN, and RAmethodologies
were used to predict and optimize RA and cutting force in
milling.

An activation function was entirely chosen based on the
requirement of study by conducting trial and error methods.
Later on, the choosing factor was on the RMS error attained
through respective functions. BNN model attained better
performance than GD, SCGD, and LM due to its adaptability
and convergence features. +us, the BNN BPA method was
more practical to predict as it attained less deviation per-
centage for the considered dataset. +e deviation percentage
attained for predicting Ra by the statistical (RSM) and NN
based (GD, SCGD, LM, and BNN) approaches lies as fol-
lows: RSM: 9.43%–6.78%, GD: 9.03%–6.213%, SCGD:
8.06%–5.60%, LM: 8.90%–4.45% and BNN: 7.35%–3.38%.

5. Conclusions

+e variation and effects of variables such as feed rate,
spindle speed, cooling type, and doc on Ra in face milling
operation with different cooling techniques are examined in
the current study.

(1) +e comparative analysis of LN2 over Dry and LN2
over Wet machining conditions revealed that LN2
machining yielded better surface finish with up to
64.9%, 54.9% over dry and wet machining, respec-
tively, the benefit of LN2 for achieving better Ra.

(2) +e benchmark functions demonstrate that the
hybrid-bias (BNN-SVR) algorithm can fall out of the
local minimum and converge to the optimal global
value.

(3) +e performance of the (BNN-SVR) is a prevalent new
ability to fetch the partially trained weights from the
BNN model into the SVR model, thus leading to
conversion of static learning capability to dynamic
capability. +e performance of hybrid-bias (BNN-
SVR) surpasses the performance of BNN and RSM by
achieving greater convergence and less deviation error.

(4) +e SVRmodel is chosen as the best suitable method,
based on its convergence characteristic and com-
putational time. +e statistical significance of the
model is expressed in terms of its performance, that
is, the error percentage achieved. +e deviations
attained by the models are as follows:
RSM: 3.95%–8.43%, BNN: 2.36%–5.88%, SVR:
1.04%–3.61%

All three models have a deviation percentage below 10%.
It was found that the neural network approach BNN and
machine learning model hybrid-bias (BNN-SVR) algorithm
correlate well with experimental results. But the best pre-
diction for response Ra was attained by the SVR model with
the maximum deviation percentage of 3.61%.
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