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ABSTRACT 
 

A pot culture experiment was conducted on Karaikal soil series (Vertic Ustropept) to study the 
response of rice genotypes to boron addition and screening efficient genotypes using stress 
indices. Ten rice genotypes were tested at two (0, 2 mg kg

-1
) level of boron. The result revealed 

that the highest grain yield (88.40 g pot
-1

) and straw yield (114.7 g pot
-1

), and the maximum grain 
boron uptake (2192.3 µg pot

-1
) and straw boron uptake (3291.9 µg pot

-1
) were recorded with 

application 2.0 mg boron kg
-1

. Amongst rice genotypes, ADT 50 recorded significantly the highest 
grain and straw yield, boron uptake and boron use efficiency compared to other genotypes on 
application of boron @ 2 mg kg

-1
. From the study results, we observed that there are significant 

differences among rice genotypes on yield, boron uptake and use efficiency with boron fertilization 
compared to no boron application. Further, based on stress tolerance index (STI), yield under 
stress (Ys) and adequate condition (Yp) rice genotypes were categorized into Group A – uniform 
superiority under stress and non – stress condition – ADT 50, ADT43 and ADT 53 with high STI > 
1.0; Group B - perform favorably only under non – stress condition - ADT 46, ADT 52,ADT 51, ADT 
40 and ADT 37 – STI - 0.7 to 1.0; Group C – genotype yield relatively higher only under stress 
environment – no genotypes ; Group D – genotype perform poorly in both stress and non-stress 
environment – ADT 38 and ADT 39 with low STI < 0.70. 
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1. INTRODUCTION 
 
Rice (Oryza sativa L.) is an essential grain [1] 
with almost half of the world's population relying 
on it for as a staple diet [2] particularly in fast-
growing and densely populated parts of the world 
[3] Rice meets 21% of the energy and 15% of the 
protein needs of the world's population and main 
sources of calories for millions people [4,5]. 
While higher wages, labor scarcity, water 
constraints, and nutrient mining are all the key 
issues that must be addressed for sustainable 
rice cultivation [6]. The production declined due 
to decrease in area cultivated, dry weather, 
shortage of water, delayed sowing, low plant 
population, imbalance fertilizer uses and disease 
attack [7] As half of the global population depend 
on rice for their daily energy requirements; 
therefore, rice productivity cannot be ignored by 
reasons [8] especially micronutrient deficiencies 
[9] Intensification of agricultural land use with 
high yielding crop varieties and unbalanced 
fertilizer application led to mining out the native 
soil nutrients [10] Soils with micronutrient 
deficiencies produce crops with low 
concentration of micronutrients and their 
consumption lead to malnutrition. Application of 
micronutrient through soil and or foliar application 
in various soil and crop situations help to 
alleviating micronutrient deficiency both in soil 
and crop plants [11]. 
  
Now a day’s micronutrients deficiency such as 
zinc and boron is become wide-spread in rice 
growing areas of country that leads to substantial 
loss in yield and quality of grains [12] Among the 
micronutrient deficiencies, boron deficiency is a 
growing concern to all crops [13] Boron is 
required for optimal plant growth and 
development and its deficiency and excess 
application pose a problem for crops [14] Boron 
deficiency has a negative impact on the 
productivity of 132 crops [15] and most of the rice 
based cropping systems facing boron deficiency 
[16] B deficiency prevailed in different states of 
India and it was higher in eastern states [12] and 
became a limiting factor of crop productivity 
especially in rice-based systems [9,17] An 
inadequate amount of accessible B in soils 
diminishes agricultural productivity, degrade 
grain quality, and make crops more susceptible 
to disease [18,19] However, B needs differ 
amongst plant species and its availability 
affected by soil type, soil moisture, pH, B 
concentration, soil organic matter, and plant 

variety [20] Severe crop loss due to the reduction 
in pollen sterility of rice and proper grain filling 
may occur due to boron deficiency [21] and it my 
caused by either low content or low availability 
depends on the soil type. Especially in rice B 
deficiency cause chlorosis thus the plant size is 
reduced, leaf tips become white and rolled [22] in 
severe case leads to necrosis and death of 
growing point. Further, if rice is affected by B 
deficiency during panicle formation, the plants 
may fail to produce panicles. As the problem of 
micronutrient deficiency especially boron in rice 
in Inceptisols has not taken necessary attention. 
To obtain B tolerant rice lines, the selections 
under the condition of low B several selection 
parameters have been used by researchers 
based on stress selection indices under optimum 
and stress conditions to identify the tolerant rice 
genotypes. A number of research outputs 
showed that boron fertilizers increased the rice 
yield and its requirements differ significantly 
according to soil type, climate, management 
practice, timing of application and cultivars used 
[23] Further, there were several yield-based 
stress indices have been developed those may 
be more applicable for nutrient deficiency stress 
environment [24] Keeping all these issues in 
boron application to rice in various soil types, this 
present study was carried out with the aim that 
boron application affects the yield, boron uptake 
and boron use efficiency among rice genotypes 
and screening efficient rice genotypes using 
various stress tolerance indices in Vertic 
Ustropept of Karaikal region of Puducherry Union 
Territory, India and to take this study findings to 
field scale application for recommendation to rice 
under boron deficient soils. 
 

2. MATERIALS AND METHODS 
 
As a part of doctoral research on boron 
fertilization to rice and fixing critical limits of 
boron to rice in Karaikal region soils under three 
soil orders viz., Entisol, Inceptisol and Vertisol 
and part of work published related to this study 
by [25]; further identifying the efficient rice 
genotypes under boron stress and non-stress 
condition in Inceptisol (as it covers major area 
compared to other soil orders in the study area) 
this pot experiment was carefully planned and 
conducted in net house of experimental farm of 
ICAR –KVK, Karaikal (10

0
99’ N latitude and 

79
0
75’ E longitude) during June - October 2021 

to study the response of rice genotypes to boron 
fertilization and screening the efficient rice 
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genotypes under B stress and non-stress 
conditions. The experimental soil belonged to 
Karaikal soil series (Fine Montmorillonite 
isohyperthermic VerticUstropept). The physico 
chemical characterization of the soil was pH– 
8.73, EC – 0.47dSm

-1
, organic carbon – 8.12 g 

kg
-1

, KMnO4-N – 327 kg ha
-1

, Olsen – P – 26 kg 
ha

-1
, NH4OAC – 218 kg ha

-1
 and hot water B – 

0.49 mg kg
-1

. The experimental soil was deficient 
in B (critical limit < 0.59 mg kg

-1
). The treatments 

consisted of ten rice genotypes (ADT37, ADT38, 
ADT39, ADT40, ADT43, ADT46, ADT50, ADT51, 
ADT52, and ADT53) and two B levels (0 and 2.0 
mg kg

-1
) applied through sodium tetra borate. 

Each pot was filled with 10 kg of processed soil 
sample. All the pots received uniform dose of 
150:50:50 kg N, P2O5 and K2O applied through 
urea, super phosphate and muriate of potash 
respectively. The experiment was conducted in 
factorial completely randomized design (FCRD) 
with two replications. To determine grain, straw 
yield and boron uptake, crops were harvested at 
maturity from the respective treatments and 
processed for further analysis and data 
observation. Dried grain and straw samples were 
ground and digested in triple acid mixture and 
boron concentration was determined by 
azomethine method in spectrophotometer. Boron 
uptake was calculated by multiplying the grain 
and straw yield with respective boron 
concentration. Based on grain yield and grain B 
uptake following boron use efficiency parameters 
were worked out as suggested by [26, 27] 
 

Agronomic efficiency (mgmg
-1

) = (Grain yield 
with B – grain yield without B) / Quantity of B 
applied (mgkg

-1
)                                         (1) 

 
Physiological efficiency (µgµg

-1
) = (Grain + 

straw yield with B – Grain + straw yield 
without B) / (Grain + straw B uptake with B – 
Grain + straw yield without B)                    (2) 
 
Agro physiological efficiency (µgµg

-1
) = (grain 

yield with B – grain yield without B) / (Grain + 

straw B uptake with B – Grain + straw yield 

without B)                                                   (3) 

Apparent B recovery = (Grain + straw B 

uptake with B – Grain + straw yield without B 

× 100) / Quantity of B applied (mgkg
-1

)      (4) 

Boron utilization efficiency (µgµg
-1

) = 
Physiological efficiency × Apparent B 
recovery  (5) 

 

The ultimate objective of this investigation was to 
compare grain yield response of 10 rice 
genotypes to boron fertilization to select high 
grain yield boron efficient genotypes both under 
boron stress and non - stress conditions. To 
assess the high yielding efficient rice genotypes 
under B deficient condition, using various stress 
indices proposed by different authors were 
employed as follows, 
 
Boron Efficiency (BE): This was calculated 
using the formula suggested by [28]  
 

BE = (Yield S / Yield P) X 100                    (6) 
 
Where,  

S = Grain yield produced under B deficiency 
P = Grain yield produced under B fertilization 

 
Stress Tolerance (TOL): This was calculated 
using the formula suggested by [29]  
. 

TOL = (Yp - Ys) (7) 
 
Where, 

Yp = The yield in stress conditions 
Ys = The yield in non – stress conditions 

 
Mean Productivity (MP):  This was calculated 
using the formula suggested by [29] 
  

MP = [(Ys + Yp) / 2] X 100                           (8) 
 
Where, 

MP = The average yield of Ys and Yp 

 
Geometric Mean Productivity (GMP):  This 
was calculated by the formula suggested by [30]  
  

GMP =                                                  (9) 

 
Where, 

Ys = The yield in non – stress conditions 
Yp = The yield in stress conditions 

 
Stress Susceptibility Index (SSI): This was 
calculated using the formula by [31]  
 

SSI = [1- 
  

  
 SI                                         (10) 

 

Where, 
SI = (stress intensity) and it is estimated as 
[1-[   /   p]] 

    – mean yield over all genotypes evaluated 
under stress conditions 
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    - mean yield over all genotypes evaluated 
under non stress conditions 
 

Stress Tolerance Index (STI): This was 
calculated using the formula suggested by [32]  
 

STI =  
     

   
                                                (11) 

 
In identify the best stress indices, simple 
correlation was worked out between grain yield 
under B stress and B non-stress condition with 
various stress indices. The stress indices with 
high correlation value at both condition was 
selected as the best one [33].  
 
The data were subjected to analysis of                
variance (ANOVA). All the statistical tests were 
performed using SPSS software. The significant 
differences between the means were tested 
against the critical difference at 5 % probability 
level. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Rice Yield 
 

Grain and straw yield of rice genotypes 
responded significantly to boron application 
(Table 1). The highest grain (61.2 g pot

-1
) and 

straw yield (77.42 g pot
-1

) was noticed with 
addition of 2.0 B mg kg

-1
.The percent increase 

over control was 7.46%.The grain yield                 
ranged from 47.30 to 88.40 g pot

-1
 and straw 

yield ranged from 65.30 to 114.7 g pot
-1

due to 
boron application. The highest grain yield (88.40 
g pot

-1
) and straw yield (114.7 g pot

-1
) was 

noticed with ADT 50 and minimum grain yield 
(47.30 g pot

-1
) and straw yield (65.30 g pot

-1
) was 

observed with ADT 39. The percent increase in 
grain yield ranged from (5.5 to 10.2) and straw 
yield (5.3 to 12.9) among rice genotypes due to 
boron. Boron is an important micronutrient 
greatly influences the yield of rice due to its 
nutritional value in metabolism This experiment 
clearly demonstrated that genotypes differ in 
grain and straw yield observed under                      
boron deficient and their response to added 
boron in controlling it. B efficiency as an ability of 
a genotype/cultivar to function properly in a soil 
too low in boron for other cultivars [34].                 
Variation in positive responses to B application to 
a calcareous soil (pH 8) containing 0.08 mg hot 
water soluble (HWS) B kg

−1
among rice                

varieties that ranged from10 % to 46 % in grain 
yield and 2 % to 77 % in straw yield                   
reported by[35]. Application of 2 mg kg

-1 
B helped 

the rice plants to improve numerous 
physiological, bio-chemicals, metabolic and 
enzymatic activities. Boron fertilization in 
deficient soils not only enhances crop yield                   
but also improves rice grain quality                         
[36]. 

 
Table 1. Effect of boron fertilization on grain yield and straw yield (g pot

-1
) in rice genotypes 

 

Rice 

genotypes 

          Grain Mean 

 

          Straw Mean 

Boron levels (mg kg
-1

) Boron levels (mg kg
-1

) 

B0 B2.0 B0 B2.0 

ADT37 54.29 58.79 56.54 69.31 75.01 72.16 

ADT38 52.01 57.30 54.65 67.90 74.30 71.10 

ADT39 47.30 50.80 49.05 65.30 69.60 67.45 

ADT40 54.83 60.40 57.61 69.60 76.30 72.95 

ADT43 76.44 80.80 78.62 97.80 105.80 101.80 

ADT46 64.90 68.50 66.70 85.80 91.67 88.73 

ADT50 82.30 88.40 85.35 103.80 114.7 109.2 

ADT51 57.42 61.20 59.31 73.50 77.42 90.61 

ADT52 63.80 67.90 65.85 77.40 84.65 79.07 

ADT53 67.90 73.50 70.70 78.70 88.90 83.15 

Mean  62.12 66.76  78.91 85.83  

 B G B×G B G B×G 

SEd 0.40 0.90 1.27 0.46 1.04 1.48 

CD( p=0.05) 0.81 1.82 2.58 0.94 2.12 3.00 
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Table 2. Effect of boron fertilization on grain and straw boron uptake among rice genotypes 
  

Rice 
genotypes 

           Grain Mean           Straw Mean 

Boron levels (mg kg
-1

) Boron levels (mg kg
-1

) 

B0 B2.0 B0 B2.0 

ADT37 830.6 1193 1012 1483 1898 1691 
ADT38 744 1128 936 1311 1716 1513 
ADT39 586 925 756 1169 1524 1347 
ADT40 927 1359 1143 1559 2014 1787 
ADT43 1361 1899 1630 2298 3004 2651 
ADT46 961 1411 1186 1768 2356 2062 
ADT50 1514 2192 1853 2512 3292 2902 
ADT51 941 1316 1128 1610 2043 1826 
ADT52 921 1230 1075 1571 2099 1835 
ADT53 1141 1749 1445 1825 2436 2131 

Mean  992.5 1440.2  1711 2238  
 B G B×G B G B×G 
SEd 8.11 18.1 25.6 12.6 28.2 39.9 
CD( p=0.05) 16.4 36.7 51.9 25.5 57.1 80.7 

 
Generally, application of boron has long been 
known to be an effective means of increasing 
boron concentration of the reproductive organs 
resulting in higher crop yield. Increase in grain 
yield among rice genotypes due to boron is also 
associated with higher availability of boron in soil 
leading to higher absorption of boron by rice 
plants. This was confirmed by significant positive 
linear relationship between boron uptake and rice 
yield (y=28.411x-614.4, R

2
= 0.9345**) (fig.1).The 

application of boron highly influenced the rice 
crop, providing greater grain yield, which can be 
explained by the numerical increase in various 
boron use efficiency parameters. This was 
confirmed by significant positive linear 
relationship between grain yield and B recovery 
efficiency (Fig. 2). It showed that 69.39% 
variation in grain yield is accounted by nutrient 
recovery of boron. The highest grain yield 
noticed in ADT 50 is because, the highest 
agronomic, physiological, agro-physiological, 
boron utilization efficiencies, besides apparent B 
recovery were noticed in ADT 50. The beneficial 
effect of B on enhancement of crop yield has 
been reported by [37,38].  
 

3.2 Boron Uptake 

 
The boron uptake by grain and straw of rice due 
to boron fertilization revealed that there were 
significant differences among rice genotypes due 
to born fertilization over control (Table 2). The 
grain boron uptake ranged from 586.5 to 2192.3 
µg pot

-1
 and straw boron uptake ranged from 

1169 to 3292 µg pot
-1

. Addition of 2.0 mg kg
-1

 B 
recorded the maximum grain B uptake (1440.2 
µg pot

-1
) and straw B uptake (2238 µg pot

-1
) and 

this treatment caused 45% and 30.8% increase 
over no boron addition in grain and straw, 
respectively. With respect to rice genotypes, 
grain B uptake ranged from 755.5 to 1853 µg  
pot

-1
 and straw B uptake ranged from 1347 to 

2902 µg pot
-1

. The genotype ADT39 and ADT 50 
registered the lowest and highest boron uptake in 
grain and straw. The maximum grain boron 
uptake (2192.3 µg pot

-1
) and straw boron uptake 

(3291.9 µg pot
-1

) was recorded with application 
2.0 mg B kg

-1
 to ADT 50. It was significantly 

superior to rest of the treatments. The percent 
increases in grain boron uptake among rice 
genotypes due to boron fertilization ranged from 
33.6 to 57.6 and percent increases in straw 
boron uptake among rice genotypes due to boron 
fertilization ranged from 26.9 to 33.6. Application 
of B increased the B uptake might be due to 
more vegetative and root growth, which releases 
root exudates resulting in increased boron 
availability in soil and finally, the uptake in plants 
[39]. Similar results were reported by [38,40-42] 
i.e. a higher B uptake by rice plants with soil-
applied B. 
 

3.3 Boron use Efficiency 
 
Boron fertilization caused significant impact on 
boron use efficiency among rice genotypes over 
control (Table 3). There was significant positive 
relationship between B uptake and apparent B 
recovery (Fig.3) indicating that increases in B 
efficiency caused enhanced B uptake. Among 
rice genotypes agronomic efficiency (Eqn-1) 
ranged from 0.175 to 0.305 g mg

-1
, physiological 

efficiency (Eqn-2) ranged from 9.1 to 14.8 mg   
µg

-1
, agro physiological efficiency((Eqn-3) ranged 
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from 3.4 to 6.6 mg µg
-1

 , apparent recovery  
(Eqn-4) of boron ranged from 1.55 to 3.39%, and 
boron utilization efficiency (Eqn-5) ranged from 
17.9 to 39.3 mg µg

-1
. The highest agronomic 

efficiency (0.305 g mg
-1

), apparent boron 
recovery (3.39%) and boron utilization efficiency 
(39.3 mg µg

-1
) was noticed with ADT 50. While 

the highest physiological efficiency (14.8 mg           
µg

-1
) and agro physiological efficiency (6.6 mg 

µg
-1

) was noticed with ADT 38. An increase in 

various boron use efficiency parameters over 
control due to boron fertilization was reported by 
[43-45]. Better and efficient uptake of boron by 
rice crop as noticed in the present study justifies 
the higher boron use efficiency observed in 
various rice genotypes. This was aptly supported 
by the establishment of significant linear 
relationship between grain B uptake and boron 
recovery efficiency (y= 495.02x + 107.98,               
R

2
 = 0.8288**) (Fig 3.). 

 

Table 3. Effect of boron fertilization on boron use efficiency among rice genotypes 
 

Rice 
genotypes 

Agronomic 
efficiency (g 
mg

-1
) 

Apparent 
recovery of 
boron (%) 

Physiological 
efficiency  
(mg µg

-1
) 

Agro 
physiological 
efficiency  
(mg µg

-1
) 

Boron 
utilization 
efficiency 
(mg µg

-1
) 

ADT37 0.225 1.81 13.1 5.7 23.6 
ADT38 0.265 1.92 14.8 6.6 28.4 
ADT39 0.175 1.69 10.6 4.7 17.9 
ADT40 0.279 2.16 13.8 6.2 25.8 
ADT43 0.218 2.69 9.9 3.5 26.6 
ADT46 0.180 2.26 9.1 3.4 20.6 
ADT50 0.305 3.39 11.6 4.1 39.3 
ADT51 0.189 1.88 9.5 4.6 17.9 
ADT52 0.205 1.55 13.6 4.8 21.1 
ADT53 0.280 3.04 12.9 4.5 39.2 

SEd 0.004 0.04 0.22 0.09 0.54 
CD( p=0.05) 0.009 0.09 0.47 0.19 1.13 

 

Table 4. Stress tolerance attributes in rice genotypes estimated from yields under boron stress 
and boron non-stress and B efficiency 

 

Genotypes Ys Yp TOL MP GMP SSI STI B efficiency 
(%) 

ADT37 54.29 58.79 4.50 56.54 56.50 1.09 0.72 92.35 
ADT38 52.01 57.30 5.29 54.66 54.59 1.32 0.67 90.77 
ADT39 47.30 50.80 3.50 49.05 49.02 0.98 0.54 93.11 
ADT40 54.83 60.40 5.57 57.62 57.55 1.32 0.74 90.78 
ADT43 76.44 80.80 4.36 78.59 78.59 0.77 1.39 94.60 
ADT46 64.90 68.50 3.60 66.70 66.68 0.75 1.00 94.74 
ADT50 82.30 88.40 6.10 85.35 85.30 0.99 1.63 93.10 
ADT51 57.42 61.20 3.78 59.31 59.28 0.88 0.79 93.82 
ADT52 63.80 67.90 4.10 65.85 65.82 0.86 0.97 93.38 
ADT53 67.90 73.50 5.60 70.70 70.64 1.09 1.12 92.38 

Mean 62.12 66.76 4.64 64.44 64.40 0.99 0.93 93.05 

 
Table 5. Correlation between several stress tolerance parameters 

 

Genotype Ys Yp TOL MP GMP SSI STI 

Ys 1       
Yp 0.9972** 1      
TOL 0.3836* 0.4517* 1     
MP 0.9993** 0.9993** 0.4189* 1    
GMP 0.9993** 0.9993** 0.4172* 0.9991** 1   
SSI -0.4584* -0.3910* 0.6394** -0.4241* -0.4257* 1  
STI 0.9958** 0.9966** 0.4271* 0.9969** 0.9969** -0.4130* 1 
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Fig. 1. Liner relationship between grain yield and grain B uptake 
 

 
 

Fig. 2. Liner relationship between grain yield and apparent B recovery 
 

 
 

Fig. 3. Liner relationship between grain B uptake and apparent B recovery 
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Fig. 4. Linear relationship between SSI with grain yield a) B stress b) B adequate 
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Fig. 5. Linear relationship between STI with grain yield a) B stress b) B adequate 
 

3.4 Identification of High Yielding Rice 
Genotypes using Stress Indices  

 
The various stress indices that are used for 
identification of rice genotypes with higher yield 
under boron stress and boron adequate are 
furnished in Table 4. Rice genotypes with small 
response to boron fertilization are considered as 
the boron efficient genotypes and boron 
inefficient genotypes have larger yield response. 
Boron efficiency (Eqn-6) was worked and it 
ranged from 90.77 to 94.74 per cent among rice 
genotypes and average mean value recorded 
93.05 per cent. The stress tolerance (TOL)  
(Eqn-7) ranged from 3.50 to 6.10 and an average 
genotype recorded a TOL value of 4.64. The 
average yield (MP) (Eqn-8) ranged from 49.05 to 
85.35 g pot

-1
 among genotypes and on an 

average genotype recorded a MP value of 64.44 
g pot

-1
. Similarly, geometric mean yield (GMP) 

(Eqn-9) ranged from 49.02 to 85.30 g pot
-1

 
among genotypes. The average GMP among 
genotypes was 64.40 g pot

-1
. The stress 

susceptible index (SSI) (Eqn-10) ranged from 
0.75 to 1.32 per cent. Similar value of SSI, 
greater the resistance to boron stress among 
genotypes. Accordingly, genotypes ADT 39, ADT 
43, ADT 46, ADT 50, ADT 51 and ADT 52 have 
lower SSI indicating that they perform well under 
B stress while recording low yield under non-
boron stress condition. Stress tolerance index 
(STI) (Eqn -11) was employed to find out the best 
stress tolerance with good yield potential. Stress 
tolerance index ranged from 0.54 to 1.63 per 
cent. Accordingly, genotypes were grouped into 
three categories viz., STI greater than 1.0 per 
cent – ADT 50, ADT 43 and ADT 53, STI – 0.7 to 
1.0 per cent – ADT 46, ADT 52, ADT 51, ADT 40 

and ADT 37, and STI < 0.7 per cent – ADT 38 
and ADT 39. 
 
The genotypes tested under boron stress and 
non-stress environment differed significantly 
among them. The grain yield under stress ranged 
from 47.30 g pot

-1
 (ADT 39) to 82.30 g pot

-1
 (ADT 

50) with a mean value of 62.12 g pot
-1

. While 
under boron adequate condition, grain yield 
ranged from 50.80 g pot

-1
 (ADT 39) to 88.40 g 

pot
-1

 (ADT 50) with a mean value of 66.76 g pot
-

1
. Genotypic variation in response to boron 

deficiency in number of crops have been 
reported earlier by [46] in Barley, [47] in rice, and 
[48] in chick pea. Rice genotypes with small 
response to boron application are considered as 
B efficient genotypes and larger response to B 
application is considered B inefficient genotypes. 
Accordingly, in the present study, ADT 37,ADT 
38, ADT 40, ADT 53, ADT 50 were considered 
as B inefficient genotypes and ADT43, ADT 46, 
ADT 51 and ADT 52 were considered B efficient.  
 
Boron efficiency was worked out and it ranged 
from 90 to 94 per cent among rice genotypes 
(Table 4). There are several mechanisms that 
could be involved in nutrient efficiency that 
include root process that increase the 
bioavailability of soil nutrients to root uptake, 
enhanced root uptake and translocation of 
nutrients from root to shoot [49]. There was 
limitation in using boron efficiency as parameter 
to identify boron efficient genotype with high yield 
potential. This is because a genotype which is 
considered as B efficient produced yield which is 
lower than B inefficient genotypes for e.g., ADT 
37, ADT 38, ADT 40, ADT 53, ADT 50 recorded 
higher grain yield than B efficient genotypes 
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ADT43, ADT 46, ADT 51 and ADT 52. This was 
supported by weak relationship between B 
efficiency and grain yield under B stress                   
(y= 3.8235x-293.1, R

2
=0.2235* Fig.4) and 

between B efficiency and grain yield under B 
adequate (y= 3.403x -249.39, R

2
= 0.1652* 

Fig.5). Reports of [50,51] also observed similar 
relationship in selecting high grain yield iron 
deficient tolerant wheat genotypes in calcareous 
soil and zinc deficient tolerant rice genotypes in 
zinc stress soil, respectively.  
 
Thus, to identify rice genotype which will provide 
high yield both under boron deficient and 
adequate condition and high stress tolerance, 
various stress tolerance indicators were studied 
(Table 4). In the present study, lowest value of 
TOL was recorded in ADT 39, ADT 46 and ADT 
51. The index only pointed out that above 
genotypes that performed poorly under non-
stress condition. Greater the TOL value, the 
larger the yield reduction under boron stress 
condition and higher sensitivity to boron 
deficiency. Mean productivity is the average yield 
of Ys and Yp. The average yield (MP) ranged 
from 49.05 to 85.35 g pot

-1
 among genotypes 

and on an average genotype recorded a MP 
value of 64.44 g pot

-1
. Mean productivity had 

strong and positive correlation with Ys and Yp 
(Table 5). Similarly, geometric mean productivity 
(GMP) was recorded highest by the above 
genotypes and also had significant and positive 
correlation with Ys and Yp. Further MP and GMP 
strongly correlated between each other 
(r=0.99**). While MP and GMP were less 
strongly correlated with TOL Stress susceptible 
index (SSI) is another indicator used for 
screening genotypes. Greater value of SSI 
indicates relatively more sensitive to stress and 
thus a smaller value of tolerance is favored. 
Accordingly, genotypes ADT 39, ADT 43, ADT 
46, ADT 50, ADT 51and ADT 52 have lower SSI 
indicating that they perform well under B stress 
while recording low yield under non-boron stress 
condition. In the present study, SSI was 
negatively correlated with yield under Ys and Yp 
and had positive correlation with TOL. Selection 
for this parameter would also tend to favor low 
yield genotypes. It was confirmed by poor linear 
relationship between SSI and yield under B 
stress (y= -25.139x + 87.383, R

2 
= 0.1529- Fig.4) 

and between SSI and yield under B adequate (y= 
-22.196x + 89.066, R

2
= 0.1529- Fig.4) SSI has 

been ordinarily used by researcher for identifying 
sensitive and tolerant genotypes [52,53] claimed 
that selection based on stress tolerance index 
(STI) would result in genotype with high stress 

tolerance and good yield potential. Larger the 
value of STI for a genotype in stress 
environment, the higher was its tolerance and 
yield potential.  
 
This was supported in the present study by 
significant and positive correlation between STI 
and grain yield under B stress (y= 32.345x + 
31.165, R

2
 = 0.9915** - Fig.5) and between STI 

and grain yield under B adequate (y = 33.509 x+ 
34.691, R

2
= 0.9932** - Fig.5). Further, STI had 

significant positive correlation with Ys, Yp, MP 
and GMP, poor relationship with TOL and 
negative relationship with SSI (Table 5). Thus, 
MP, GMP and STI were good predictor of Ys and 
Yp than TOL and SSI. The observed relationship 
were consistent with those reported by [32] in 
mungbean, [54] in maize, [53] and [55] Talebi et 
al. in wheat and [51] in rice. In the present study, 
the STI value ranged from 0.54 to 1.63. Based 
on STI, yield under stress (Ys) and adequate 
condition (Yp) ten rice genotypes were 
categorized into 4 groups. 
 

Group A: Uniform superiority under stress and 
non – stress condition – ADT 50, 
ADT43 and ADT 53 with high STI > 
1.0 

Group B: Perform favorably only under non – 
stress condition - ADT 46, ADT 
52,ADT 51, ADT 40 and ADT 37 – 
STI - 0.7 to 1.0. 

Group C: Genotype yield relatively higher only 
under stress environment – no 
genotypes 

Group D: Genotype perform poorly in both 
stress and non-stress environment – 
ADT 38 and ADT 39 with low STI < 
0.70. 

 

Comparatively, B-efficient genotypes utilize B 
more efficiently from B deficient medium, thus 
can be successfully grown in B deficient soil 
without any additional B application. Inversely, B-
responsive genotypes require additional B 
application to produce the maximum yield [56,57] 
Hence, growing of B-efficient and in-efficient rice 
genotypes accordingly not only overcomes B 
deficiency problem but also reduce the input cost 
of fertilizer [57].  
 

5. CONCLUSION AND FUTURE 
PROSPECTS 

 

The study proved that all rice genotypes tested 
were responded well to application of boron and 
improved the rice productivity compared to no 
boron application. Therefore, it can be 
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recommended that 2 mg kg
-1

 of boron application 
to rice in Inceptisols. Further, screening of rice 
genotypes based on the stress indices studied, it 
was evident that ADT 50 rice genotype could be 
the best choice for the farmers of Karaikal region 
of Puducherry, Union Territory, India. The results 
of present work can provide base strategy for 
managing boron deficient and or sufficient soils 
and helps to select the right rice variety that can 
be grown in Inceptisols. Thus avoid the 
consequence low crop productivity or crop loss 
due to boron mismanagement or choosing 
unsuitable rice variety by farmers. 
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